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The data assimilation problem (with some jargon)

• Data assimilation:

� State estimation, data
fusion, history matching,
retrieving, inverse
modelling.

• Estimate possible 'truths' of
system.

� State vector, x ∈ Rn.

• Observations, y ∈ Rp:

� Some representation of the
truth.

� Direct and indirect
observations.

• Models,M,H:

� Linking x to y.

• Prior information, xB

(background), xf (forecast).

• Posterior, xA (analysis).

• Uncertainty:

� Errrors are everywhere - in
state, in observations, in
model, in representation . . .

� PDF, p(x).

� Ensemble, x(1), . . . , x(N).

• Constraints (strong and weak):

� Dynamical model.

� Physical balance.

� Smoothness.

• Applications:

� NWP - Numerical Weather
Prediction.

� Atmospheric/ocean physics.

� Astronautics/aeronautics.

� Astrophysics.

� Seismology.

� &c &c.

Typical values for NWP:
n ∼ 109, p ∼ 108.
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The NWP problem

Data assimilation is used in weather forecasting to estimate the initial conditions of a large numerical model of the atmosphere.

• L.F. Richardson (1922) attempted a hind-cast (by hand!) for 20th May 1910.

• Primitive eq-based forecast model (eqs of motion used for large-scale �ows): resolution ∆λ = 3◦, ∆φ = 1.8◦, 5 vertical
levels.

• 'Data assimilation' was done for mass variables (T, p) separately from wind (u, v) (i.e. univariate) - interpolate obs
subjectively.

• A disastrous forecast: ∆P/∆t ≈ 145 hPa /6 hours (note surface pressure is ∼ 1000 hPa).

• Catastrophic growth rate not due to an inadequate model, but due to imbalance between mass and wind at t = 0.
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Meteorological balances

Initial conditions of meteorological models need to be appropriately balanced.

Dδ′

Dt
= M′ +W ′ + other terms,

Dw′

Dt
= P ′ + T ′ + other terms,

horiz. wind div.: δ′ =
∂u′

∂x
+
∂v′

∂y
,

'mass' term: M′ = cpθ0∇zΠ
′ + cpθ

′∇zΠ0,

'wind' term: W ′ = −fk · (∇× u′) + k · (u′ ×∇f) ,

'pressure' term: P ′ = θ0
∂Π′

∂z
,

'temperature' term: T ′ = θ′
∂Π0

∂z
,

Π0,Π
′ : Ref. and pert. pressure

θ0, θ
′ : Ref. and pert. temperature

f = 2Ω sin(y/a),

Ω = 7.29× 10−5rads−1,

a = 6.371× 106m,

g = 9.806ms−1,

k = vertical unit vector.
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k = vertical unit vector.

Geostrophic and hydrostatic balances apply when Ro and W/U
are small (extra-tropical large-scale �ow).

Ro =
U

fL
= O(10−1),

W

U
= O(10−2).

• Perfect geostrophic balance

M′ +W ′ = 0.

• Perfect hydrostatic balance

P ′ + T ′ = 0.
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Example geostrophic and hydrostatic correlations
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(a) Geostrophic diagnostic
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(b) Hydrostatic diagnostic

• MOGREPS = Met O�ce Global and Regional Ensemble
Prediction System.

• ETKF = Ensemble Transform Kalman Filter.

• 24 members.

• NDP 1.5 km grid.

• NDP = Nowcasting Demonstration Project.

• Case study: 20/09/11, 15:00 UT.

Correlation −1⇒perfectly balanced.
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Problems to be faced in data assimilation

• General theoretical problems.

� Representation and quanti�cation of uncertainty.

� Sampling from a PDF.

� Non-Gaussian statistics and non-linear models.

� Understanding the observations.

� Unknown unknowns.

• General technical problems.

� Large volume of information.

� Time e�ciency.

� Parallelizability.

• Plus speci�c geophysical problems.

� Constraining an appropriate 'closeness' of balance in
the analysis.

∗ In large-scale systems balance is understood (>
100s km - e.g. cyclones, anticyclones).

∗ In convective-scale systems balance is not well
understood (sub-km - 10s km - e.g. thunder-
storms).

∗ Multi-scale.

� Moisture and clouds.

� Phase errors.
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A numerical analyst's approach: least squares

• No prior information

� Have:

∗ p observations in yo ∈ Rp, yo = yt + εy.

∗ n unknowns in x ∈ Rn.

∗ Obs operator / forward model ym = Hx.

� J1[x] = 1
2(yo −Hx)TR−1(yo −Hx).

� Normal equations:

∇xJ1 = −HTR−1(yo −HxA) = 0.

∗ xA =
(
HTR−1H

)−1
HTR−1yo.

∗ OK if HTR−1H is full rank, ill-posed otherwise
(always ill-posed if p < n - the case for NWP).



7

A numerical analyst's approach: least squares

• No prior information

� Have:

∗ p observations in yo ∈ Rp, yo = yt + εy.

∗ n unknowns in x ∈ Rn.

∗ Obs operator / forward model ym = Hx.

� J1[x] = 1
2(yo −Hx)TR−1(yo −Hx).

� Normal equations:

∇xJ1 = −HTR−1(yo −HxA) = 0.

∗ xA =
(
HTR−1H

)−1
HTR−1yo.

∗ OK if HTR−1H is full rank, ill-posed otherwise
(always ill-posed if p < n - the case for NWP).

• Prior information - regularizing the problem

� Have:

∗ p observations in yo ∈ Rp, yo = yt + εy.

∗ n unknowns in x ∈ Rn.

∗ A-priori xB ∈ Rn, xB = xt + εB.

J2[x] =
1

2
(yo −Hx)TR−1(yo −Hx) +

1

2
(x− xB)TP−1

f (x− xB),

∇xJ2 = −HTR−1(yo −HxA) + P−1
f (xA − xB) = 0,

xA = xB + (P−1
f + HTR−1H)−1HTR−1(yo −HxB),

= xB + PfH
T(R + HPfH

T)−1(yo −HxB).
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Bayesian approach

P (A|B) =
P (B|A)× P (A)

P (B)
,

∝ P (B|A)× P (A).

Let A be the event x ∈ Rn and B be the event yo ∈ Rp:

P (x|yo)︸ ︷︷ ︸
posterior

∝ P (yo|x)︸ ︷︷ ︸
likelihood

×P (x)︸ ︷︷ ︸
prior

.
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Bayesian approach

P (A|B) =
P (B|A)× P (A)

P (B)
,

∝ P (B|A)× P (A).

Let A be the event x ∈ Rn and B be the event yo ∈ Rp:

P (x|yo)︸ ︷︷ ︸
posterior

∝ P (yo|x)︸ ︷︷ ︸
likelihood

×P (x)︸ ︷︷ ︸
prior

.

In the n-dimensional state space:

• Suppose that we represent the PDF on a discreet grid with
10 values per element.

� Number of pieces of information to represent the
PDF is 10n.

� Grossly impossible, even with this modest resolution!
�The curse of dimensionality.�

• Particle �lters (with a proposal density) are a possible tool
- development needed.
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Approximation: assume Gaussian statistics

Form of n-dimensional Gaussian for ε = (ε1, . . . εn)
T with mean µ = (µ1, . . . µn)

T ∈ Rn and covariance S ∈ Rn×n:

P (x|yo)︸ ︷︷ ︸
posterior

∝ P (yo|x)︸ ︷︷ ︸
likelihood

×P (x)︸ ︷︷ ︸
prior

,

ε ∼ N(µ,S),

P (ε) =
1√

(2π)n det(S)
= exp−1

2
(ε− µ)TS−1(ε− µ).

• Likelihood: ε→ yo, µ→ H(x), S→ R ∈ Rp×p.

• Prior: ε→ x, µ→ xB, S→ Pf ∈ Rn×n.
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P (ε) =
1√

(2π)n det(S)
= exp−1

2
(ε− µ)TS−1(ε− µ).

• Likelihood: ε→ yo, µ→ H(x), S→ R ∈ Rp×p.

• Prior: ε→ x, µ→ xB, S→ Pf ∈ Rn×n.

posterior︷ ︸︸ ︷
P (x|yo) ∝

likelihood︷ ︸︸ ︷
exp−1

2
(yo −H(x))TR−1(yo −H(x))×

prior︷ ︸︸ ︷
exp−1

2
(x− xB)TP−1

f (x− xB),

∝ exp−1

2

[
(yo −H(x))TR−1(yo −H(x)) + (x− xB)TP−1

f (x− xB)
]
,

∝ exp−J2[x],

cost function: J2[x] =
1

2
(x− xB)TP−1

f (x− xB) +
1

2
(yo −H(x))TR−1(yo −H(x)),

In the n-dimensional state space:

• Pf-matrix needs ∼ n2/2 pieces of information.

• Still prohibitive for large n.

R =
〈
εyε

T
y

〉
, Pf =

〈
εBε

T
B

〉
,

yo = y + εy, xB = x + εB.
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Importance of Pf in data assimilation
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Importance of Pf in data assimilation

Very important
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The forward model - generalization and linearization

Hx → H̃(x),

→


H0(x)

H1(M1←0(x))
...

HT (MT←0(x))

 ,

≈


H0(xB)

H1(M1←0(xB))
...

HT (MT←0(xB))

+


H0δx

H1M1←0δx
...

HTMT←0δx

 ,

x = xB + δx.
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The forward model - generalization and linearization

Hx → H̃(x),

→


H0(x)

H1(M1←0(x))
...

HT (MT←0(x))

 ,

≈


H0(xB)

H1(M1←0(xB))
...

HT (MT←0(xB))

+


H0δx

H1M1←0δx
...

HTMT←0δx

 ,

x = xB + δx.

Examples of forward models used in NWP

• Interpolation. • Radiative transfer. • Future observation.
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Approximate solutions - Kalman Filter - a sequential DA method

2� n small (explicit Pf) 2� p small 2� linear H̃ 2� Gaussian stats 2� unbiased data 2� known model/obs err stats

1. Background at t = 0: xB(0), Pf(0) =
〈
εBε

T
B

〉
.
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2� n small (explicit Pf) 2� p small 2� linear H̃ 2� Gaussian stats 2� unbiased data 2� known model/obs err stats

1. Background at t = 0: xB(0), Pf(0) =
〈
εBε

T
B

〉
.

2. Introduce observations at t = 0: yo(0), R(0) =
〈
εyε

T
y

〉
.

3. Analysis at t = 0:
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〉
.
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.
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Approximate solutions - variational DA - a smoother

2� n large (implicit/static Pf) 2� p large 2� (non-linear H̃) 2� Gaussian stats 2� (unbiased data) 2� known model/obs err stats

E.g. Incremental, strong constraint 4D-Var Pf → B
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Approximate solutions - variational DA - a smoother

2� n large (implicit/static Pf) 2� p large 2� (non-linear H̃) 2� Gaussian stats 2� (unbiased data) 2� known model/obs err stats

E.g. Incremental, strong constraint 4D-Var Pf → B

J [δx(0)] =
1

2
[δx(0)]T B−1 [δx(0)] +

1

2

T∑
t=0

[yo(t)−Ht(Mt←0(xB))−HtMt←0δx(0)]T R−1
t ×

[yo(t)−Ht(Mt←0(xB))−HtMt←0δx(0)] ,

∇δxJ = B−1δx(0)−
T∑
t=0

MT
t←0H

T
t R−1

t [yo(t)−Ht(Mt←0(xB))−HtMt←0δx(0)] ,

↑ ↑ ↑ ↑
adjoint operators tangent linear operators

x(0) = xB(0) + δx(0).
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Making variational DA work

• Key to success of 4D-Var in NWP is the B-matrix.

• This is modelled, e.g., via (linear) change of variables - a control variable transform:

� δx(0) = Uδv.

� Background errors in the δv-representation are assumed to be mutually uncorrelated:〈
εBε

T
B

〉
≈ B.〈[

U−1εB

] [
U−1εB

]T〉 ≈ I.,

UUT ≈ B.

J [δx(0)] =
1

2
δvTδv +

1

2

T∑
t=0

[yo(t)−Ht(Mt←0(xB))−HtMt←0Uδv]T R−1
t ×

[yo(t)−Ht(Mt←0(xB))−HtMt←0Uδv] ,

∇δvJ = δv −UT
T∑
t=0

MT
t←0H

T
t R−1

t [yo(t)−Ht(Mt←0(xB))−HtMt←0δx(0)] .
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Approximate solutions - Ensemble Kalman Filter (EnKF)

2� n large (sample Pf) 2� p large 2� (non-linear H̃) 2� Gaussian stats 2� unbiased data 2� known model/obs err stats

• The KF update equation:
xA = xB + PfH

T(R + HPfH
T)−1(yo −HxB).

• Introduce an ensemble of N possible backgrounds (the ensemble), and N perturbed sets of observations:

XB =
(

x
(1)
B · · · x

(N)
B

)
, X′B =

(
x

(1)
B − 〈x〉︸ ︷︷ ︸

x
′(1)
f

· · · x
(N)
B − 〈x〉︸ ︷︷ ︸

x
′(N)
f

)
, Yo =

(
y

(1)
o · · · y

(N)
o

)
.

• The ensemble can be used to approximate Pf :

Pf ≈ P
(N)
f =

1

N − 1

N∑
l=1

x
′(l)
f x

′(l)T
f =

1

N − 1
X′BX′TB .

• The basic EnKF - ens. members are columns:

XA = XB + X′B (HX′B)
T
(

(N − 1)R + (HX′B) (HX′B)
T
)−1

×
(Yo −HXB).

• Cycling:

XB(T ) =M (XA(0)) + η.

The basic EnKF su�ers with sampling error for N � n.
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1. The forecast error covariance matrix is rank de�cient

The rank of P
(N)
f is an indication of the size of the state space spanned by the forecast error ensemble.

rank
(
P

(N)
f

)
≤ N − 1.

The analysis increments are restricted to be a linear combination of the forecast error ensemble perturbations in an N − 1-
dimensional space.

2. The forecast ensemble spread will be subject to sampling error

• If the spread is too large then the analysis ens. will over-�t the obs. - too little trust in the fc. ens.

• If the spread is too small then the analysis ens. will under-�t the obs. - too much trust in the fc. ens.

� Once in this regime, it is di�cult to escape as the ens. will (e�ectively) ignore the obs..

� This is called ��lter divergence� (because we diverge from reality).

Filter divergence means that each ensemble member will (e�ectively) be free running.

3. The correlations will be subject to sampling error

• The error in the sample correlation between errors at locations i and j has expectation:

[E(δC
(N)
f )]ij ∼

1√
N

(
1− ([Cf ]ij)

2
)
, [C

(N)
f ]ij =

[P
(N)
f ]ij
σiσj

(errors are expected to be large when N small and/or correlations are close to zero).

• Pairs of distant points would be expected to have correlations close to zero.

Sampling error means that we can't trust distant correlations. Left untreated this noise will destroy the bene�ts of DA (analysis
increments will be in�uenced by distant observations).
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From Houtekamer & Mitchell, 1998
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Making progress

What can be done to reduce/mitigate this problem N � n?

• Use more ensemble members.

� This is expensive.

� How many is 'enough'? +

• Ensemble in�ation.

� Arti�cially increase the size of each x
′(i)
f .

� How do we know what the ensemble spread should
be?

• Localization.

� Eliminate far-�eld correlations.

� How should this be done?

� Does this have any other consequences?

• Combine ensemble with variational approaches.

� Adopt a hybrid method.

� How to do this?
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Localization

Many ways of doing localization:

• R-localization.

• Pf-localization:

� Modify P
(N)
f with a localization/moderation function that decreases with separation.

� What length-scale? How to do multivariate aspects?

� Has side e�ects (e.g. a�ects length-scales, a�ects balance).
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Pf-localization (Schur/Hadamard product, univariate)

PLoc
f = Pf ◦Ω,

=



P
(N)
f11 P

(N)
f12 · · · · · · P
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f15 · · · · · · P
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f21 P
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f22 · · · · · · P
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f25 · · · · · · P
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f28 P

(N)
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...
... . . . · · · P
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f35 · · · · · · ...

...
...

...
... . . . P

(N)
f45

...
...

...
...

P
(N)
f51 P
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f53 P

(N)
f54 P
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...
...

... · · · · · · P
(N)
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...

P
(N)
f81 P
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(N)
f89
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f92 · · · · · · P

(N)
f95 · · · · · · P

(N)
f98 P

(N)
f99


◦



1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0
0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0
0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0
0.1 0.5 0.5 1.0 0.8 0.5 0.1 0.0 0.0
0.0 0.1 0.1 0.8 1.0 0.8 0.5 0.1 0.0
0.0 0.0 0.0 0.5 0.8 1.0 0.8 0.5 0.1
0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5
0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8
0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0


,

P Loc
fij = PfijΩij.

Can be extended to multivariate localization. But . . . we rarely have access to explicit Pf or Ω matrices (n× n).
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Localization without explicit Pf and Ω matrices

Sample forecast error cov. matrix (from N dynamical ens. members) : P
(N)
f =

1

N − 1

N∑
l=1

x
′(l)
f x

′(l)T
f =

1

N − 1
X′BX′TB ,

Sample localization matrix (from K correlation ens. members) : Ω(K) =
1

K − 1

K∑
k=1

ω(k)ω(k)T =
1

K − 1
KKT,

One matrix element: [P
(N)
f ]ij =

1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj ,

One matrix element: [Ω(K)]ij =
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j .
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f x

′(l)T
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1
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Sample localization matrix (from K correlation ens. members) : Ω(K) =
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K∑
k=1

ω(k)ω(k)T =
1

K − 1
KKT,

One matrix element: [P
(N)
f ]ij =

1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj ,

One matrix element: [Ω(K)]ij =
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j .

Localized matrix (Schur product): [PLoc
f ]ij = [P

(N)
f ]ij[Ω

(K)]ij,

=

[
1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj

][
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j

]
,

=
1

N − 1

1

K − 1

N∑
l=1

K∑
k=1

x
′(l)
fi ω

(k)
i︸ ︷︷ ︸

element i
of x̃′(m)

x
′(l)
fj ω

(k)
j︸ ︷︷ ︸

element j
of x̃′(m)

,
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N∑
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x
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fi x
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fj ,

One matrix element: [Ω(K)]ij =
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j .

Localized matrix (Schur product): [PLoc
f ]ij = [P

(N)
f ]ij[Ω

(K)]ij,

=

[
1

N − 1

N∑
l=1

x
′(l)
fi x

′(l)
fj

][
1

K − 1

K∑
k=1

ω
(k)
i ω

(k)
j

]
,

=
1

N − 1

1

K − 1

N∑
l=1

K∑
k=1

x
′(l)
fi ω

(k)
i︸ ︷︷ ︸

element i
of x̃′(m)

x
′(l)
fj ω

(k)
j︸ ︷︷ ︸

element j
of x̃′(m)

,

E�ective ens. (M = NK localized ens. members) =
1

N − 1

1

K − 1

M∑
m=1

x̃
′(m)
i x̃

′(m)
j ,

x̃′(m) = x
′(l)
f ◦ ω

(k) =

 x
′(l)
f1
...

x
′(l)
fn

 ◦
 ω

(k)
1
...

ω
(k)
1

 =

 x
′(l)
f1 ω

(k)
1

...

x
′(l)
fn ω

(n)
1

 , X̃︸︷︷︸
n×M

= X′B︸︷︷︸
n×N

M K︸︷︷︸
n×K

,
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Spectral localization scheme (static localization)

Propose a static and homogeneous model:

K 99K Kspec =


FuΛ

1/2
u

FvΛ
1/2
v

FθΛ
1/2
θ

FΠΛ
1/2
Π

 ∈ Rn×K ,

[Fp]rk = cos(kxrx + δxs ) cos(kyry + δys)ν(rz, kz),

[Λp]kk′ =

{
λp

(√
k2
x + k2

y, kz

)
k = k′

0 otherwise.

If Fp and Λp are independent of p:

KspecK
T
spec ∼


FΛFT FΛFT FΛFT FΛFT

FΛFT FΛFT FΛFT FΛFT

FΛFT FΛFT FΛFT FΛFT

FΛFT FΛFT FΛFT FΛFT

 .
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Localization results - spectral

Localization functions, KspecK
T
spec, 58 horizontal wave-numbers, 5 vertical modes, K = 290

Dynamical correlations (raw), X′BX′TB

Localized functions, (X′BX′TB ) ◦ (KspecK
T
spec)
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Localization and balance results - spectral, N = 24, K = 290
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SENCORP localization scheme - Smoothed ENsemble COrrelations Raised
to a Power) - adaptive1

Ω 99K ΩSENCORP = C◦Q

1. From the ensemble members, X′B, create smoothed members, W′
B.

2. Normalize (sum of squares of each row of W′
B is 1, call this W

′
B).

3. Calculate correlation matrix

C =
1

N − 1
W
′
BW

′T
B .

4. C◦Q is the Schur power of C with itself Q times (Q is even).

ΩSENCORP = KSENCORPKT
SENCORP,

K 99K KSENCORP =

√
K − 1

(N − 1)Q
W
′
B M W

′
B M W

′
B M · · · , K ∈ Rn×K , K = NQ.

1Bishop C.H. and Hodyss D., Flow adaptive moderation of spurious ensemble correlations and its used in ensemble-based data assimilation, Quart. J. Roy. Met. Soc. 133,
2029-2044 (2007), DOI:10.1002/qj.169.
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Localization and balance results - SENCORP, N = 16, (Q = 2, K = 256),
(Q = 4, K = 65536)
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ECO-RAP localization scheme - Ensemble COrrelations Raised to a Power)
- adaptive2

K 99K KECORAP = C◦Q


FuΛ

1/2
u

FvΛ
1/2
v

FθΛ
1/2
θ

FΠΛ
1/2
Π

 ∈ Rn×K ,

[Fp]rk = cos(kxrx + δxs ) cos(kyry + δys)ν(rz, kz),

[Λp]kk′ =

{
λp

(√
k2
x + k2

y, kz

)
k = k′

0 otherwise.

Lots of computations required

[KECORAP](rs)k = c(rs)

∑
s′

nx∑
r′x=1

ny∑
r′y=1

nz∑
r′z=1

(C◦Q)(rs)(r′s′)F(r′s′)k(Λ
1/2
s′ )kk.

For e�ciency (the original motivation. . . )

[KECORAP](rs)k ≈ c(rs)

∑
s′

rx+ρH∑
r′x=rx−ρH

ry+ρH∑
r′y=ry−ρH

rz+ρV∑
r′z=rz−ρV

(C◦Q)(rs)(r′s′)F(r′s′)k(Λ
1/2
s′ )kk,

ρH, ρV in�uence radii of C◦Q in horizontal and vertical.

2Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 1: Tests on simple error models, Tellus A 61, 84-96 (2009).
Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 2: A strategy for the atmosphere, Tellus A 61, 97-111 (2009).
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Localization and balance results - ECO-RAP, N = 24, Q = 2, K = 290,
ρH = 0, ρV = 2, 16, 24, 32, 64
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Summary & Conclusions

• Data assimilation attempts to combine imperfect data
from models, from observations distributed in time and
space, exploiting any relevant physical constraints, to pro-
duce a more accurate and comprehensive picture of the
system as it evolves in time.

• All methods are approximate applications of Bayes' The-
orem:

� First moment of posteriori PDF:

∗ Variational methods.

� First and second moments of posteriori PDF:

∗ Kalman �lter.

∗ Ensemble Kalman Filters.

� Approximate whole PDF:

∗ Particle �lter.

• Unlikely for a method to work 'o� the shelf':

� E.g. in numerical weather prediction need to under-
stand balances in atmosphere to model B.

� Can't deal with explicit matrices (n large).

• Ensemble Kalman Filter:

� Su�ers sampling error for N < n.

� Use localization to remove long-range correlations in

P
(N)
f .

� Localization can destroy valuable information about
balance.

• Three localization schemes studied:

� Spectral (static).

� SENCORP.

� ECO-RAP.

� ECO-RAP seems best compromise between ability to
localize and preservation of balance.


