A quick note on advection of localization

Ross Bannister

November 22, 2017

/home/ross/DataAssim/Notes/AdvectionLocalization.lyx

Without advection the 4D Schur product is

$$
\underline{\mathbf{P}} \circ \underline{\mathbf{L}}=\left(\begin{array}{cccc}
\mathbf{P}_{11} & \mathbf{P}_{12} & \cdots & \mathbf{P}_{1 L} \\
\mathbf{P}_{21} & \mathbf{P}_{22} & & \\
\vdots & & & \\
\mathbf{P}_{L 1} & & & \mathbf{P}_{L L}
\end{array}\right) \circ\left(\begin{array}{cccc}
\mathbf{L} & \mathbf{L} & \cdots & \mathbf{L} \\
\mathbf{L} & \mathbf{L} & & \\
\vdots & & & \\
\mathbf{L} & & & \mathbf{L}
\end{array}\right)
$$

where $\mathbf{P}_{i j}$ is the ensemble's 3D sample error covariance matrix between time steps i and j, \mathbf{L} is the 3D localization correlation matrix, and the underlines indicate a 4 D operator. Note that

$$
\left.\left(\begin{array}{cccc}
\mathbf{L} & \mathbf{L} & \cdots & \mathbf{L} \\
\mathbf{L} & \mathbf{L} & & \\
\vdots & & & \\
\mathbf{L} & & & \mathbf{L}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{I} \\
\mathbf{I} \\
\vdots \\
\mathbf{I}
\end{array}\right) \mathbf{L} \begin{array}{llll}
\mathbf{I} & \mathbf{I} & \cdots & \mathbf{I}
\end{array}\right) .\left(\begin{array}{c}
\mathbf{L}^{1 / 2} \\
\mathbf{L}^{1 / 2} \\
\vdots \\
\mathbf{L}^{1 / 2}
\end{array}\right)\left(\begin{array}{llll}
\mathbf{L}^{\mathrm{T} / 2} & \mathbf{L}^{\mathrm{T} / 2} & \cdots & \mathbf{L}^{\mathrm{T} / 2}
\end{array}\right)
$$

The square-root of this is

$$
\underline{\mathbf{L}}^{1 / 2}=\left(\begin{array}{c}
\mathbf{L}^{1 / 2} \\
\mathbf{L}^{1 / 2} \\
\vdots \\
\mathbf{L}^{1 / 2}
\end{array}\right) .
$$

Recall that the square-root of the localization matrix can be interpreted as a matrix of quasi ensemble members whose covariance is the localization. This allows us to introduce advection into the problem by simply replacing the above with

$$
\underline{\mathbf{L}}^{1 / 2}=\left(\begin{array}{c}
\mathbf{L}^{1 / 2} \\
\mathbf{M} \mathbf{L}^{1 / 2} \\
\vdots \\
\mathbf{M}^{T-1} \mathbf{L}^{1 / 2}
\end{array}\right),
$$

where \mathbf{M} is the advection operator (for one time step).

