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ABSTRACT

Polarization radar techniques essentially rely on detecting the oblateness of raindrops to provide a measure
of mean raindrop size and then using this information to give a better estimate of rainfall rate R than is available
from radar reflectivity Z alone. To derive rainfall rates from these new parameters such as differential reflectivity
ZDR and specific differential phase shift KDP and to gauge their performance, it is necessary to know the range
of naturally occurring raindrop size spectra. A three parameter gamma function is in widespread use, with the
three variables No, Do, and m providing a measure of drop concentration, mean size, and spectral shape, re-
spectively. It has become standard practice to derive the range of these three variables in rain by comparing
the 69 published values of the constants a and b in the empirical relationships Z 5 aRb with the values of a
and b obtained when R and Z are derived by integrating the appropriately weighted gamma function. The
relationships in common use both for inferring R from Z, ZDR, and KDP, and for developing attenuation correction
routines have been derived from a best fit through the values obtained by cycling over these predicted ranges
of No, Do, and m. It is pointed out that this derivation of the predicted range of No, Do, and m arises using a
flawed logic for a particular nonnormalized form of the gamma function, and it is shown that the predicted
ranges give rise to some very unrealistic drop spectra, including many with high rainfall and very small drop
sizes. It is suggested that attenuation correction routines relying on differential phase may be suspect and the
commonly used relationships between rainfall rate and Z, ZDR, and KDP need to be reexamined. When more
realistic drop shapes are also used, it may be that published relationships for deriving R from Z and ZDR are in
error by over a factor of 2; a new equation is proposed that, in the absence of hail and attenuation, should yield
values of R accurate to 25%, provided that ZDR can be estimated to 0.2 dB and Z is calibrated to 1 dB. Relationships
of the form R 5 a , with b 5 1.15, are in widespread use, but more realistic drop spectra and drop shapesbKDP

yield a value of b closer to 1.4, similar to the exponent in Z–R relationships. In accord, although KDP has the
advantage of insensitivity to hail, it may have the same sensitivity to variations in drop spectra as Z does. In
addition, the higher value of the exponent b implies that the proposed use of the total phase shift to give the
path-integrated total rainfall is also questionable. However, the consistency of Z, ZDR, and KDP in rain can be
used to provide absolute calibration of Z to 0.5 dB (12%), and when it fails it indicates that hail is present, in
which case a relationship of the form KDP 5 aR1.4 should be used. The technique should work at S, C, and X
band, but, in all cases, paths should be chosen so that the total phase shift is not large enough to introduce
significant attenuation of Z and ZDR.

1. Introduction

Polarization radar techniques provide additional pa-
rameters such as differential reflectivity ZDR and specific
differential phase shift KDP, which essentially depend
upon the shape and fall mode of the hydrometeors. Use
of such additional information should provide better es-
timates of rainfall rate than is available from the re-
flectivity Z alone. If the radar beam is dwelling wholly
within the rain, then part of the error when using con-
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ventional Z–R relationships arises because of variations
in raindrop size spectra. The differential reflectivity (Se-
liga and Bringi 1976) ZDR [510 log(ZH/ZV), where ZH

and ZV are the reflectivities measured with horizontal
and vertical polarization, respectively] provides an es-
timate of mean raindrop size and hence, because larger
raindrops become increasingly oblate, their size. The
specific propagation differential phase shift (Sachidan-
anda and Zrnić 1987) KDP relies on the horizontally
polarized beam traveling more slowly than the vertically
polarized one when traversing a region of heavy rain
with large oblate raindrops. As a result, the phase of
the horizontally polarized return fH lags progressively
more and more behind the phase of the vertically po-
larized return fV and the differential phase fDP 5 fV

2 fH increases with increasing range. The parameter
KDP (8 km21) is the rate of change of fDP with range
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and has been proposed as a new measure of rain rate.
One advantage of KDP is that it should be unaffected by
hail. Because of their large size, hailstones can lead to
very large values of Z, and the application of a con-
ventional Z–R relationship will predict spuriously high
rainfall rates; however, hail tumbles as it falls and should
not contribute to KDP, which should respond only to the
contribution of the oblate raindrops.

The use of the ZDR and KDP parameters has great po-
tential to improve the radar estimates of rainfall by pro-
viding information on mean raindrop size and elimi-
nating the hail contribution. However, field campaigns
have shown mixed results (e.g., Petersen et al. 1999;
Brandes et al. 2001; May et al. 1999) and do not dem-
onstrate the expected improvement when compared with
rainfall estimated from Z alone. The equations used to
derive the improved rainfall rate from ZDR and KDP in
these studies have been derived by representing natu-
rally occurring raindrop size spectra as a gamma func-
tion:

mN(D) 5 N D exp(2lD) (0 # D # D ),o max (1)

where l 5 (3.67 1 m)/Do and, for Dmax 5 `, Do is the
median volume diameter, No has the units: m23 mm212m,
and the three parameters No, Do, and m provide a mea-
sure of raindrop concentration, mean size, and shape of
the spectrum, respectively. The value of m governs the
shape of the distribution, with m 5 0 being an expo-
nential, in which case l 5 3.67/Do, and, if No is constant
and equal to 8000 m23 mm21, then we have the original
Marshall–Palmer (1948) expression. Ulbrich and Atlas
(1998) have drawn attention to the sensitivity of trun-
cating spectra at a maximum drop size, but once m is
greater than 2 then the gamma function introduces this
truncation naturally.

Ulbrich (1983) derived the range of these three var-
iables, No, Do, and m by comparing the values of the
constants a and b in the 69 published relationships (Bat-
tan 1973) of the form Z 5 aRb with the values derived
when the appropriately weighted gamma function is in-
tegrated to give an expression for Z and R. This leads
to the widely quoted range of values of m from 21 to
4 and Do from 0 to 2.5 mm. Ulbrich derived the fol-
lowing relationship between No and m:

23 212mN 5 60 000 exp(3.2m) m cm ,o (2)

with a range from 105.5 exp(2.8m) to 104.2 exp(3.57m)
m23 cm212m. If m is in the range 1–4, this implies that
No varies over 15 orders of magnitude. We shall refer
to the spectra within these limits as the ‘‘Ulbrich’’ spec-
tra.

Following Ulbrich’s work, this relationship between
No and m has been widely quoted, and the range of No,
Do, and m implied by the scatter of the 69 relationships
has been used for calculating the expected range of nat-
urally occurring raindrop size spectra. These spectra
have been used by Chandrasekar and Bringi (1987) to
examine Z–R relationships and by Bringi et al. (1990)

and Chandrasekar and Bringi (1988b) to predict atten-
uation relationships to be expected in rainfall. Bringi et
al. (1991), Chandrasekar and Bringi (1988a), Chandra-
sekar et al. (1990), Gorgucci et al. (1994, 1999, 2000),
Jameson (1994), Ryzhkov and Zrnić (1995, 1996),
Sachidananda and Zrnić (1987), Scarchilli et al. (1993,
1996), and Matrosov et al. (1999) have used this range
of Ulbrich spectra to examine the characteristics of ZDR

and KDP and to propose relationships to derive improved
rainfall estimates from them. Ryzhkov and Zrnić (1995)
restricted the range to a maximum rainfall rate of 250
mm h21. These relationships have been used in nearly
all polarization radar rainfall studies reported over the
past decade. Perhaps the most widespread is from Sach-
idananda and Zrnić (1987) used for predicting rainfall
rate from the one-way differential phase at S band:

0.866 1.155R 5 37.1K , or K 5 0.0154R .DP DP (3)

Kozu and Nakamura (1991) and Tokay and Short (1996)
have confirmed that Eq. (1) is an excellent representa-
tion of the higher moments of naturally occurring rain-
drop spectra: they fitted observed spectra to the equation
by forcing the third, fourth, and sixth moments of the
spectrum to be equal to the integral of Eq. (1) with
appropriate weighting and found that R calculated from
the fitted values of l, m, and No agreed to within 0.02
dB (0.5%) of the value of R derived from the raw spec-
tra. The values of m were in the range 0–20, much larger
than those predicted by Ulbrich. The values of No, how-
ever, covered 15 orders of magnitude in agreement with
Ulbrich. Sempere Torres et al. (1994) demonstrated that
the gamma function is a special case of a more general
formulation of raindrop size distributions. As discussed
above, the gamma function has the advantage that it
captures accurately the relationship between the higher
moments used in radar–rainfall work.

The purpose of this paper is to show that the Ulbrich
range of No, Do, and m quoted above and the relationship
in Eq. (2) arise because of the particular form of the
gamma function in Eq. (1). This is illustrated in Fig.
1a, in which drop size spectra for Eq. (1) are plotted
out for a constant values of No 5 8000 m23 mm212m

and Do 5 1 mm, but for various values of m. As m
increases, the concentration of all sizes of raindrops falls
dramatically, so that, for example, the rainfall rates for
values of m 5 0, 2, 5, and 10 are 2, 0.22, 0.009, and
0.00005 mm h21, respectively. This latter rainfall is un-
realistic for a Do of 1 mm; so, to compensate for this
when m 5 10, Ulbrich uses a much higher value of No

to increase the rain rate. As noted by Feingold and Levin
(1986), the apparent correlation in Eq. (2) reflects the
observation that, in natural rainfall for a constant Do,
the absolute raindrop concentration does not fall mark-
edly when m increases.

We seek a form of Eq. (1) with three independent
parameters to describe the distribution, each of which
represents something physically meaningful about the
distribution: Do should be a measure of the median drop
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FIG. 1. Raindrop size spectra for Do 5 1 mm. (a) Nonnormalized
gamma functions with No 5 8000 m23 mm212m and (top) m 5 0, 2,
5, and (bottom) 10. (b) Gamma functions normalized with respect to
liquid water content for NL 5 8000 m23 mm21 and the same range
m as in (a).

size, m should be the shape of the distribution, and No

should be the absolute concentration. It is clear that if
No varies over 15 orders of magnitude when one of the
other parameters is changing, it is neither an indepen-
dent measure of concentration nor is it physically telling
us anything useful about the distribution. Last, we note
that for any other value of m apart from 0, the dimen-
sions of Eq. (1) become physically meaningless as was
also observed by Testud et al. (2000).

Equation (1) could be normalized so that either total
drop concentration, liquid water content, or rainfall rate
remain constant when m is changed. In section 2 we
show that, once any of these normalizations are carried
out, the 69 Z 5 aRb relationships lead to a constant
value of b, and a is a function of both m and No, so no
useful information on the range of raindrop particle
spectra can be inferred. Furthermore, it has been shown
(Haddad et al. 1997) that it is mathematically invalid
to equate the values of a and b in the expression Z 5
aRb obtained by integration of Eq. (1) with the values
of a and b in the 69 empirical Z–R relationships. In
addition, Ulbrich’s approach assumes that the Z–R re-
lationships reflect the variability of individual spectra,
whereas in reality each Z–R relationship is itself an av-
erage of many spectra.

We follow Willis (1984) and suggest normalization
of Eq. (2) so that liquid water content is kept constant
if m is changed—in this case the three parameters be-
come independent, with No scaling the absolute values
of the concentration of all sizes of drops, m scaling the
shape of the distribution, and Do scaling the median
volume diameter. In section 3 we suggest a more re-
alistic range for the variables No, Do, and m, and in
section 4 we review the status of the equations pre-
dicting the expected attenuation and the equations re-

lating R to Z, ZDR, and KDP to improve rainfall estimates,
which have been based upon the range of drop size
distributions derived from No and m from the 69 Z–R
relationships.

2. The Z–R relationships and gamma functions

In his 1983 paper, Ulbrich integrated the gamma func-
tion in Eq. (1) with various weighting functions Dp:

pP 5 a D N(D) dD, (4)p E
where p 5 0 for total drop number NT; p 5 3 for liquid
water content; p 5 3.67 for rainfall rate R, assuming
the terminal velocity varies as D0.67; p 5 6 for radar
reflectivity Z and ap is, for example, unity for Z but p/
6 for liquid water content. Using Eq. (1) gave

G(p 1 m 1 1)
P 5 a N , (5)p o p1m11l

so that, for example, the total number NT is given by

G(m 1 1)
N 5 N . (6)T o m11l

Ulbrich then derived expressions for Z and R from Eq.
(5):

G(7 1 m) G(4.67 1 m)
Z 5 N , and R 5 N a . (7)o o r71m 4.671ml l

Eliminating l, we have

N G(7 1 m)o bZ 5 R , (8)
b[N a G(4.67 1 m)]o r

where b 5 (7 1 m)/(4.67 1 m). Ulbrich then compared
Eq. (8) with Z 5 aRb and found that the value of b
uniquely defined m and that, once m was known, the
value of a could be used to find No. Examination of the
69 proposed values of a and b then leads to a range of
values of m and No believed to occur in natural rainfall.
Nearly all values of m ranged from 22 to 16, and No

ranged from 1 to 1016 m23 cm212m, but logNo and m
had a correlation coefficient of 0.98, which arises from
degrees of freedom consideration, and a best fit given
by Eq. (2). The variation of the constant a in Z 5 aRb

from 100 to 500 leads to a spread in the values of No

and m; for No the upper and lower bound are
5.5N 5 10 exp(2.8m) ando

4.2 23 212mN 5 10 exp(3.57m) m cm , (9)o

respectively.
In Fig. 1a, we noted that when the drop size spectra

of Eq. (1) are plotted out for a constant values of No 5
8000 m23 mm212m and Do 5 1 mm, then as m increases
the concentration of all sizes of raindrops falls dramat-
ically. Chandrasekar and Bringi (1987) noted that the
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apparent correlation between No and m in Eq. (2) is to
compensate for this effect and suggested modifying the
gamma function so that the total drop concentration NT

is conserved. The equation
mN l(Dl)TN(D) 5 exp(2lD) (10)

G(m 1 1)

has the required property that integrating over all drop
sizes leads to the total drop concentration being NT and
independent of m.

In this case the expressions in Eq. (7) become

G(7 1 m)
Z 5 N andT 6l G(m 1 1)

G(4.67 1 m)
R 5 N a . (11)T r 3.67l G(m 1 1)

Eliminating l as before and then expressing Z as a func-
tion of R gives

1.63
N G(7 1 m) G(m 1 1)T 1.63Z 5 R[ ]G(m 1 1) N a G(4.67 1 m)T r (12)

b5 aR .

In this case b 5 1.63 is a constant and so, in contrast
to Eq. (8), provides no information on m; a is a function
of both NT and m, and so a whole family of NT and m
values is possible for a given a. Willis (1984) suggested
normalization with respect to liquid water content; this
idea was revived by Illingworth and Blackman (1999)
and Testud et al. (2001). Illingworth and Johnson (1999)
have shown (see section 3b) that if drop spectra are
fitted to such a normalized gamma function, then the
correlation between concentration and m vanishes. In
this case the appropriate distribution function is

mm14N 0.033(3.67 1 m) DLN(D) 5 1 2G(m 1 4) Do

D
3 exp 2(3.67 1 m) , (13)[ ]Do

which has the required property that integration over all
drop sizes leads to a constant liquid water content that
is independent of m and is obtained by multiplying Eq.
(1) by the normalization factor

4 m14 m140.0033D l 0.0033(3.67 1 m)o 5 , (14)
mG(m 1 4) G(m 1 4)Do

where NL has the units: m23 mm21, so that when m 5
0, Eq. (13) reduces to the simple exponential with NL

5 No. Because the normalization factor expressed in
Eq. (14) involves both l and Do, it is convenient to
express Eq. (13) as a function of NL, Do, and m rather
than the concentration l and m used in Eq. (10). Testud
et al. (2000) point out that the mathematical definition
is NL 5 3.674LWC/(prw ), where LWC is liquid water4Do

content and rw is density of the drops. Drop spectra
from Eq. (13) are plotted out in Fig. 1b, with NL 5 No

5 8000 m23 mm21, and Do 5 1 mm for different values
of m. In this case, as m changes from 0, 2, 5, to 10,
even though normalization is with respect to LWC, the
rainfall rate only changes from 2.01 to 1.99 mm h21,
confirming that the representation in Eq. (13) has the
desired properties that the three free variables NL, Do,
and m are independent measures of the absolute con-
centration of the drops, their median volume diameter,
and the shape of the spectrum. This is preferable to the
normalization with respect to NT [Eq. (10)] in which
case, as m takes the values 0, 2, 5, and 10, then the
rainfall rate increases from 2.0, 5.4, 8.5, to 11.0 mm
h21, respectively.

When values of Z and R are calculated by integrating
Eq. (13) and the value of Do is eliminated so that we
obtain an expression of the form Z 5 aRb, we find that
b is again a constant as in Eq. (12) but is now equal to
1.5 and a is a function of both No and m. This result is
puzzling. Why should b vary with the normalization?
Haddad et al. (1997) have identified the ‘‘all too com-
mon logically faulty step’’ that involves equating the
value of a and b in Z 5 aRb, obtained from integrating
the spectra after ‘‘eliminating l,’’ with the a and b in
another expression Z 5 aRb. They point out that it is
only possible to conclude that a 5 a and b 5 b provided
that a and b are mutually independent of R. Thus one
would need to know that No and R are independent;
given that this is not the case, there is an infinite variety
of possible choices of a and b. We conclude that, from
the 69 Z–R relationships, we can draw no conclusions
with respect to the range of values of No, l, and m
occurring in natural rainfall. However, Testud et al.
(2000) argue further that because Z and R both scale
linearly with concentration then a should also scale lin-
early with (normalized) drop concentration.

3. The range of naturally occurring raindrop
spectra

In this section we appeal to specific measurements
that indicate the range of natural drop spectra rather
than rely on satisfying arguments based on statistical
drop size distribution constraints.

a. Representativity of the Ulbrich spectra

It is now relevant to ask how representative are the
Ulbrich range of drop spectra based on these 69 Z–R
relationships and to see if a bias is introduced by av-
eraging over all these possible spectra to provide a mean
relationship between rainfall rate and the radar observ-
ables, Z, ZDR, and KDP. To give an indication of the range
of spectra implied in the Ulbrich range, in Fig. 2 we
have plotted R against median volume diameter Do for
the maximum and minimum values of No in Eq. (9) for
values of m 5 0 and 4; in addition, the solid curve is
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FIG. 2. Rainfall rates against Do for raindrop spectra in the Ulbrich
range [Eq. (9)]. Here, m 5 4 is the maximum concentration 3, min-
imum concentration *; and m 5 0 is the maximum concentration V,
minimum concentration 1. The solid curve is the Marshall–Palmer.
The solid horizontal line is the 250 mm h21 limit used by Ryzhkov
and Zrnić (1995).

FIG. 3. Variation of Z against ZDR at S band for spectra in the
Ulbrich range with values of Do increasing in steps of 0.1 mm from
Do 5 1 up to a maximum of 2.5 mm. Symbols and solid curve are
as in Fig. 2.

FIG. 4. A histogram of the S-band ZDR values in rain for Z in the
range 50–52 dBZ [from Illingworth and Caylor (1989)].

for m 5 0 and the Marshall–Palmer value of 8000 m23

mm21. The higher values of m lead to some enormous
values of R; for example, if Do 5 2.5 mm and m 5 4,
then R is 40 000 mm h21. Ryzhkov and Zrnić (1995)
did limit the range of spectra in their averaging to those
with R below 250 mm h21 (the solid horizontal line in
Fig. 2), but from Fig. 2 it is evident that cycling over
the Ulbrich range still leads to many more spectra hav-
ing much smaller drop size and higher concentrations
than the Marshall–Palmer values.

It is possible to gain some idea of the values of Do

for various rainfall rates in natural rainfall from an anal-
ysis of observations of reflectivity Z and differential
reflectivity ZDR. Unless stated otherwise, the calcula-
tions in this paper are for a temperature of 08C, a wave-
length of 9.75 cm, and a raindrop axial ratio r for drops
of diameter D (mm) given by

2 3r 5 1.075 2 0.065D 2 0.0036D 1 0.0004D , (15)

as proposed by Goddard et al. (1995) for drops larger
than 1 mm, based on careful distrometer comparisons
of Goddard et al. (1982), and subsequently essentially
confirmed by laboratory experiments (Andsager et al.
1999) rather than by the more widespread simple linear
relationship between r and D in common use (Prup-
pacher and Pitter 1971).

In Fig. 3 we have plotted the values of Z and ZDR

predicted at S band for the Ulbrich range of Do, No,
and m. The figure predicts that the maximum value of
ZDR in rain with m 5 0 should be 3.1 dB; for m 5 4 it
should not exceed 2.1 dB; and in heavy rain having Z
values of 50–52 dBZ, ZDR should be in the range 0.7–
1.9 dB. Illingworth and Caylor (1989) carried out an
extensive analysis of observations of Z and ZDR in rain
over two summers in the United Kingdom, and a his-

togram of the values of ZDR occurring for all their ob-
servations of Z in the range 50–52 dBZ displayed in
Fig. 4 reveals a very different behavior. There are vir-
tually no occasions with ZDR below 1.4 dB, but there is
a broad maximum in the range 1.6–3.2 dB and a sig-
nificant number of observations above 3.2 dB that are
completely outside the Ulbrich range. For the range 40–
42 dBZ, the mean observed value of ZDR is 1.5 dB with
individual values of greater than 2 dB, but Fig. 3 predicts
lower values. The observations are more consistent with
concentrations closer to the Marshall–Palmer curve. The
observed values of ZDR are much higher than those pre-
dicted from the Ulbrich range as would be expected if
this range includes so many spectra with unrealistically
small drop sizes. We now accordingly consider other
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evidence for the range of No, Do, and m occurring in
natural rainfall.

b. Reported values of m in rainfall

Kozu and Nakamura (1991) analyzed 1000 3-min
samples of rainfall spectra recorded over a 2-yr period
in Japan and fitted the spectra using the method of mo-
ments to calculate No, Do, and m in the nonnormalized
gamma function. Virtually all the values of m lay in the
range 0–20, with the peak of the histogram having a
value of 5. Tokay and Short (1996) fitted 127 h of trop-
ical rainfall spectra recorded at Kapingamarangi Atoll
in the Pacific Ocean with 1-min resolution using the
same technique and for the 7000 spectra found a similar
range of m. The nonnormalized values of No ranged over
9 orders of magnitude, as might be expected for a non-
normalized gamma function. Illingworth and Johnson
(1999) fitted 1260 spectra recorded every 30 s during
July of 1988 in the United Kingdom and found the same
range of values of m, with a mean value of 6 and a
standard deviation of 5. Using the nonnormalized gam-
ma function of Eq. (1), the variation of No with m was
over 25 orders of magnitude, but once the normalized
form of Eq. (13) was employed then the value of NL

was no longer a function of m and its standard deviation
was only a factor of 3.6. These ranges of m are consistent
with the mean value of 5 derived by Goddard and Cherry
(1984), who calculated Z, ZDR, and R from naturally
occurring values of raindrop spectra recorded with a
ground-based distrometer. They then compared the val-
ues of R derived from Z and ZDR with R from the raw
spectra and found that the minimum bias of only 1%
occurred for a value of m of 5, with a standard deviation
of 14%.

The difficulty with the above techniques, which use
distrometers, is their poor sampling of the larger drops,
which are important for the higher moments. It is more
convincing to rely on m derived from radar measure-
ments, because the radar sampling volume contains an
enormously larger number of the larger drops. One ap-
proach adopted by Illingworth and Caylor (1991) relied
on the lowering of the copolar correlation by the mixture
of drop shapes present in rainfall to provide an estimate
of the value m. The correlation changes are small (es-
pecially when m is above 5) and are difficult to measure,
but they deduced that the value of m was probably be-
tween 0 and 5. Better evidence comes from the values
of m derived by Wilson et al. (1997) from the ‘‘differ-
ential Doppler velocity’’ (DDV). They showed that
DDV, the difference in the Doppler velocity of rain for
horizontally and vertically polarized radiation with the
radar beam dwelling at a finite elevation, when ex-
pressed as a function of ZDR has a well-defined depen-
dence on m, and they found that the average value of
m was about 5 but that actual values varied between 2
and 10.

The value of m depends upon the moments chosen

for the fit. Higher moments are appropriate for rela-
tionships between Z and R and lead to higher values of
m than do fits to lower moments. Testud et al. (2001)
infer m values closer to unity; this may be because they
first derive No and Do in an exponential spectrum by
fitting the Z and R moments but then choose m to min-
imize a least squares fit to the observed spectrum. This
procedure for fixing m assigns equal weight to drops of
all sizes and may lead to values of m that are inappro-
priate for the higher moments involved in radar studies.

c. Reported range of values of NL in rainfall

There are many report of large variations of drop
concentration in natural rainfall. If we first consider ex-
ponential fits, then NL [ No and, for example, Waldvogel
(1974) observed ranges of No of up to a factor of 10
around the Marshall–Palmer level for an exponential fit.
Sauvageot and Lacaux (1995) found that when 53 531
spectra with 1-min resolution at three different geo-
graphical locations were sorted into different rain rates
then even the average value of No varied from 1612 to
65 343 m23 mm21, a factor of up to 5 lower to 8 higher
than the Marshall–Palmer value. Illingworth and John-
son (1999) fitted 1 month’s rainfall spectra in the United
Kingdom to a normalized gamma function and found
the mean value of log10(NL) was 3.93 with a standard
deviation of 0.56, equivalent to 8511 m23 mm21 (very
close to the Marshall–Palmer value), with a standard
deviation of a factor of 3.6. The 25 orders of magnitude
change for the value of No for the nonnormalized gamma
function reported by Illingworth and Johnson (1999) is
purely an artifact of this inconsistent distribution func-
tion. Last, in the Tropics, Marecal et al. (1997) derived
a mean value of No in the exponential to be close to 32
000 m23 mm21. Tokay and Short (1996) also reported
larger values of No in the Tropics.

d. Reported range of Do in rainfall

The Ulbrich parameterizations assumed a maximum
value of Do of 2.5 mm, implying that ZDR in rainfall at
S band should never exceed 3.1 dB (Fig. 3). However,
higher values of ZDR are frequently observed in regions
of rain in heavy convective storms, as shown, for ex-
ample, in the histogram in Fig. 4, suggesting that the
maximum value of Do can reach 4 or 5 mm.

In summary, evidence from both the Tropics and mid-
latitudes suggests that in natural rainfall the average
value of m is about 5 or 6, with a standard deviation of
about 5; values of Do can exceed 2.5 mm and reach 4
or 5 mm, and the mean value of No can vary by a factor
of 4 or so from the Marshall–Palmer value. If Z 5
300R1.4 for the Next-Generation Weather Radar (NE-
XRAD; e.g., Peterson et al. 1999) is correct for the
average, then variations of No of a factor of 4 would
lead to rainfall errors of about 650%, or 2 dB.
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FIG. 5. Theoretical values of Z/R (the value of Z for an R of 1 mm
h21) as a function of ZDR at S band. For a given ZDR, values of Z
scale with rainfall rate. Solid lines are for normalized gamma func-
tions with m 5 0 (lower line), 2, 5, and 10 (upper line), with variable
Do to a maximum of 5 mm. The upper bifurcation of the lower two
curves when ZDR is greater than 3.5 dB shows the effect of truncating
the spectrum at 8 mm. The dashed curve is Eq. (16) and the dot–
dashed curve is Eq. (17) predicted from the Ulbrich range of spectra.

4. Implications for polarization radar techniques

a. Differential reflectivity

To derive relationships between R, Z, and ZDR, Chan-
drasekar and Bringi (1988a) cycled over the Ulbrich
ensemble of drop spectra and obtained the best fit,

0.94 21.08R 5 0.002 397Z Z ,DR (16)

and Chandrasekar et al. (1990) derived
0.97 21.05R 5 0.001 98Z Z .DR (17)

The above approach is different from the original for-
mulation of the ZDR technique by Seliga and Bringi
(1976), who stressed that the advantage of ZDR was that
it provided a measure of mean drop size that was in-
dependent of the concentration of raindrops and that, if
an exponential raindrop size distribution is assumed, Do

is uniquely defined as a simple monotonic function of
ZDR, providing the shape of the raindrops as a function
of size is known. For a given Do, the value of Z scales
with No, so, once Do is known, the value of No can be
derived from the absolute value of Z. Rainfall rates are
derived in a similar manner: Do is derived from ZDR,
and then, for a given Do (and thus ZDR), Z scales with
R because both are linearly related to No. Thus, R should
be linearly related to Z (provided ZDR remains constant
and the ratio of the moments of the drop spectrum do
not change with drop concentration), and so, in Eqs.
(16) and (17), the Z power should be unity rather than
0.96 and 0.97. Of course, if ZDR increases as Z increases
(as it will on the average) then Z and R are not linearly
related and we have a relationship of the form Z 5 aRb,
and b is not unity. The use of gamma functions leads
to a 625% change in rain rates (see below) but does
not affect the linearity argument.

Computed values of Z/R, the values of Z (dBZ) at S
band for a rainfall rate of 1 mm h21, are plotted in Fig.
5 over the range Do 5 1–5 mm (ZDR of 0.25–5.4 dB)
for the newly proposed normalized gamma function in
Eq. (13) with m 5 5 using the drop shapes in Eq. (15).
A third-order polynomial fit of Z/R as a function of ZDR

gives the following expression:
21 21Z /R [dBZ (mm h ) ]

25 f (Z ) 5 21.48 1 8.14Z 2 1.385(Z )DR DR DR

31 0.010 39(Z ) , (18)DR

which is accurate to better than 0.5 dB. Because the
rainfall rate R is proportional to Z, then, for a given
ZDR, the actual rainfall rate for an observed value of Z
is given by R 5 Z/ f (ZDR).

Figure 5 also displays the values of Z/R, the value of
Z for a rainfall rate of 1 mm h21, as a function of ZDR

for m values of 0, 2, and 10. The effect of truncating
the drop spectrum at 8 and 10 mm is also plotted and
is important only for m 5 0 and 2 and for values of ZDR

above 2.5 dB. Note that, in the calculations of Fig. 5,
the normalization factor is unimportant because the con-

centration of drops of all sizes is scaled to give a rainfall
rate of 1 mm h21 and then Z is calculated. The curves
in Fig. 5 indicate that if the range of values of m from
0 to 10 encompasses those occurring in natural rainfall,
then uncertainty in the value of m will introduce an error
of only 61 dB or 625% in rainfall rates derived from
Z and ZDR. Note also from the slope of the curves in
Fig. 5, that ZDR must be estimated to an accuracy of 0.2
dB to achieve this accuracy; Z, of course, must be ac-
curately calibrated to 25%.

Also included in Fig. 5 are the curves proposed by
Chandrasekar and Bringi (1988a) and Chandrasekar et
al. (1990), which have been determined by setting R 5
1 mm h21 in Eqs. (16) and (17). Equations (16) and
(17) were derived from averaging over all the Ulbrich
ensemble of drop spectra distributions for linear drop
shapes, and, as expected, this averaging leads to an over-
estimate of the rainfall rate for a given ZDR at higher
rainfall rates. The use of linear drop shapes in Fig. 5
only changes the curves for ZDR of less than 2 dB; with
the Z values lowered by about 2 dB when ZDR 5 1 dB.
From Fig. 5, it appears that the use of these empirical
relationships should introduce an underestimate of de-
rived rainfall rates of about 3 dB for a ZDR of 0.5 dB
and overestimates of about 5 dB for a ZDR of 3 dB and
7 dB for a ZDR of 5 dB when compared with the pre-
dictions of Eq. (18) based on normalized gamma func-
tions and the observed range of raindrop spectra. How-
ever, the value of the Z exponent of 0.94 does com-
pensate somewhat for the underestimation in heavy
high-Z rainfall; for a rate of 100 mm h21 it leads to a
scaling of Z by a factor of 76 rather than 100, which,
for a ZDR of 3 and 5 dB, would reduce the overestimates
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FIG. 6. Solid curves as for Fig. 5, but at C band. Again, for a given
ZDR, values of Z scale with rainfall rate. The dashed curve is Eq. (20)
from Aydin and Giridhar (1992).

FIG. 7. Predicted values of one-way KDP as a function of rainfall
rate. Solid lines are for a normalized gamma function with (top) NL

5 8000 m23 mm21 and m 5 0, 2, 5, and (bottom) 10. Dashed lines
are for (top) m 5 6 and NT 5 2000 and (bottom) 32 000 m23 mm21.
Dash–dot line is Eq. (3).

by 1 dB, to 4 and 6 dB, respectively. These errors are
still a factor of 2.5–4. For C band (5.6 cm), the new
equation equivalent to Eq. (18) is computed to be

2Z/R(dBZ) 5 f (Z ) 5 21.50 + 8.35Z 2 1.89(Z )DR DR DR

3+ 0.1976(Z ) ,DR (19)

which is plotted in Fig. 6, together with the formula of
Aydin and Giridhar (1992):

0.95 21.17R 5 0.002 37Z Z ,DR (20)

for the range ZDR of 0.1–3 dB. Equation (20) underes-
timates rainfall by 4 dB at the lower range of ZDR and
overestimates it at the upper range when compared with
Eq. (19). These errors at both C and S band are much
larger than the oft-quoted errors of 2–3 dB associated
with simple Z–R relationships, so it seems that the use
of Eqs. (16), (17), or (20) will not lead to the expected
improvement in accuracy of rainfall estimates. It would
be interesting to see if the performance of Eqs. (18) and
(19) is better.

b. Specific differential phase shift

Specific differential phase shift KDP, unlike ZDR, is
directly proportional to the absolute drop concentration.
It has often been claimed (e.g., Ryzhkov and Zrnić 1995,
1996) that one of the advantages of the KDP technique
is that it is much less sensitive to changes in the drop
size distribution than is ZDR and that KDP is more linearly
related to rainfall rate, as indicated in Eq. (3) in which
the exponent of R is only 1.15, as opposed to an ex-
ponent of 1.4 or 1.6 for Z–R relationships. In addition,
Ryzhkov et al. (2000) have assumed that KDP and R are
linearly related and suggested that the total differential
phase shift along a 30-km path can yield the mean in-
tegrated rain rate along the path to an accuracy of 0.3

mm h21. The exponent of 1.15 is based upon cycling
over the Ulbrich range of spectra and using a linear drop
shape variation with size. The predicted variation of KDP

with R at S band (9.75 cm) for m in the range 0–10
with an NL of 8000 m23 m21 in the normalized gamma
function and the drop shapes of Eq. (15) is plotted as
the solid lines in Fig. 7. The change in R for a given
KDP when m changes from 0 to 10 is less than 610%
for a rainfall rate of 10 mm h21 and falls to only about
68% for 100 mm h21, whereas for ZDR the changes
were 625%, suggesting that KDP is indeed insensitive
to changes in the shape of the drop spectra. However,
the best fit for one-way KDP with m 5 5 and NL 5 8000
m23 m21 over the range 10–100 mm h21 is given by

20.71 1.40R 5 47.5K or K 5 0.004 35R .DP DP (21)

The exponent of 1.4 is close to the value of 1.37 deduced
by Blackman and Illingworth (1995) for a Marshall–
Palmer distribution. The widely used Eq. (3) with ex-
ponent 1.155 derived from the Ulbrich spectra and linear
drop shapes is plotted in Fig. 7 as the dash–dot line and
shows a more linear dependence with a larger KDP for
the lower rainfall rates. The new drops shapes of Eq.
(15) are having an important effect: using linear shapes
yields a power of 1.2 in Eq. (21) rather than 1.4. The
equivalent figures for C band (5.6 cm) are

20.71 1.41R 5 31.2K or K 5 0.007 87R ,DP DP (22)

showing a virtually linear dependence with frequency.
Testud et al. (2000) have extended this argument further
by noting that KDP/NL and R/NL are functionally related
and independent of the value of NL.

The proposed value of 1.4 for the exponent in Eqs.
(21) and (22) as opposed to the widely used 1.15 in Eq.
(3) has important implications. First, it means that the
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FIG. 8. Calibration technique (see text): the relationship between
two-way KDP per unit linear Z as a function of ZDR for m 5 0 (lower
curve), 2, 5, and 10 (upper curve). FIG. 9. Example of autocalibration. Different calibrations of Z lead

to three different traces for differential phase shift. Comparison of
the observed differential phase shift in rain fixes the calibration of
Z to 0.5 dB (10%).R–KDP relationship is sensitive to the absolute value of

the drop concentrations to the same degree as the rec-
ommended NEXRAD Z–R relationship: Z 5 300R1.4

(Peterson et al. 1999). Second, as initially pointed out
by Blackman and Illingworth (1995), it means there are
large errors in deriving the path-integrated rainfall over
a river catchment from the observed total differential
phase shift along the path, because such a method as-
sumes that KDP and R are linearly related.

The dashed curves in Fig. 7 demonstrate the sensi-
tivity of the R–KDP relationship [Eq. (21)] at S band to
changes in NL to values 4 times higher and lower than
the Marshall–Palmer value of 8000 m23 mm21 while
keeping m 5 5. For a given KDP, the rain rates change
by a factor of about 50%, as would be expected from
the 1.4 exponent in Eq. (21); if Z is proportional to R1.4,
then these changes in NL would also give 50% changes
in R for a given value of Z. This leads us to the un-
expected conclusion that KDP is no better than Z for
estimating rainfall rates when pure rain is falling. In
addition, the KDP is noisy and tends to have poor range
resolution, whereas Z and ZDR are available at each gate.
The advantage of the nonresponse of KDP to hail remains,
as does the ease of calibration of a phase measurement
when compared with problems of calibrating Z.

c. Combination of ZDR and KDP for absolute
calibration of Z

Ryzkhov and Zrnić (1995, 1996) have suggested that
rainfall rate can be derived from a combination of KDP

and ZDR based on a regression analysis of the values
derived from the Ulbrich range of drop spectra. At S
band they derived

0.96 20.447R 5 26.7K Z .DP DR (23)

Such relations involving both KDP and ZDR were used

by Peterson et al. (1999) in their analysis of the Fort
Collins flash flood of July of 1997. Again, as for Eqs.
(16) and (17), because ZDR is independent of concen-
tration but both R and KDP scale linearly with drop con-
centration, physical arguments would suggest an ex-
ponent of unity for KDP in Eq. (23). Hail was not reported
in the flash flood, so the values of ZDR should be reliable
once they have been corrected for differential attenua-
tion and, as argued in section 4a, both KDP and Z should
scale with concentration, so this equation reduces to a
form similar to Eqs. (16) or (17).

Goddard et al. (1994) have shown more fundamen-
tally that Z, ZDR, and KDP in rain are not independent.
Both KDP and Z scale with concentration, and so their
ratio will be independent of concentration, as is ZDR.
The relationship among the three variables is illustrated
in Fig. 8, which shows that the value of KDP (two way)
per unit (linear) Z is a well-defined function of ZDR and
is virtually independent of m. Goddard et al. (1994)
showed that this redundancy, which arises by chance
because of the natural form of drop spectra and drop
shapes, can be exploited to provide an automatic means
of calibrating the Z measurement to 0.5 dB (12%). The
technique, as demonstrated in Fig. 9, is to take a path
through rain over which there is appreciable differential
phase shift mostly caused by rain with ZDR above 1.5
dB and to use Fig. 8 to derive the value of KDP at each
gate using the observed Z and ZDR at that gate; the
calibration of Z is then adjusted so that the theoretical
total phase shift from adding up the predicted KDP at
each gate agrees with the total observed differential
phase shift along the whole path. Figure 9 shows clearly
that a calibration to better than 0.5 dB (12%) can be
achieved. The technique is used routinely at the Ruth-
erford Appleton Laboratory (RAL) radar at Chilbolton
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in southern England. The advantages are that, first, the
predicted phase shift is compared with an observed total
phase shift integrated along a path, which can be esti-
mated very accurately, rather than introducing further
noise by differentiating an already noisy differential
phase estimate and, second, many adjacent rays can be
averaged to reduce the standard deviation of the cali-
bration error. Curves similar to those in Fig. 7 are found
at C band and X band, so the calibration procedure
should operate at these frequencies. In all cases, the path
should be chosen so that total differential phase shift is
limited to values that imply negligible attenuation and
the observed values of Z and ZDR along the path are the
true ones.

The very lack of independence that enables the con-
sistency of Z, ZDR, and KDP to be used to calibrate the
reflectivity of the radar precludes their use, in combi-
nation with Z, to provide independent of estimates of
No, Do, and m in the drop size distribution and so to
improve the rainfall estimate. Smyth et al. (1999) sug-
gested using the consistency of the three variables at S
band to monitor that the integrated phase along the path
agrees with the predicted phase shift to confirm that rain
is present along the beam. When rain is present, then Z
can be accurately calibrated and the Z–ZDR technique
(Eq. 18) should provide a rainfall rate accurate to 25%.
When the consistency fails this indicates that hail is
present, in which case the Z–ZDR technique fails; the
value of ZDR is no longer related to the mean size of the
raindrops because hail has the effect of depressing ZDR

towards zero, and the value of Z is inflated by the large
hailstones, which contribute little to the rainfall rate.
Where hail is indicated, they suggested that an R–KDP

relation, such as in Eq. (21), provides the best rainfall
estimate.

d. Attenuation correction using differential phase
shift

We note finally that the linearity between differential
phase shift and both total and differential attenuation
derived by Bringi et al. (1990) has been widely used
(especially at C band) for correcting Z and ZDR for at-
tenuation affects. The linearity was derived from a sta-
tistical fit using the Ulbrich range of drop spectra with
a maximum value of Do of 2.5 mm (ZDR 5 3 dB), but
Smyth and Illingworth (1998) showed that once Do ex-
ceeds 2.5 mm then even at S band this linearity unfor-
tunately breaks down. Most attenuation events involve
values of ZDR above 3 dB, and so the correction tech-
nique may have difficulties. To overcome this problem
at C band, Carey et al. (2000) propose the use of dif-
ferent relationships between phase shift and attenuation
depending upon the value of ZDR.

5. Conclusions

1) The use of nonnormalized gamma functions to de-

scribe raindrop size distributions and the derivation
of the Ulbrich range of values of No, Do, and m in
rain based on interpretation of the 69 Z–R relation-
ships of Battan (1973) leads to a range of drop spec-
tra which is inconsistent with observations. Once
normalized functions are used, m is no longer a func-
tion of the b in Z 5 aRb, and No is no longer cor-
related with m, but No, Do, and m are independent
parameters describing the concentration, mean size,
and breadth of the drop spectra.

2) The linearity between differential phase and both
total and differential attenuation proposed by Bringi
et al. (1990) is in widespread use for correction of
differential and total attenuation, but, even at S band,
it breaks down when the Ulbrich maximum value of
Do of 2.5 mm (ZDR 5 3 dB) is exceeded. Occasions
on which there are high values of attenuation (Smyth
and Illingworth 1998) are often associated with val-
ues of ZDR of more than 3 dB, so the use of differ-
ential phase to correct for attenuation is questionable.
The situation at C band is less clear.

3) Most experiments to derive better rainfall rates using
Z and ZDR have been based on equations [e.g., Eqs.
(16), (17), and (20)] derived from the unrealistic Ul-
brich range of spectra and appear often to be in error
by 3 dB—a larger error than the use of the conven-
tional Z–R relationship. A new relationship is pro-
posed that, in the absence of hail, should yield a
rainfall rate accurate to 61 dB (25%), providing ZDR

can be estimated to 0.2 dB and Z is calibrated to 1
dB. This relationship is based on a mean value of m
in natural rainfall of 5 and more realistic drop shapes.

4) The advantages of KDP technique for improving the
accuracy of rainfall rates may not be as powerful as
previously claimed. Based on the Ulbrich range of
drop spectra, equations of the form KDP proportional
to R1.15 have been widely used, but if raindrop spectra
are based on a normalized gamma function with a
mean value of m of 5 and more realistic drop shapes,
then the exponent at both C and S band is 1.4 and
is similar to the Z–R value for NEXRAD. Thus, rain-
fall rates from KDP will have a sensitivity to changes
in raindrop spectra that is similar to those based on
Z. The important advantage of KDP is its immunity
to hail.

5) The larger exponent in the R–KDP expression means
that the use of total differential phase shift along a
long path to derive an integrated rainfall rate along
that path is unlikely to outperform an equivalent al-
gorithm based on integrating the value of Z.

6) In rainfall, Z, ZDR, and KDP are not independent. This
redundancy can be exploited to provide an absolute
calibration of Z to within 0.5 dB (12%). The value
of phase shift is computed at each gate using the
theoretical value for KDP derived from Z and ZDR

observed at that gate, and the calibration of Z ad-
justed so that the computed total phase shift along
the path agrees with that observed. The advantage
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of the method is that the total integrated phase shift
can be accurately estimated, rather than differenti-
ating an observed noisy differential phase shift to
obtain an even noisier value of KDP. The technique
should also work at C and X band. In all cases, a
path should be chosen over which the total phase
shift is not too large and so indicates negligible at-
tenuation of Z or ZDR.

7) The redundancy of Z, ZDR, and KDP in rain means
that the three parameters cannot be used to derive
values of No, Do, and m in rain. However, an incon-
sistency of the three variables can be used at S band
when attenuation is insignificant to flag the presence
of hail. When hail is absent, then R may be derived
from Z and ZDR to an accuracy of 25%, but, when
hail is indicated, then an R–KDP relationship for NL

5 8000 m23 m21 [e.g., Eq. (21)] should provide the
most accurate rainfall estimate.

The conclusions above indicate that polarization tech-
niques should be very powerful for improving rainfall
estimates in severe storms provided that the correct as-
sumptions are made. It would be interesting to reanalyze
existing data to see if the rainfall estimates are improved
when the suggestions above are incorporated into the
algorithms.
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Ryzhkov, A. V., and D. S. Zrnić, 1995: Comparison of dual-polari-
zation radar estimators in rain. J. Atmos. Oceanic Technol., 12,
249–256.

——, and ——, 1996: Assessment of rainfall measurement that uses
specific differential phase, J. Appl. Meteor., 35, 2080–2090.

——, ——, and R. Fulton, 2000: Areal rainfall estimates using dif-
ferential phase. J. Appl. Meteor., 39, 263–268.

Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from
differential polarization measurements. J. Atmos. Oceanic Tech-
nol., 4, 588–598.

Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop
size distributions. J. Atmos. Sci., 52, 1070–1083.

Scarchilli, G., E. Gorgucci, V. Chandrasekar, and T. A. Seliga, 1993:
Rainfall estimation using polarimetric techniques at C-band fre-
quencies. J. Appl. Meteor., 32, 1150–1160.

——, ——, ——, and A. Dobaie, 1996: Self-consistency of polar-
isation diversity measurement of rainfall. IEEE Trans. Geosci.
Remote Sens., 34, 22–26.

Seliga, T. A., and V. N. Bringi, 1976: Potential use of differential
reflectivity measurements at orthogonal polarization for mea-
suring precipitation. J. Appl. Meteor., 15, 69–76.
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