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The data assimilation problem (with some jargon)

e Data assimilation:

— State estimation, data
fusion, history matching,
retrieving, inverse
modelling.

e Estimate possible 'truths’ of
system.

— State vector, x € R".
e Observations, y € RP:

— Some representation of the
truth.

— Direct and indirect
observations.

e Models, M, H:
— Linking x to y.

e Prior information, xp
(background), x¢ (forecast).

e Posterior, xa (analysis).

e Uncertainty:

— Errrors are everywhere - in
state, in observations, in
model, in representation . ..

— PDF, p(x).

— Ensemble, x( . x
e Constraints (strong and weak):

— Dynamical model.

— Physical balance.
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— Smoothness.

e Applications:

— NWP - Numerical Weather
Prediction. Typical values for NWP:

— Atmospheric/ocean physics. n o~ 10° p ~ 10°.
— Astronautics/aeronautics.
— Astrophysics.

— Seismology.

— &c &c.



The NWP problem
Data assimilation is used in weather forecasting to estimate the initial conditions of a large numerical model of the atmosphere.
e L.F. Richardson (1922) attempted a hind-cast (by hand!) for 20th May 1910.

e Primitive eg-based forecast model (eqs of motion used for large-scale flows): resolution AN = 3°, A¢ = 1.8°, 5 vertical
levels.

'Data assimilation’ was done for mass variables (7', p) separately from wind (u,v) (i.e. univariate) - interpolate obs
subjectively.

e A disastrous forecast: AP/At ~ 145 hPa /6 hours (note surface pressure is ~ 1000 hPa).

Catastrophic growth rate not due to an inadequate model, but due to imbalance between mass and wind at ¢t = 0.

Forecast factory (64 000 people!) e
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Meteorological balances

Initial conditions of meteorological models need to be appropriately balanced.
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I1,, IT' Ref. and pert. pressure
A Ref. and pert. temperature
f = 2Qsin(y/a),

Q = 7.29 x 10 °rads ",

a = 6.371 x 10°m,

g = 9.806ms ',

k = vertical unit vector.
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r
%

horiz. wind div.: ¢’

‘mass’ term: M’ =
'wind’ term: W =

? ’ /
pressure’ term: P

9 ) /
temperature’ term: 7T

o 2 O
I

M’ + W' + otherterms,

P’ + T’ + otherterms,
o', o
oxr Oy’
chOVZH’ + ch’VZHO,
—fk-(Vxu)+k-(u xVf),
9 oIt
0 82 )
o1l
0 ——
0z’

Ref. and pert. pressure

Ref. and pert. temperature

= 2Qsin(y/a),
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= vertical unit vector.

Geostrophic and hydrostatic balances apply when Ro and W/U
are small (extra-tropical large-scale flow).
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e Perfect geostrophic balance

M +W' =0.

e Perfect hydrostatic balance

P'+T =0.



Meteorological balances

Initial conditions of meteorological models need to be appropriately balanced.

e Perfect geostrophic balance

D / r_
Z)% = M’ + W'+ otherterms, M +W =0.
D
% = P'+ T + otherterms. _
t ’ e Perfect hydrostatic balance
. . . ou o
horiz. wind div.: &/ = — + —, P +T =0.
or 0Oy
‘mass’ term: M' = ¢,00V,II' + ¢,0'V .1,
'wind” term: W = —fk-(Vxu)+k-(u xVf), T
| oI F
‘pressure’ term: P’ = Gp——, 996 |- ]
0z
q olly =
‘temperature’ term: T’ = 0’6—, 5 994 |-
< - s
II,,IT" : Ref. and pert. pressure & 992 - e ol
0 ' d
0p,0 : Ref. and pert. temperature S 900 I o
a i ’ ]
/ 2Qsin(y/a), g sss | NV |
Q = 7.29 x 10 ’rads ™", z
986 | ]
a = 6.371 x 10%m, °
g = 9.806ms ', s |
k = vertical unit vector.
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Geostrophic and hydrostatic balances apply when Ro and W/U 0 6 12 I8 24
are small (extra-tropical large-scale flow). TINE thi
U W Figure 6.1 Surface pressure as a function of time during the integration of a primitive equations
Ro = — = 0(10—1) A 0(10—2> model. Uninitialized (solid), initialized (dashed). (After Williamson and Temperton,
3 . Mon. Wea. Rev. 109: 745, 1981. The American Meteorological Society.)

7L U



Example geostrophic and hydrostatic correlations

(a) Geostrophic diagnostic (b) Hydrostatic diagnostic
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e MOGREPS = Met Office Global and Regional Ensemble
Prediction System.
20 - 20 -
e ETKF = Ensemble Transform Kalman Filter.
10 + . 10 — o 24 members.
e NDP 1.5 km grid.
0 1 1 1 0 1
1 05 0 05 1 -1 -0.95 -0.9 e NDP = Nowcasting Demonstration Project.
M/W correlation P/T correlation

e Case study: 20/09/11, 15:00 UT.

Correlation —1 =-perfectly balanced.



Problems to be faced in data assimilation

e General theoretical problems.

— Representation and quantification of uncertainty.
— Sampling from a PDF.

— Non-Gaussian statistics and non-linear models.
— Understanding the observations.

— Unknown unknowns.
e General technical problems.

— Large volume of information.
— Time efficiency.

— Parallelizability.
e Plus specific geophysical problems.

— Constraining an appropriate 'closeness’ of balance in
the analysis.

* In large-scale systems balance is understood (>
100s km - e.g. cyclones, anticyclones).

x In convective-scale systems balance is not well
understood (sub-km - 10s km - e.g. thunder-
storms).

* Multi-scale.

— Moisture and clouds.

— Phase errors.

2




A numerical analyst’'s approach: least squares
e No prior information

— Have:

* p observations in y, € R”, y, = y; + €.

x n unknowns in x € R".

« Obs operator / forward model y,, = Hx.
- jl [X] = %(YO - HX)TR_l(YO o HX)-

— Normal equations:
V. J1 = —HTR_l(yO — Hx,) = 0.

+ x5 = (H'R"'H)'H'Ry,.
x OK if HTR'H is full rank, ill-posed otherwise
(always ill-posed if p < n - the case for NWP).




A numerical analyst’'s approach: least squares

e No prior information e Prior information - regularizing the problem
* p observations in y, € R”, y, = y; + €. * p observations in y, € R, y, = y; + €,.

* n unknowns in x € R". * n unknowns in x € R".

* Obs operator / forward model y,,, = Hx. * A-priori xg € R", xp = X + €.

- N [X] = %(YO - HX)TR_l(YO - HX)- 1 1
— Normal equations: Jo[x] = §(yO —Hx)'R™'(y, — Hx) + §(X —xp) " P; 1 (x — x¢

V. J1 = —HTR_l(yO — Hx,) = 0.

~—r

V,.Jo = —HTR_l(yO — Hxy) + Pf_l(XA —xp) =0,

+ x5 = (H'R"'H)'H'Ry,.

+ OK if HTR'H is full rank, ill-posed otherwise ~ *A
(always ill-posed if p < n - the case for NWP).

= xg+ (P;'+H'R'H) 'H"R ' (y, — Hxp),
= xg+P:H' (R +HPH") (y, — Hxp).
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Bayesian approach

P(B|A) x P(A)
P(B) ’
x P(B|A) x P(A).

P(A[B) =

Let A be the event x € R™ and B be the event y, € R?:

P(x]y,) o P(yolx) X 5@-

posterior likelihood prior




Bayesian approach

P(B|A) x P(A)
P(B) ’
x P(B|A) x P(A).

P(A[B) =

Let A be the event x € R™ and B be the event y, € R?:

P(x]y,) o P(yolx) X @-

posterior likelihood prior

In the n-dimensional state space:

e Suppose that we represent the PDF on a discreet grid with
10 values per element.

— Number of pieces of information to represent the
PDF is 10".

— Grossly impossible, even with this modest resolution!
“The curse of dimensionality.”

e Particle filters (with a proposal density) are a possible tool
- development needed.



Approximation: assume Gaussian statistics
Form of n-dimensional Gaussian for € = (€1, ...€,)T with mean g = (1, ... p,)* € R™ and covariance S € R "

P(xy,) o P(YOIX)X@,

likelihood prior

€ ~ N(p,,Si, 1
P(e) = ) dot(S) =exp—;(e—p) S (e~ p).

e Likelihood: € = y,, p — H(x), S - R € RP*?.

e Prior: € > x, p — xp, S — Py € R™".



Approximation: assume Gaussian statistics
Form of n-dimensional Gaussian for € = (€1, ...€,)T with mean g = (1, ... p,)* € R™ and covariance S € R "

P(xy,) o P(YOIX)X@,

likelihood prior

€ ~ N(p,,Si, 1
P(e) = ) dot(S) =exp—;(e—p) S (e~ p).

e Likelihood: € = y,, p — H(x), S - R € RP*?.

e Prior: € > x, p — xp, S — Py € R™".

hkeljﬂ\wod piii)r
P(x|y,) o exp —§(yO — H(x))TR 1(yo — H(x)) x exp _§(X — XB)TPf 1(x — Xp),
1 _ _
X exp —3 [(yO — H(X))TR 1(yO —H(x)) + (x — XB)TPf 1(X — XB)] ,
x exp —Jo[x],
1 1
cost function: Ja[x] = §(x —xp) P, H(x — xp) + §(y0 —H(x))"R (y, — H(x)),
In the n-dimensional state space: R = <eyeg> , P = <eBeg> :
e P;-matrix needs ~ n?/2 pieces of information. Yo =Y t €, XB = X + €.

e Still prohibitive for large n.



Importance of P; in data assimilation
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Importance of P; in data assimilation

Very important
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The forward model - generalization and linearization

Hx —

Q

H(x),

[ Ho(x)
Hi(Mieo(x))

\ Hr(Mreo(x))

/ HO(XB) HO(SX
Hi(Mio(xB)) ) N ( H M, 0% )

\ Hr(Mroo(xs))
Xp + 0X.

HT MT<_0 0x
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The forward model - generalization and linearization

Hx — H(x),

/ Ho (X)
711CA4}+0(X))

\ Hr(Mrco(x))
( Ho(xB) Hyox
Hi(Mio(xB)) N H; M, ¢0x

Q

Y

\ Hr(Mro(xB)) H, My, gox
X = Xp+ 0X.
Examples of forward models used in NWP
e Interpolation. e Radiative transfer. e Future observation.
I/IZ V22 XA
'\ ? = =
-
X‘obs/ x_(0)
/‘ \ |
7 “r
<L
Earth's surface
V///////////////////J//////////////////}///////////% >

t=0 time



Approximate solutions - Kalman Filter - a sequential DA method

@ n small (explicit P;) @ p small @ linear H @ Gaussian stats i unbiased data I known model /obs err stats
X XA

x,(0)

1. Background at t = 0: x5(0), P(0) = (egep).

12



Approximate solutions - Kalman Filter - a sequential DA method

@ n small (explicit P;) @ p small @ linear H @ Gaussian stats i unbiased data I known model /obs err stats
X XA

x,(0)

1. Background at t = 0: x5(0), P(0) = (egep).

2. Introduce observations at t = 0: y,(0), R(0) = (ey€; ).
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Approximate solutions - Kalman Filter - a sequential DA method

@ n small (explicit P;) @ p small @ linear H @ Gaussian stats i unbiased data I known model /obs err stats
X XA

x.(0) x (0)

1. Background at t = 0: x5(0), P(0) = (egep).
2. Introduce observations at t = 0: y,(0), R(0) = (ey€; ).

3. Analysis at t = 0:

(a) xA(0) = xg + PPHY(R + HP;H')"!(y, — Hxp),
(b) PA(0) = [I— P;HT(R + HP(HT) 'H] Py = (eel).
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Approximate solutions - Kalman Filter - a sequential DA method

@ n small (explicit P;) @ p small @ linear H @ Gaussian stats i unbiased data I known model /obs err stats

X X

1. Background at t = 0: xg(0), P;(0) = (epef).
2. Introduce observations at t = 0: y,(0), R(0) = <eyeg>.
3. Analysis at t = 0:

(a) xA(0) = xg + P;H"(R + HP;H") ! (y, — Hxp),
(b) PA(O) = [I — PfHT(R + HPfHT)_lH] Pf = <€A€X>.

4. Forecasttot =T

(a) xB(T) = Mx4x(0),
(b) Pf(T) = MPA(O)MT + Q = <€B€g> , Q = <€M€E/I>.



Approximate solutions - Kalman Filter - a sequential DA method

@ n small (explicit P;) @ p small @ linear H @ Gaussian stats i unbiased data I known model /obs err stats

X X

t=0 t=T

1. Background at t = 0: xg(0), P;(0) = (epef).
2. Introduce observations at t = 0: y,(0), R(0) = <eyeg>.
3. Analysis at t = 0:

(a) xA(0) = xg + P;H"(R + HP;H") ! (y, — Hxp),
(b) PA(O) = [I — PfHT(R + HPfHT)_lH] Pf = <€A€X>.

4. Forecasttot =T

(a) xB(T) = Mx4x(0),
(b) Pf(T) = MPA(O)MT + Q = <€B€g> , Q = <€M€E/I>.
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Approximate solutions - variational DA - a smoother

@ n large (implicit/static Py) @ p large @ (non-linear ) @ Gaussian stats @i (unbiased data) @ known model/obs err stats

E.g. Incremental, strong constraint 4D-Var P;— B

X A
x,(0)
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Approximate solutions - variational DA - a smoother

@ n large (implicit/static Py) @ p large @ (non-linear ) @ Gaussian stats @i (unbiased data) @ known model/obs err stats

E.g. Incremental, strong constraint 4D-Var P; — B

X y(t) A

>
time
1 Th ] — e
Tox(0)] = 5 [6x(0)]" B ) +5 > Iyo(t) = Hi(Meco(xp)) — HiM,ox(0)]" Ry x
t=0
[Yo(t) — Hi(Mio(x)) — HiMy00x(0)]
Vs.J = B7'ox(0 Z M/ o H/R; " [yo(t) — He(Mieo(xs)) — HiM; 6% (0)]
t=0
T 7 T 7
adjoint operators tangent linear operators

x(0) = xp(0) + 6x(0).
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Approximate solutions - variational DA - a smoother

@ n large (implicit/static Py) @ p large @ (non-linear ) @ Gaussian stats @i (unbiased data) @ known model/obs err stats
E.g. Incremental, strong constraint 4D-Var P; — B

xa x0) y@®

<CECMWF

........................... —
5x(0){ 7

| >
time
t=0 t=
1 1 &
Tx(O)] = 5 [0%(0)]" B~ ) +5 > Iyo(t) = Hi(Meco(xp)) — HiM,ox(0)]" Ry x
t=0

[YO(t) - ,Ht(MH—O(XB)) - HtMt<—05X(O)] )

Vird = B7Hox(0 Z M/ o H/R; " [yo(t) — He(Mieo(xs)) — HiM; 6% (0)]
t=0
T 7 T 7
adjoint operators tangent linear operators

x(0) = xp(0) + 6x(0).



Making variational DA work
e Key to success of 4D-Var in NWP is the B-matrix.

e This is modelled, e.g., via (linear) change of variables - a control variable transform:

— 0x(0) = Uov.

— Background errors in the dv-representation are assumed to be mutually uncorrelated:
<eBeg> ~ B.
<[U_1€B] [U_leB]T> ~ I,
UU" ~ B.

1 1 <
j[(SX(O)] = §5VT5V + 5 Z [yo(t) - Ht(MU—O(XB)) - HtMt<_QU5V]T Rt_l X
=0
[yo(t) - ,Ht(MU—O(XB)) — HtMt<_0U6V] ,

T
Ved = ov—U"Y ML HR [yo(t) = Hi(Mico(xp)) — HMo6x(0)] .
t=0
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Approximate solutions - Ensemble Kalman Filter (EnKF)

@ n large (sample Py) i p large @ (non-linear H) @ Gaussian stats i unbiased data @ known model/obs err stats

e The KF update equation:
xp = xg + PP HY (R + HP;H'Y) ! (y, — Hxp).

e Introduce an ensemble of N possible backgrounds (the ensemble), and N perturbed sets of observations

1) (N) / xp' = (x) o oxp = (%) 1) )
XB:<XB ...XB )7 B: N—— N’ , YO:<yO yO >

e The ensemble can be used to approximate Py:

possible backgrounds

1 .
P~ Py fo x| :—1X/X/ A att=T \

g possible analyses
e The basic EnKF - ens. members are columns: % / att=0
Xy = Xp+ X4 (HXE)" (N = DR+ (HXp) (X)) x|
(Y, — HX3p) : |
e Cycling:
time

15

Xp(T) = M (Xa(0)) +n.
The basic EnKF suffers with sampling error for N < n.
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1. The forecast error covariance matrix is rank deficient

The rank of PEN) is an indication of the size of the state space spanned by the forecast error ensemble.
rank (PgN)> < N —1.

The analysis increments are restricted to be a linear combination of the forecast error ensemble perturbations in an N — 1-
dimensional space.

2. The forecast ensemble spread will be subject to sampling error

e If the spread is too large then the analysis ens. will over-fit the obs. - too little trust in the fc. ens.

o If the spread is too small then the analysis ens. will under-fit the obs. - too much trust in the fc. ens.

— Once in this regime, it is difficult to escape as the ens. will (effectively) ignore the obs..

— This is called “filter divergence” (because we diverge from reality).

Filter divergence means that each ensemble member will (effectively) be free running.

3. The correlations will be subject to sampling error

e The error in the sample correlation between errors at locations ¢ and j has expectation:

£GC )]y ~ \/LN (1 - ([Cf]z‘j)z) e =

(errors are expected to be large when N small and/or correlations are close to zero).

N
P

0;0;

e Pairs of distant points would be expected to have correlations close to zero.

Sampling error means that we can't trust distant correlations. Left untreated this noise will destroy the benefits of DA (analysis
increments will be influenced by distant observations).



From Houtekamer & Mitchell, 1998
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Making progress

What can be done to reduce/mitigate this problem N < n?

e Use more ensemble members.

— This is expensive.
— How many is 'enough’?

e Ensemble inflation.

— Artificially increase the size of each Xic(i).

— How do we know what the ensemble spread should
be?

e Localization.

— Eliminate far-field correlations.
— How should this be done?

— Does this have any other consequences?

e Combine ensemble with variational approaches.

— Adopt a hybrid method.

— How to do this?

18



| ocalization

Many ways of doing localization:
e R-localization.

e P;-localization:

— Modify PEN) with a localization/moderation function that decreases with separation.

— What length-scale? How to do multivariate aspects?

— Has side effects (e.g. affects length-scales, affects balance).

correlation

—— True correlation

---------- Sample correlation

Localisation or moderation function

—— Localised sample correlation

e

relative distance

B
Q & 5 ",
/ \ S 2 o
A e 5 = ==
e P " 04
X o o K
, g
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Pi-localization (Schur/Hadamard product, univariate)

?1.0 Localisation or moderation function
0.8
0.5
0.1
0.0 0.0 0.0 0.0 0.0 >
relative distance

P = P;oQ,
(V) p(V) (V) (V) p(V)
(if(lfv) if({?v if(lfv) ﬁf&%) i%%— ) (1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0\
21 T2 Be 28 1129 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0 0.0
r Pf(35) r 0.5 0.8 1.0 0.8 0.5 0.1 0.0 0.0 0.0
: : . Py’ : : : 0.1 0.5 0.5 1.0 0.8 0.5 0.1 0.0 0.0
N N N N N N N N N
= | Y p& ply) plh py) pih) pld) pltt ptn o 0.0 0.1 0.1 0.8 1.0 0.8 0.5 0.1 0.0
; ; ; . P ; ; ; 0.0 0.0 0.0 0.5 0.8 1.0 0.8 0.5 0.1
T i) . 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8 0.5
N (V) 72 V) (W) 0.0 0.0 0.0 0.0 0.1 0.5 0.8 1.0 0.8
P Phg oo P Pas) Tro |\ 0.0 00 0.0 0.0 0.0 0.1 05 08 1.0
\Pf91 Prgs o Py Prog” Py
Pe = PrijQy;.

Can be extended to multivariate localization. But ... we rarely have access to explicit Py or £2 matrices (n x n).

20



Sample localization matrix (from K correlation ens. members) :

Localization without explicit P; and 2 matrices

. : N
Sample forecast error cov. matrix (from N dynamical ens. members) : P§ )

Q)

One matrix element: [P%N)]ij =

One matrix element: [Q(K)]Zj

21

1 () 1()T 1 T
No1 X8 XE
- 1
= R ,mT — = KgKKT
K—1 ; v K—1
1 (1) 1(0)
N1 fi Ttj oo
=1
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Localization without explicit P; and 2 matrices

1 1
Sample forecast error cov. matrix (from N dynamical ens. members) : PEN) = v 1 X;(l)x;.(l)T = ngXg :
I=1
1 < 1
Sample localization matrix (from K correlation ens. members) : Q) = 1 ;w(l")w(k>T = HKKT,
One matrix element: [P(N)]Z-- - D 0
f J N —1 e fi fy >
| X
. ] K k) (k)
One matrix element: [QF)]); = 1 %‘( )wj(-
k=1
Localized matrix (Schur product): [Py*);; = [PEN)]U[Q(K)]U,
1 1 <
_ /(1)) ), (k)
| AL
(1), (k) (1), (k)
= ¥ i 12 Lti Vi A
N-1K-1&0 -~ L

element 7 element ¥
of XM of x/(m)



Localization without explicit P; and 2 matrices

Sample forecast error cov. matrix (from N dynamical ens. members) : PgN) = ﬁ iv:x;(l)xglﬁ ﬁXng :
=1
1 < 1
Sample localization matrix (from K correlation ens. members) : Q) — 1 ]g;(.u(k)(.a(l‘)T = HKKT,
v
One matrix element: [PEN)]U = ﬁ Z x;g”;c;(jl),
1=1
- RPN SR S
One matrix element: Q'] = ﬁ;wl w; .

Localized matrix (Schur product): [P%OC]Z-]- = [P§N)]Z‘j[ﬂ(K)]ij,

= 1 K
_ /(1) /(1) (k), (k)
- [T i) [
I=1 k=1
1 | NK
/1), (k) (1), (k)
- DD Wl
N_lK_llzlkzl _ —
element 7  element j
of XM of g/(m)
11
Effect: (M =NK1 lized ) b — ~{(m) ~/'(m)
ective ens. ( ocalized ens. members) N 11 mz:;x’ ),
! k ) (k
m) _ O o (k) i ! i _
i/m_xf ow - : © - ) \X/:X%A K7
/(1) (k) (1) (n) nx M M E’E

:’Ufn Wy Ifn Wy

Y
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Spectral localization scheme (static localization)

Propose a static and homogeneous model:

K--» Kspec =

[Fp] rk

Ayl =

If F), and A, are independent of p:

KspecKT

Y
spec

F, A2
F,AL/2
FyA)/”
FrA,/’
cos(kyry + 07 ) cos(kyry + 0 v(r., k),

{Ap (R + k) k=K

K
e R :

0 otherwise.

exp(-(x/50)*2) ——
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Localization results - spectral

Localization functions, KspeCKsTpeC, 58 horizontal wave-numbers, 5 vertical modes, K = 290

DATHIET
LERLEES
LEILaTE
0409981
0374988
LEREEEY
[ 0124495

Lavel
=

- ~0.374086
499381
~LuE24877
~DARTR

RGP

-p9gsass

50 51 82 53 -6 -4 2 0 : -6 -4 -2 0 -6 -4 -2 0
Latitude Langitude Longitude Longitude

: : ' /T
Dynamical correlations (raw), X;X5

53
| | |
o
= T 52
] 2
S | = | |
=E =]
51 y
50 )
} -2 -2 0 -6 -4 -2 0
Latitude Langitude Langitude Longituds

Localized functions, (X5XY) o (KgpecKL )
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Localization and balance results - spectral, N =24, K =290

Vertical level
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SENCORP localization scheme - Smoothed ENsemble COrrelations Raised
to a Power) - adaptive'

Q --» Qspncorp = C°¢

—t

. From the ensemble members, X%, create smoothed members, Wy.

2. Normalize (sum of squares of each row of Wy is 1, call this W5).

. Calculate correlation matrix

w

1 — —7

N

. C°? is the Schur power of C with itself @ times (Q is even).

T
Qsencorr = KsencorrKsencorps

K _]. / / /
K--» KSENCORP = WWB A WB A WB JARRICI 5 K c RnXK, K

I
=
O

!Bishop C.H. and Hodyss D., Flow adaptive moderation of spurious ensemble correlations and its used in ensemble-based data assimilation, Quart. J. Roy. Met. Soc. 133,
2029-2044 (2007), DOI:10.1002/qj.169.



Localization and balance results - SENCORP, N = 16, (Q = 2,

(Q =4, K = 65536)

(a) Geostrophic diagnostic
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(b) Hydrostatic diagnostic
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ECO-RAP localization scheme - Ensemble COrrelations Raised to a Power)
- adaptive’

K --» Kgcorap = C°¢ i | e RVE,

[Fplek = cos(kyry + 03) cos(kyry + 67 )v(r., k),

[Aple = {Ap <\/m’k2> k =K
0

otherwise.

Lots of computations required

Ny

[KECORAP (rs)k — rs Z Z Z Z COQ (rs)(r’s’) )k(Ai/Q)kk
s =1

Ty I=1r=1

For efficiency (the original motivation. . .)

To+pH Ty+PH T tpv

[KECORAP ~ C(rs) Z Z Z Z COQ (rs) rs)F( )k(Ai/ﬂ)kk;

8" T =T —pH Ty=Ty—PH T,

pu, py influence radii of C° in horizontal and vertical.

2Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 1: Tests on simple error models, Tellus A 61, 84-96 (2009).
Bishop C.H. and Hodyss D., Ensemble covariances adaptively localized with ECO-RAP, Part 2: A strategy for the atmosphere, Tellus A 61, 97-111 (2009).
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Localization and balance results - ECO-RAP, N = 24, ) = 2, K = 290,
pun =0, py = 2, 16, 24, 32, 64
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(b) Hydrostatic diagnostic
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Summary & Conclusions

e Data assimilation attempts to combine imperfect data — E.g. in numerical weather prediction need to under-
from models, from observations distributed in time and stand balances in atmosphere to model B.
space, exploiting any relevant physical constraints, to pro-
duce a more accurate and comprehensive picture of the

system as it evolves in time. e Ensemble Kalman Filter:

— Can't deal with explicit matrices (n large).

e All methods are approximate applications of Bayes' The-
orem:

— Suffers sampling error for N < n.

— Use localization to remove long-range correlations in
(N)
P,

— Localization can destroy valuable information about
balance.

— First moment of posteriori PDF:
x Variational methods.

— First and second moments of posteriori PDF:

_ e Three localization schemes studied:
* Kalman filter.

« Ensemble Kalman Filters. — Spectral (static).

— Approximate whole PDF: — SENCORP.
— ECO-RAP.

— ECO-RAP seems best compromise between ability to
e Unlikely for a method to work 'off the shelf": localize and preservation of balance.

* Particle filter.



