Example Gaussians in two dimensions

January 23, 2023

Starting point

A Gaussian distribution has the following form

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{P})}} \exp\left[-\frac{1}{2} \left(\mathbf{x} - \langle \mathbf{x} \rangle\right)^{\mathrm{T}} \mathbf{P}^{-1} \left(\mathbf{x} - \langle \mathbf{x} \rangle\right)\right],$$

where \mathbf{x} is the vector of data, $\langle \mathbf{x} \rangle$ is its mean, \mathbf{P} is its error covariance, and n is the dimensionality of \mathbf{x} . These notes show some example Gaussian distributions for n = 2. Let \mathbf{P} have the following form when $\mathbf{x} = \begin{pmatrix} x_1 & x_2 \end{pmatrix}^{\mathrm{T}}$:

$$\mathbf{P} = \begin{pmatrix} v_1 & \gamma \sqrt{v_1 v_2} \\ \gamma \sqrt{v_1 v_2} & v_2 \end{pmatrix},$$

where v_1 and v_2 are the variances of x_1 and x_2 respectively, and γ is the correlation between x_1 and x_2 $(-1 \le \gamma \le 1)$. The determinant of **P** is

$$\det(\mathbf{P}) = v_v v_2 (1 - \gamma^2),$$

and the inverse of ${\bf P}$ is

$$\mathbf{P}^{-1} = \frac{1}{v_v v_2 (1 - \gamma^2)} \begin{pmatrix} v_2 & -\gamma \sqrt{v_1 v_2} \\ -\gamma \sqrt{v_1 v_2} & v_1 \end{pmatrix}.$$

The determinant and the inverse both appear in the Gaussian form.

Example distributions

Form 1: $v_1 = 1$, $v_2 = 1$, $\gamma = 0$ (equal variances, no correlation)

Form 2: $v_1 = 1$, $v_2 = 1$, $\gamma = \pm 0.25$ (equal variances, weak positive/negative correlation)

Form 3: $v_1 = 1$, $v_2 = 1$, $\gamma = \pm 0.5$ (equal variances, moderate positive/negative correlation)

Form 4: $v_1 = 1$, $v_2 = 1$, $\gamma = \pm 0.99$ (equal variances, high positive/negative correlation)

Summary of 'area' of Gaussian for $v_1 = 1, v_2 = 1$

Plotted is $\sqrt{\lambda_1 \lambda_2}$ as a function of correlation, γ , where λ_i is the *i*th eigenvalue of the specified error covariance matrix. The area values plotted are just to show how the relative values change with γ .

Form 5: $v_1 = 1, v_2 = 0.5, \gamma = 0$ (unequal variances, no correlation)

Form 6: $v_1 = 1$, $v_2 = 0.5$, $\gamma = \pm 0.25$ (unequal variances, weak positive/negative correlation)

Form 8: $v_1 = 1$, $v_2 = 0.5$, $\gamma = \pm 0.99$ (unequal variances, high positive/negative correlation)

Summary of 'area' of Gaussian for $v_1 = 1, v_2 = 0.5$

Plotted is $\sqrt{\lambda_1 \lambda_2}$ as a function of correlation, γ , where λ_i is the *i*th eigenvalue of the specified error covariance matrix. The area values plotted are just to show how the relative values change with γ .

