Example Gaussians in two dimensions

January 23, 2023

Starting point

A Gaussian distribution has the following form

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{P})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\langle\mathbf{x}\rangle)^{\mathrm{T}} \mathbf{P}^{-1}(\mathbf{x}-\langle\mathbf{x}\rangle)\right]
$$

where \mathbf{x} is the vector of data, $\langle\mathbf{x}\rangle$ is its mean, \mathbf{P} is its error covariance, and n is the dimensionality of \mathbf{x}. These notes show some example Gaussian distributions for $n=2$. Let \mathbf{P} have the following form when $\mathbf{x}=\left(\begin{array}{ll}x_{1} & x_{2}\end{array}\right)^{\mathrm{T}}$:

$$
\mathbf{P}=\left(\begin{array}{cc}
v_{1} & \gamma \sqrt{v_{1} v_{2}} \\
\gamma \sqrt{v_{1} v_{2}} & v_{2}
\end{array}\right),
$$

where v_{1} and v_{2} are the variances of x_{1} and x_{2} respectively, and γ is the correlation between x_{1} and $x_{2}(-1 \leq \gamma \leq 1)$. The determinant of \mathbf{P} is

$$
\operatorname{det}(\mathbf{P})=v_{v} v_{2}\left(1-\gamma^{2}\right)
$$

and the inverse of \mathbf{P} is

$$
\mathbf{P}^{-1}=\frac{1}{v_{v} v_{2}\left(1-\gamma^{2}\right)}\left(\begin{array}{cc}
v_{2} & -\gamma \sqrt{v_{1} v_{2}} \\
-\gamma \sqrt{v_{1} v_{2}} & v_{1}
\end{array}\right)
$$

The determinant and the inverse both appear in the Gaussian form.

Example distributions

Form 1: $v_{1}=1, v_{2}=1, \gamma=0$ (equal variances, no correlation)

Form 2: $v_{1}=1, v_{2}=1, \gamma= \pm 0.25$ (equal variances, weak positive/negative correlation)

Form 3: $v_{1}=1, v_{2}=1, \gamma= \pm 0.5$ (equal variances, moderate positive/negative correlation)

Form 4: $v_{1}=1, v_{2}=1, \gamma= \pm 0.99$ (equal variances, high positive/negative correlation)

Summary of 'area' of Gaussian for $v_{1}=1, v_{2}=1$
Plotted is $\sqrt{\lambda_{1} \lambda_{2}}$ as a function of correlation, γ, where λ_{i} is the i th eigenvalue of the specified error covariance matrix. The area values plotted are just to show how the relative values change with γ.

Form 5: $v_{1}=1, v_{2}=0.5, \gamma=0$ (unequal variances, no correlation)

Form 6: $v_{1}=1, v_{2}=0.5, \gamma= \pm 0.25$ (unequal variances, weak positive/negative correlation)

Form 7: $v_{1}=1, v_{2}=0.5, \gamma= \pm 0.5$ (unequal variances, moderate positive/negative correlation)

Form 8: $v_{1}=1, v_{2}=0.5, \gamma= \pm 0.99$ (unequal variances, high positive/negative correlation)

Summary of 'area' of Gaussian for $v_{1}=1, v_{2}=0.5$
Plotted is $\sqrt{\lambda_{1} \lambda_{2}}$ as a function of correlation, γ, where λ_{i} is the i th eigenvalue of the specified error covariance matrix. The area values plotted are just to show how the relative values change with γ.

RNB

