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The probability density function (PDF)

prob. thatx lies betweenx andx + dx p(X)

restriction orp(x) [eedxp() = 1

expectation value df(x) f:_m dxf (X)p(x) = (f (X))

expectation value of (the mean) f;i LadXXxp(X) = (X)

jth moment ofk around(x) [2 L dx (x — NP = ((x = X))

j = 1 moment JxZwdx (x = (NPOXO = (X — (X)) = 0
] = 2moment (the variance) [eo . dx X — 0)?p(X) = o2

The Gaussian (or normal) distribution is a commonly used example)of

. o 1 (X — w?
pP(X) = N(u, 0%) = o2 exp 202

P(X)

For these noteg,may be considered to be a measurement of some variable which is subje
normally distributed error with standard deviatianIf the measurement error is unbiased, th
the meany, is the true value.

The PDF for a number of imperfect observations

No measurement is exact, and so all measurements have error. The error is unmeasure:
we assume that we know its statistics (the PDF). We wish to comdhineiased, normally
distributed measurements to estimate the true value, and its uncertainty.

Let thenth measurement bg, and let the possible true valuexbeThe PDF of this
measurement is

1 (% = X
PO | X0 =~ exp-—t

The notatiom, (X, | X) means the probability that measuremeiites between, andx, + dx,
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given that the true value xs The combined PDF fdd measurements of the same quantity is
PXt, X2 - XN [ X) = PrOX [ X)P202 | X) ... pnON | X)),

N
= [ 1 %,
n=1

ﬁ (O X)?
- n=1 onN2m P

1 N1\ (& Xy — X)?
270 Hlo_) (Hl P2 )

When considered a function xfthis PDF is called a likelihood function. We wish to calcula
the value ok that maximizes this likelihood (the maximum likelihood estimaje,
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20%

Thexe thatmaximizesp (X1, X, ... Xy | Xe) IS the samexethatmaximizesln p(xl, Xo, ... XN | Xe)
1 - (% = X
Inp(Xy, X9, ... X = In—— _2 _Z
p( 1, A2 N | Xe) (2 )N/Z =

Thexe thatmaximizedn p(Xy, Xp, ... Xy | Xe) is the samathatmlnlmlzes
—Inp(Xg, X, ... XN | Xeo)

20n
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1 - (o — X
—In = -In———7 )
PO Xor o X | %) Gt Lot LT

constant+ | (Xe),

Z (Xn Xe)

o
| (Xo) is sometimes called a cost function. The maximum likelihood estimagesoéquivalent
to solving the least squares problem above.

wherel (Xe)

Minimizing the cost function
Differentiatel (Xe) with respect to

N
n=1

Set to zero for the minimum (the functlb(x) is concave)

Xe — Xn
7 =0,
n=1 On
N -2
2n=1xn0n
Xe N -2
n=10n

Theinverse variances as weights
This problem does allow for the fact that some measurements are more accurate than otf
more accurate instrument).
more accurate measuremesas larger value ob,”
Consider the case for two measurements

_ X1012 + XzOEz

012 + 072
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If measurement 1 has much better accuracy than measurement@;?tieemws?. Then

and so measurement 2 will not be considered very strongly by the procedure (automatica
the two measurements have the same accuracy then the maximum likelihood estimate wi
arithmetic mean of the two

X1 + X2
2

Thevariance of the maximum likelihood estimate
Calculating the variance of the maximum likelihood can be done without reverting to doing
some difficult moment integrals. The error in the estimatg is x

L ThaaXon L Zaea( - X)op?

Xe — X = - X = N
Zn 1072 2n=10n

The variance of the estimate, is the mean-square of this error

2 _ <(Z§=1(xn - X) 052)2>’

Oe N )

LT DT

(nln

(Z— zan Om ((Xn X) (Xm — X)>
n=10n nm

The errors in each measurement are assumed to be uncorrelétgd s®) (X — X)) = Opo2

1
2
Og = N -
° ( lon 221 2#:1062

Note thatr? has the property that it is smaller than (or equal to if there is just one observat
the variance of any of the individual observations

og < aﬁ vn.
Again, consider the case of two measurements

2 1
Og = —/5—.
© 012 + 032
If measurement 1 has much better accuracy than measurement@;?tisemws?. Then

2 2
ae~017

ie the estimate is the same as measurement 1 (result found before) and the variance of tt
estimate is the same as that of measurement 1. If the two measurements have the same
then the variance of the estimate is halved

2

2=
e 2 .
If all N measurements have the same accuracy then the following classical result is found
05 = a_% e o= —L
e N ’ e \/N



Generalizations - introduction to data assimilation
The above example is limited in the following ways.

* One quantityy, is estimated.

* Many observations are made.

» The observations are direct observations of the unknown quantity.
» The measurement errors are uncorrelated.

The problem can be generalized to deal with many quantities to be estimated, measurem
which may observe the quantities indirectly and whose errors may be correlated.

An indirect observation is one that measures some function of the unknown quantities, in:
of the quantities themselves. Some example are as follows.

* Measurements of wind speed and direction when the north/south, east/west wind
components are required.

* Measurements of temperature and pressure when the potential temperature is requ

» Measurements of the temperature over a large region when the local temperatures .
required.

* Measurements from space of the thermal radiation emitted by a column of the
atmosphere when the vertical profile of temperature is required.

The following notation is used.

Symbol  Meaning Reference

y Vector ofp observations Observation vector

X Vector ofg unknown quantities State vector

h (x) Simulated observations accordingsto ~ Observation operator

R Matrix of observation error covariances Observation error covariance matrix
Xp Prior information aboux Background or a-priori

B Matrix of error covariances of, Background error covariance matrix

A least squares problem can be constructed along the same lines as the one for the singl
unknown quantity case

1 _
um=§w—huNR%y—mm.

T T T T

1x1 1xp pxp px1

The transpose operator turns the column vector into a row vector and the above evaluate
scalar quantity. The problem is to minimik&x) to findxe. This can be done only when there
Is enough information in the observation vector to determine the state vector. A necessal
not sufficient condition) condition for thisgs > . If h(x) is a linear function then it may be
represented as thpex q matrixH. Then the cost function becomes

00 = 3/ - HOTR(y - HY).

The cost function may be minimized by finding the gradiedtwith respect to each element ¢
X. This is represented by the vectqd, which is the followingy-element vector

V.J = —“H'R™(y — Hx).
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Setting the gradient to zero (to find the= X, that minimizes)) gives rise to the so-called
'normal equations'

H'R'Hx, = H'Ry,
Xe = (H'RH) *HR .
H'R™H is aq x qmatrix. The condition for this solution to exist lies in the properties of
H'TRH. The condition is tha "R *H must be non-singular (e.g. have no zero eigenvalues

The error covariance af, denoted, is found to be the following (not proven here)
-1

A= (HR'") .
In data assimilation, there are usually very many more unknowns in the state vector than
are observations in the observation ve¢ok q). In this caseH"R™H is singular and the
best fit solution cannot be found. In this case extra information is required, which comes -
prior information x,. This is called the 'background state' or ‘a-priori state' and comes fron
numerical forecast of the current state of the atmosphere where this is available. Its error

covariance is denotd8l The new cost function fits to the data and to the a-priori
simultaneously

I = %(x — %) B(X - Xp) + %(y - h)'RM(y = h(0).
The minimum ak = XIS
Xe = Xp + BH'(R + HBHT)’l(y - h(Xy),
whereH is the linearization (Jacobian) lof The error covariance @&t is
A= B"'+HRHT,
= (I —=BH"(R + HBH"Y'H)B.
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