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The probability density function (PDF)
prob. that  lies between  and x x x + dx p (x)
restriction on p (x) ∫

+∞
x = −∞ dx p (x) = 1

expectation value of f (x) ∫
+∞
x = −∞ dx f (x) p (x) = 〈f (x)〉

expectation value of  (the mean)x ∫
+∞
x = −∞ dx xp (x) = 〈x〉

th moment of  around j x 〈x〉 ∫
+∞
x = −∞ dx (x − 〈x〉)j p (x) = 〈(x − 〈x〉)j〉

 momentj = 1 ∫
+∞
x = −∞ dx (x − 〈x〉) p (x) = 〈x − 〈x〉〉 = 0

 moment (the variance)j = 2 ∫
+∞
x = −∞ dx (x − 〈x〉)2 p (x) = σ2

x

The Gaussian (or normal) distribution is a commonly used example of p (x)

p (x) = N (µ, σ2) =
1

σ 2π
exp−

(x − µ)2

2σ2

σ

xµ

p
(x

)

For these notes,  may be considered to be a measurement of some variable which is subject to a
normally distributed error with standard deviation .  If the measurement error is unbiased, then
the mean, , is the true value.

x
σ

µ

The PDF for a number of imperfect observations
No measurement is exact, and so all measurements have error.  The error is unmeasureable, but
we assume that we know its statistics (the PDF).  We wish to combine  unbiased, normally
distributed measurements to estimate the true value, and its uncertainty.

N

Let the th measurement be , and let the possible true value be .  The PDF of this
measurement is

n xn x

pn (xn | xe) =
1

σn 2π
exp−

(xn − x)2

2σ2
n

.

The notation  means the probability that measurement  lies between  and pn (xn | x) xn xn xn + dxn
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given that the true value is .  The combined PDF for  measurements of the same quantity isx N

p (x1, x2, … xN | x) = p1 (x1 | x) p2 (x2 | x) … pN (xN | x) ,

= ∏
N

n = 1

pn (xn | x) ,

= ∏
N

n = 1

1
σn 2π

exp−
(xn − x)2

2σ2
n

,

=
1

(2π)N/2 (∏N

n = 1

1
σn

) (∏N

n = 1

exp−
(xn − x)2

2σ2
n

) .

When considered a function of , this PDF is called a likelihood function.  We wish to calculate
the value of  that maximizes this likelihood (the maximum likelihood estimate, ).

x
x xe

The  that maximizes  is the same  that maximizes xe p (x1, x2, … xN | xe) xe ln p (x1, x2, … xN | xe)

ln p (x1, x2, … xN | xe) = ln
1

(2π)N/2
− ∑

N

n = 1

σn − ∑
N

n = 1

(xn − xe)2

2σ2
n

.

The  that maximizes  is the same  that minimizesxe ln p (x1, x2, … xN | xe) x
− ln p (x1, x2, … xN | xe)

− ln p (x1, x2, … xN | xe) = − ln
1

(2π)N/2
+ ∑

N

n = 1

σn + ∑
N

n = 1

(xn − xe)2

2σ2
n

,

= + I (xe) ,constant

I (xe) =
1
2 ∑

N

n = 1

(xn − xe)2

σ2
n

.where 

 is sometimes called a cost function.  The maximum likelihood estimate of  is equivalent
to solving the least squares problem above.
I (xe) xe

Minimizing the cost function
Differentiate  with respect to I (xe) xe

dI

dxe
= ∑

N

n = 1

xe − xn

σ2
n

.

Set to zero for the minimum (the function  is concave)I (x)

∑
N

n = 1

xe − xn

σ2
n

= 0,

xe =
∑N

n = 1 xnσ−2
n

∑N
n = 1σ−2

n

The inverse variances as weights
This problem does allow for the fact that some measurements are more accurate than others (e.g.
more accurate instrument).

⇔ σ−2
nmore accurate measurement larger value of 

Consider the case for two measurements

xe =
x1σ−2

1 + x2σ−2
2

σ−2
1 + σ−2

2
.
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If measurement 1 has much better accuracy than measurement 2, then .  Thenσ−2
1 ≫ σ−2

2

xe ≈
x1σ−2

1

σ−2
1

= x1,

and so measurement 2 will not be considered very strongly by the procedure (automatically).  If
the two measurements have the same accuracy then the maximum likelihood estimate will be an
arithmetic mean of the two

xe =
x1 + x2

2
.

The variance of the maximum likelihood estimate
Calculating the variance of the maximum likelihood can be done without reverting to doing
some difficult moment integrals.  The error in the estimate is xe − x

xe − x =
∑N

n = 1 xnσ−2
n

∑N
n = 1σ−2

n
− x =

∑N
n = 1 (xn − x)σ−2

n

∑N
n = 1σ−2

n
.

The variance of the estimate, , is the mean-square of this errorσ2
e

σ2
e = 〈(∑N

n = 1 (xn − x)σ−2
n

∑N
n = 1σ−2

n
)2

〉 ,

=
1

(∑N
n = 1σ−2

n )2 〈( ∑N

n = 1

(xn − x)σ−2
n ) ( ∑

N

m = 1

(xm − x)σ−2
m )〉 ,

=
1

(∑N
n = 1σ−2

n )2 ∑
nm

σ−2
n σ−2

m 〈(xn − x) (xm − x)〉 .

The errors in each measurement are assumed to be uncorrelated, so 〈(xn − x) (xm − x)〉 = δnmσ2
n

σ2
e =

1

(∑N
n = 1σ−2

n )2 ∑
N

n = 1

σ−2
n =

1
∑N

n = 1σ−2
n

.

Note that  has the property that it is smaller than (or equal to if there is just one observation)
the variance of any of the individual observations

σ2
e

σ2
e ≤ σ2

n ∀n.
Again, consider the case of two measurements

σ2
e =

1
σ−2

1 + σ−2
2

.

If measurement 1 has much better accuracy than measurement 2, then .  Thenσ−2
1 ≫ σ−2

2

σ2
e ≈ σ2

1,
ie the estimate is the same as measurement 1 (result found before) and the variance of the
estimate is the same as that of measurement 1.  If the two measurements have the same accuracy
then the variance of the estimate is halved

σ2
e =

σ2
1

2
.

If all  measurements have the same accuracy then the following classical result is foundN

σ2
e =

σ2
1

N
,    σe =

σ1

N
.ie
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Generalizations - introduction to data assimilation
The above example is limited in the following ways.

• One quantity, , is estimated.x
• Many observations are made.
• The observations are direct observations of the unknown quantity.
• The measurement errors are uncorrelated.

The problem can be generalized to deal with many quantities to be estimated, measurements
which may observe the quantities indirectly and whose errors may be correlated.

An indirect observation is one that measures some function of the unknown quantities, instead
of the quantities themselves.  Some example are as follows.

• Measurements of wind speed and direction when the north/south, east/west wind
components are required.

• Measurements of temperature and pressure when the potential temperature is required.
• Measurements of the temperature over a large region when the local temperatures are

required.
• Measurements from space of the thermal radiation emitted by a column of the

atmosphere when the vertical profile of temperature is required.

The following notation is used.

Symbol Meaning Reference

y Vector of  observationsp Observation vector
x Vector of  unknown quantitiesq State vector
h (x) Simulated observations according to x Observation operator
R Matrix of observation error covariances Observation error covariance matrix

xb Prior information about x Background or a-priori
B Matrix of error covariances of xb Background error covariance matrix

A least squares problem can be constructed along the same lines as the one for the single
unknown quantity case

   J (x) =
1
2

(y − h (x))T R−1 (y − h (x)) .

           ↑   ↑  ↑  ↑

1 × 1 1 × p p × p p × 1

The transpose operator turns the column vector into a row vector and the above evaluates to a
scalar quantity.  The problem is to minimize  to find .  This can be done only when there
is enough information in the observation vector to determine the state vector.  A necessary (but
not sufficient condition) condition for this is .  If  is a linear function then it may be
represented as the  matrix .  Then the cost function becomes

J (x) xe

p ≥ q h (x)
p × q H

J (x) =
1
2

(y − Hx)T R−1 (y − Hx) .

The cost function may be minimized by finding the gradient of  with respect to each element of
.  This is represented by the vector , which is the following -element vector

J
x ∇xJ q

∇xJ = −HTR−1 (y − Hx) .
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Setting the gradient to zero (to find the  that minimizes ) gives rise to the so-called
'normal equations'

x = xe J

HTR−1Hxe = HTR−1y,

xe = (HTR−1H) −1HTR−1y.
 is a  matrix.  The condition for this solution to exist lies in the properties of
.  The condition is that  must be non-singular (e.g. have no zero eigenvalues).

HTR−1H q × q
HTR−1H HTR−1H

The error covariance of , denoted , is found to be the following (not proven here)xe A

A = (HTR−1H)−1
.

In data assimilation, there are usually very many more unknowns in the state vector than there
are observations in the observation vector .  In this case,  is singular and the
best fit solution cannot be found.  In this case extra information is required, which comes from
prior information, .  This is called the 'background state' or 'a-priori state' and comes from a
numerical forecast of the current state of the atmosphere where this is available.  Its error
covariance is denoted .  The new cost function fits to the data and to the a-priori
simultaneously

(p < q) HTR−1H

xb

B

J (x) =
1
2

(x − xb)
T B−1 (x − xb) +

1
2

(y − h (x))T R−1 (y − h (x)) .

The minimum at  isx = xe

xe = xb + BHT (R + HBHT)−1 (y − h (xb)) ,
where  is the linearization (Jacobian) of .  The error covariance of  isH h xe

A = (B−1 + HTR−1H)−1 ,

= (I − BHT (R + HBHT)−1 H) B.
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