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Section A: List Of Topics And References
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e Lorenc et al.,The Met Office global 3-dimensional variational assimilation scheme,
QJRMS 126, pp. 2991-3012 (2000).




Section B: The Need To Do Data Assimilation

B.1: Why do we need to do data assimilation (DA)?

DA is a tool that combines obs. and models and is used to infer knowledge about a dyi
system (the atmosphere, the oceans, etc.).

DA can estimate the initial conditions (called thadlysi§ of weather or ocean forecast
models. An atmospheric analysis may include fields of wind, temperature, pressu
humidity, and concentration of trace gases like ozone.

DA has other applications, e.g. to generate scientific datasets at regular time intervals.
Obs. and model data each used on their own have inadequacies. Used together with
their advantages can be combined (see table).

DA can also estimate the uncertainty in the analysis.

Bjerknes, 1911The 'ultimate problem in meteorology".

Leith, 1993 The atmospherés'a chaotic systemin which errorsintroduced into the system
can grow with time ... As a consequence, data assimilation is a struggle between chaotic
destruction of knowledge and its restoration by new observations' (Fig. 1a).

Pros Cons

Observations 'Close' to reality. Irregular and incomplete coverage (Fig 1h).

~—

May not be a direct measurement.
Observations have errors.

Modelled Complete global coverage. Temporal growth of error in initial
data Can be processed (e.g. conditions (Fig 1a).
differentiated). Susceptibility to significant model error.
D . obserwtion

Aot quantity

time >

Fig. 1la Two initially similar free-running forecasts (trajectories A and B) showing sensitive
dependence on initial conditions (‘chaos'). After a point in time the trajectories diverge. After this
point, it might be found that neither is close to the true trajectory. Feeding-in observations (dots)
using DA (trajectory C) can help keep the model close to the 'truth'.

Radiosonde ATC

Fig. 1b: Example coverage of radiosonde measurements and ATOVS satellite observation locations.
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B.2: Why can't we use just observations to determine the state of the atmosphere?
Early attempts to determine initial conditions of models simply interpolated obs. to grid points
approach is severely limited:
¢ There are too few obs. to determine the state of the system.

« Many obs. are remotely sensed - measurements are of quantities that are indirectly rel:
to the desired model quantities (e.g. radiances are measured by satellites in orbit). Tt
obs. cannot be simply inserted into the model.

« Direct use of obs. doesn't take account of measurement uncertainty.

« Interpolation of obs. onto a model grid doesn't ensure consistency with the laws of physic
Obs. are instead assimilated. DA could be viewed as an 'inverse problem'. As long as we ¢

the 'forward problem' (the ability to predict the obs. from a model state) then DA solves the i
problem of determining the model state from the obs. DA can deal with the above issues.

Section C: 3-d Var. And Operational Data Assimilation

C.1: How is data assimilation used in weather forecasting?
OBJECTIVE ANALYSIS

V.o T Vido
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ADJOINT 2R
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L THINNING ooc D'l J FORECAST s

* called "innovations" if X = Xg
"residuals” ifX = Xa

Fig. 2 The intermittent 'data assimilation cycle' showing use of a variational
scheme as the data assimilation method.

C.2: What kinds of data assimilation system are there?

e Optimal interpolation (BLUE - Best Linear Unbiased Estimator).
« Kalman Filter (full KF, extended KF, ensemble KF, reduced rank KF, ...).
» Variational assimilation (1d-Var, 3d-Var., 4d-Var).
Optimal interpolation and the Kalman Filter are sometimes called 'sequential' methods; the ¢

is found from an explicit (but computationally demanding) formula (see 8C.7). Variational me
(Var.) obtain the analysis in an iterative fashion that minimizes a 'cost function' (see 8C.3).

C.3: What is the 3d-Var. cost function?

The cost functionJ, is a measure of the 'misfit' between a model ska@nd other available dat¢
The data includes (i) the observatiopsand (ii) the a-priori stat&g. In Var. the aim is to find the
particularX that gives minimund (least squares). Thethat achieves this minimum is called t
‘analysis'Xa. A simple version of the cost function is

IA ~ (X - %)’ + (V- h[XY,
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~ (X %) (X - %) + (- h[X)' (¥ - h(XD), (1)
J is minimized ford [X = Xa] .

y contains the obs. values. There @obs.

Due to the large amount of information dealt with in DA, we use compact vector/matri
notation.

X is called the 'state vector'. It is given in a vector space that describes the state of
forecast model (ie the physical variables, each specified on a global grid, FgXgand
Xa belong to the same vector space.

The state vector hascomponents. The component values are often plotted as a peint in
dimensional 'state space' or ‘phase space’, Fig. 4.

Xg is the "a-priori', 'background' or 'first-guess' state. It comes from a good quality forecas
Part of the DA problem is to predict the obs. from a giienﬁ[?] is the 'observation

operator' and in Var. it can be a linear or non-linear functioh dfhe result oh exists in
the same vector spaceyasSee §E for examples.

The observations are a source of information only about those elemexntshaf the
functionh is sensitive to. See §E for examples.

J is exactly a (convex) parabolai?it?] is a linear function.

X

N Fig. 4 State space
- schematic fon = 3.

Fig. 3: The meaning of the state vectér ¢, |
are longitude, latitude and vertical level). The
vector has elements in total.

Uncertainty ofXg andy is not dealt with in the simple form (1). Introduce 'error covariance matr
B andR to account for uncertainty &k andy respectively to give the new cost function

JR]=%&—?JB4&—?9+%@—hﬁwh4®—hﬁn. (2
R is theobservation error covariance matrix, Fig. 5 (and see 8C.9). It is a statistical
description of the random errors yn It is usually 'diagonal' (off-diagonal elements are
zero) indicating that errors between each obs. are uncorrelated. Diagonal elerReaits of
the error variances of elementsyof
B is the background error covariance matrix, Fig. 6 (and see 8C.9). It is a statistical
description of the random errorsjg It is ann x n matrix where matrix elementj, B,
describes therror covariance between componentsandj ofXg. B is a complicated non-
sparse matrix. Diagonal element$Boére the error variances of elementgnf
Cost function (2) can be derived from Bayes' theorem (see Kalnay 85.5).
Sometimes thd is given without the factor of 1/2.



Fig. 5. The observation error covariance matrix (right)

shown against the observation vector (left).

observation errors are taken to be uncorrelated with each
other and s® is diagonal. The diagonal matrix elements -
are the respective observation variances (equal to the -
square of the standard deviations) and the off-diagonal

elements are zero. There arebservations.
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C.4: What is '3d' about 3d-Var.?

The '3d' refers to the three spatial dimensions (e.g. longitude, latitude, height). A fourth dirr
is time which is resolved in the 4d-Var. technique. Weather forecasting centres that use 3d-V
observations made typically within a six-hour time window. The approximation under 3d-Var

Often %2

Fig. 6: The background error covariance matrix
(right) for a forecast given in the state space of
Fig. 3. Each square is itself a matrix here.
Sub-matrices along the diagonal (deep yellow)
are called 'self covariances' and off-diagonal
sub-matrices are  called 'multivariate

covariances'.

the atmosphere does not evolve significantly within that time window (Fig. 7).

Trajectory of
model quantity

_4d-Var.
time window

-~

T T
t=-3 t=0 t=4+3 t=+46
v + v +
; L
l 3divar.
 time window |

Fig. 7: Under the formulation of 4d-Var. (top),
observations are used at their correct time. In
3d-Var. (bottom), the observations within a
centred six-hour time period are taken as
though they had been made at the same time.
In each case, the analysis time is at O.

@ Observation (this cycls
e (other cycles)

C.5: How 'large' is an operational 3d-Var. system?

+ X has typicallyn ~ 10°-10" elements {. the B-matrix hasl0'*10" matrix elements!).

+ ¥ has typicallyp ~ 10>-10° observations. Note that this is an order of magnitude smalle

than the number of unknownsr(hence the need to include the a-priori t€xg)).
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Fig. 8 Typical numbers of observations made by instruments (red) and
assimilated in the ECMWF global data assimilation system (yellow).

1993-1999 VAR coding took 42 person-years from 35 different people.

ddasch 2001 Subroutines, :
modides eic. Linag

30-var 978 33897

PF & adjoint models (converting 3D-Var to 4D-Var) 188 g741Z

Obs processing & general utilifies 1085 277880

Unified Moded {vwnd 1} 03T BP2624

Fig. 9 The amount of computer code written for the Met Office Var. system is
comparable to that of the Met Office forecast model. (A. Lorenc, Oxford RAL
Spring School Lecture, 2001.)

C.6: How many iterations are required to minimize J?

The cost function is minimized iteratively using a descent algorithm (see 8F). The starting f
X = Xg. LetJgandJo be the background and observation terms respectively in (2).

» As the iterations advancé reduces)o reduces, bulg increases (Fig. 10).

e The value ofJ at the minimum is necessarily positive (and non-zero). If the errol
covariance matrices are accurate descriptions of the true error statistics, if there are
biases irXg andy, if the forward operators are accurate, and if the variational assimilatiol
has converged, then we should expect the Bennet-Talagrand result to hold that

IX = % ~ g

Met Office Operational Forecast 14/01/03

©)

cost funct

on

90,000

90,000

80,000 +
70,000 +
60,000 +
50,000 +
40,000 +
30,000 +
20,000 +

10,000

0

—1J
—Jb

Jo

-+ 80,000
-+ 70,000
-+ 60,000
-+ 50,000
- 40,000
-+ 30,000
-+ 20,000

--10,000

0

iteration

Fig 10: Value of the cost function and its components as a function of iteration for Met Office 3d-Var.
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C.7: How is Var. related to the optimal interpolation formula?

A method of deriving the Ol formula originates from the cost function. Even tfﬁ)llghz) can be
non-linear, here we will first approximate it by linearization aboukghe

Let X = Xg + O 4
then E[Y(B + OX] =~ E[Y(B] + HoX. 5

H is a matrix which represents the linearizatior @boutXg. (5) is a Taylor expansion bfabout
Xg to first order where is the first derivative (called the 'Jacobian’),

-

H=2 ®)
Xl
L . . ah; . .
which is a matrix notation for the elementsl;; = I l<i<sp 1<j<n. @)
i

Substitute (4)-(5) into (2), and rearrange

3= %aXTB*a?( . %@ ~ Al ~ HOO Ry — hixal — HoX),

= %65’58’155’( n %(Héi — Y- hDel D' RYHSX - {§ - hixal)).

J is minimized at the analysi%,, whereV,J = 0
V,J[0%=0%a] = B 0% + H'R Y (H6% — {¥ — h[xal}) = O,

(see 8D.1 and 8D.2 to derive this gradient expression), iaetre Xz + 0Xa. This expression cai
be rearranged faiX,

B+ HR™M)0% = HR§ - hxal),
0% = % — % = (B + HR™H)Y 'H'R (¥ - h[xg]). (8)

This equation can be written in a different way by using the following Sherman-Morrison-Woo
formula (see the problem sheet, Q5)

B!+ H'R™H)BH" = H'/R*(R + HBH"), (9)

which can be proven easily. It is straightforward to rearrange (9) to resemble the string of
operators that are present in (8)

B+ HR'™H)™HR' = BH'(R + HBH) ¢, (10)
making (8) into an equivalent form
%a — X5 = BH'(R + HBHY (¥ — h[Xg]). (12)

(11) is the Optimal Interpolation (Ol) or Best Linear Unbiased Estimator (BLUE) formula, de
using the 'max. likelihood' (or 'min. cost’) method. Since Ol and Var. are equivalent whi
forward model is linear (ie when (5) holds exactly), (11) can be used to understand how Var. \

C.8: Why is 3d-Var. favoured over optimal interpolation?

Even though Ol and Var. are equivalent when the forward model is linear, there are differe
the practical implementation of the methods. 3d-Var. has advantages over Ol:

e 3d-Var. is more efficient than Ol. For Ol to be applicable to operational weathe
forecasting, it finds analyses for separate patches of the globe, which are then se
together. Var., on the other hand, allows a truly global solution.



With techniques shown in 8G, 3d-Var. does not, unlike Ol, have to explicitly invert larg
matrices.

3d-Var. can handIB in a more accurate way than Ol.

3d-Var. can deal with indirect observations more easily than Ol (indirect observations oft
have non-linear forward mode_ri;[Y(]).

3d-Var. is a stepping stone to 4d-Var. 4d-Var is very similar to 3d-Var. (it shares mai
benefits), but has an additional forecast step as part of the forward model.

The benefits of 3d-Var. have been demonstrated (Fig. 11).

FABLE 1. % REDUCTION TN RMS FIT GF OBSERVATIONS TO ANALYSIS (T-+0) AND BACKGROUND
(T+8) ™7 3DVAR COMPARED WITH AC SCHEME IN THE NORTHERN HEMISPHERE IN JULY §8 TRIAL

Temperature Height or PMSL Vector Wind Relative Humidity
Level T+4 T+6 T+0 . T+ T40 T+6 T+a T+6
1004Pa -5.5 T-33 0.1 -3.2 15.2 53
250hPa 0.3 0.0 4.8 2.5 16.5 4.9
500hPa 5.5 2.7 3.5 3.4 14.4 37 5.6 2.9
To0hFPa T.2 34 2.1 5.2 15.4 2.8 5.7 2.5
B30hPa 6.6 14 1.4 37 9.1 . 1.8 2.9 1.5
Surface -1.5 0.7 .8 -0.2 1.2 0.6

Radigsondes TEMP reports used for Upper levels and land SYNOF reports used for Surface

Fig. 11 Performance of the Met Office 3d-Var. scheme for operational weather
forecasting vs. the old Analysis Correction (AC) scheme. The AC scheme is a
flavour of OIl. Taken from Lorenc et al., 2000.

C.9: Why do we need to worry about the error covariance matrices?
Errors are a fundamental consideration in: models are wrong and all observations are

inaccurate. The assimilation should therefore take into accounighandy are known imperfectly.

There are many types of error. We assume that errors are random in nature, and follow statis
normal (Gaussian) distribution. This is the assumption behind the cost function (2) (see Kaln
to derive the cost function from probability distributions via Bayes' theorem).

An error covariance matrix is a many-variable generalization of a variance.
The cost function penalizes according to the 'distance’ (in phase space) between the il
data (input data beirigs or y) and the assimilation’s version of that daai(h[X]). The
error covariance matrices define a non-Euclidean norm.
We can understand this more easily if we consider the error covariance matrices to
diagonal (ie that errors between componentsXgpfind between components wfare
uncorrelated).
If R is diagonal (as it usually is), the observation term in (2) becomes
1o eornie 2o L (0 — WX

Jo = 5 - hX)'R™(F — hiX) = 3 21 R
The above is a sum of squares, weighted by the inverse variBfteslf a particular
observationy; is known very well (ie smalR;, largeR;') then any deviations from the
model's predicted valug, — h;[X], will suffer a very large penalty, and B X] will be
strongly constrained t@. In the opposite regime, ¥f is known only very poorly (ie large
Ri, smallR;Y), then deviations will suffer only a very small penalty, andy$a] will be
only weakly constrained tp.
The errors irR originate from a combination of known instrument errors and representivit
errors in the ability ohto predict the observational values.
Similar arguments apply to the background term. Blfis diagonal (for illustrative
purposes), the background term in (2) becomes
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1. o rea. . 1 & (X% — Xa)?
JB=-F-%) B T(X-%) =D ———.
B 2( B) ( 8) 2 & B

¢ The variational assimilation will be constrained more strongly to fit those elements of tt
background state that are known with smaller error than those with a larger error.

e It is a poor approximation to assume tBais a diagonal matrix. Off-diagonal elements
have an information-spreading effect. In the Ol equation @13, the last operator that
acts (just like a convolution) to give the analysis increment. This is seen in 'singl
observation' experiments in Var. (Fig. 12).

« The analysis also has uncertainties, described by an error covariance Paatiiikere are
many equivalent forms dPy. One form (12) is the inverse of the Hessian matrix. The
Hessian is the second derivative of the cost function (see 8D.3 and §D.4).

Pa= (B + HR'H)™. (12
Jf\(oi’f =
. .ﬂ
i f""{{ “-C -10
("_\’-.) 0
B _m
Par, ot :
P | -
e :
L7l /é_{rwu ‘I:

e iy

Fig. 12 Analysis increments in VardX,, due to assimilation of a pressure obs. made
over the E coast of N America. Pressure (top left), potential temperature (bottom
left), zonal wind (top right), meridional wind (bottom right). (11) says that these
results are proportional to a columnBof

C.10: How can the analysis error covariance be derived?

This result, and alternative forms fB can be derived. First define errors in each quantity
deviation from the 'truthk;, and write outer product expressions for their error covariance matri

Xa = X + Ea Pa = GEaEA)
Xg = X% + &g, B = (&8,
y = h[x] + &, R = G2,
The optimal interpolation formula can be applied to find that
Prn= (I — KH)B, (13

whereK = BHT(R + HBHT)! (see the problem sheet, Q2). The analysis error covariance (.
found to be the background error reduced KifB due to the introduction of observation
information (combining obs. with the background stauces uncertainty Equation (13) may be
manipulated further to give (12), which is the inverse Hessian (see the problem sheet, Q2).




Section D. The Gradient And Hessian Of The Cost Function

D.1: What is the gradient vector?

The gradient vector has already been used in the derivation of the Ol formula in 8C.7. Thisv
the derivative ofl in (2) with respect to each elemeniof

(9J/8X1
9] dJl dx;

Vd = = = O (14)
dJ |l dx,

There aren elements oK, and soV,J also has elements. Sometimes gradient vectors are ce
‘adjoint vectors' or 'sensitivities'.

D.2 How can the gradient vector be calculated?
The simplest means of computing the gradient vector is to use finite differences
(J[X + 1] — I[x1 — 611)/ 264
(J[X2 + 02] — I[% — 021)/ 25,
VJ = .

(J [Xn + 5n] - J[Xn - (Sn])/zan

This centred difference requir@s evaluations o8 and is inefficient. It is better to find the gradie
analytically. This is found to be

Vd = B*(X - %) - HR™ (¥ - hix), (15
which is derived in the problem sheet, Q1. The 'transpost' @énoted ', is sometimes called th

‘adjoint’ ofH (whileH on its own is sometimes called the ‘forward’' operator). Adjoint operator
important in Var. NoteH" is not the inverse df.

« The gradient is a key quantity used in the descent algorithm that miniin(zes 8F).
* It needs to be evaluated many times during the Var. algorithm (ref. Fig. 2).

D.3: What is the Hessian matrix?
The HessianA, is the symmetria x n matrix of second derivative dfcalculated with respect fo

0231 9x3 3231 IX % ... I XX,

I | 01dxdx 9X1% ... 3231 Ixd%,
= = = ) (16
IR
3%2)1 IX A%, 3?1 IX %o ... 32T N
» The Hessian must be positive-definate and non-singular for a unique minimlra exist
(see the problem sheet, Q3).

» The Hessian matrix is too large to be computed for an operational Var. systems (see 8C
but it is a useful object to understand.

 lts inverse is the error covariance of the analysis (see 8C.10).
e The Hessian is used in the Newton algorithm to minindigee §F.3).

D.4: How can the Hessian be derived?
The Hessian can be found to have the form
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A =B'+HRM, (17

which is derived in the problem sheet, Q1. The inverse of the Hessian appeared in 8C.10 (t
covariance matrix of the analysi, in (12)).

Section E: Example Observation Operators

E.1: Interpolation of temperature in a single column

Let a single column model consist of four levels. Each level has a h&lgintl carries temperature
T™ (Fig. 13). Two temperature measurements are made by a radiosonde on a weather b:
positions between the levels. What is the forward opetatthe JacobiarH, and its adjoinH ™?

Tz
Tz
><4— Temperature measurementyl,= T, made ai;
T 2z
><4— Temperature measurementy2,= T, made ab,
LEAN
Model temperatures
and level heights

Fig. 13 The model levels and the observations.
The model state vect¢X) and the observation vect@p are,
m
LIPS
LS
w

The forward model is found by e.g. linear interpolation,

x4
Il
<l
Il
—_—
S
~_

) T8+ S (2 — )
hix = =

T
T+ 5 (2 — A

aTh + BT
yI" + Tf

This operator is linear. The Jacobian and its adjoint are found by evaluating (7).

0y

H - Oa,BO’ oo len|
y n 00 B 0
00

» If these observations (only) were assimilated, then there would be no observatiol
information abouf", as it plays no part in the observation operator.

« This kind of observation operator is used in part of operational 3d-Var. systems.

-11-



E.2: Non-linear forward operator (radiative emission)

All bodies at a temperature above absolute zero emit thermal radiation. In this examg
radiation from a layer of the atmosphere is monitored by satellite. A forecast model represe
layer of the atmosphere with grid boxes and carries temperature in each (Fig. 14).
measurement is made above box 2. What is the forward opératee, Jacobiartl, and its adjoint
HT? Radiation fluxF, is related to layer temperatuile,by the Stefan-Boltzmann Law,

F = xT"
wherex is the Stefan-Boltzmann constant.

REi ™ I layer

Fig. 14 Two grid boxes making up a layer of the atmosphere whose thermal
radiation is being monitored by a satellite instrument.

The model state vect¢x) and the observation vect@ are,
LEY
w

.y =(F.

The forward model is,
ALK = (x(TPY).
The Jacobian is found by evaluating (7), and its adjoint follows,

0
dic (T3]

H = % = 8h1/o7X1 8h1/o7X2) = (0 4K(T2m)3), HT =

» There is no observational information ab®{ithere, as it plays no part in the obs. operator.
e Operators that predict the thermal emission of radiation to space from a column of t

atmosphere are used in 3d-Var. The obs. operators deal with similar physics expressec
radiative transfer equations.

* One group of satellites providing data for operational assimilation are the ATOVS satellit

(ATOVS: Advanced TIROS Operational Vertical Sounder, TIROS: Television Infrarec
Observational Satellite).

Section F: Minimization (or Descent) Algorithms

F.1: What is a minimization (or descent) algorithm and what is the geometric interpretation of
the gradient vector?

* A minimization algorithm finds the argume(®) of a scalar function{J) that gives its
smallest value. Var. systems use such an algorithm.

 Algorithms are usually of an iterative (step-by-step) nature. In Xais,the starting point.
» Three algorithms are shown here (there are other variants).
« Many algorithms are based drbeing quadratically related ¥o(or approximately so)J in

(2) is exactly quadratic fi[X] is a linear function - we assume that any non-linear operator:
are only marginally non-linear and so the quadratic algorithms are applicable.
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» The gradient vector is a key input into descent algorithms. It is required at each iteration.

¢ The algorithms work im-dimensional state space (wherecan be large). Here, two
dimensional state space is shown schematically.

« The gradient vector, evaluated at a point in state space, points in the direction of stee|
ascent. The negative gradient points in the direction of steepest descent (Fig. 15).

© THE GRADIENT OFJ
VIR Fig. 15 Geometric representation of the
gradient vector (red), and its negative
(blue) in state space. The curves are
contours of constardt

F.2: What is the method of steepest descent?

* The method of steepest descent is the simplest and most intuitive algorithm.

* Move in the direction of steepest descent uhiil minimized along that line (Fig. 16) (this
'line minimization' gives thd;" in Fig. 16). Repeat until sufficiently close to the minimum.

» This algorithm is inefficient, especially when the aspect ratio of the contour shape is large
* The aspect ratio is related to the conditioning of the Hessian matrix (8G).

THE METHOD OF
STEEPEST DESCENT

Fig. 16, Schematic of the \ X1 = % + AG (line
method of steepest descent. The /\ 5 = _V,J(x) Minimization)

blue arrows show the path of the
algorithm from one iteration to

the next. The green arrow is the
direction from the starting place
to the minimum (in practice it is

unknown).

F.3: What is the Newton algorithm (NA)?

* The min. can be reached in one iteration using the NAsifexactly quadratic.
¢ The Hessian matrix needs to be inverted, and so the NA is impracticable far.large
« The NA can be derived from the many variable Taylor expansidria$econd order.

AssumingJ is exactly quadratic (ie th&tX] is exactly linear), the Taylor expansion givihgx . 1]
can be written as follows given three pieces of information evaluatged(@t [X]1, (i) V,J[X] and
(iiif) the HessianA,

= = N N N 1 = = N =
I¥is1] = J[X] + (VIKD Giwg — %) + 5 G - %) A1~ %) (18)
Differentiate with respect &g . 1,

VX1l = VJIIX] + A1 — %), (19
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((19) can be derived by expanding the matrix notation of (18), differentiating with respect
individual component ok, . 1, and then restoring the matrix notation - similar to the analysi
8D.2). Set (19) to zero (for the turning point at the minimum) and rearrange % give

X.1 = % — ATV,J[X]. (20)

X -1 minimisesJ (and so is the analysis state). This result is identical to the Ol formula (11),
Hessian (17) and gradient (22) are substituted into (20).

F.4: What is the conjugate gradient algorithm (CGA)?

» The CGA is similar in principle to the method of steepest descent, but is more efficient.

* Unlike the Newton algorithm, it does not require the Hessian.

* Instead of using the negative gradiehtas the 'search direction’, the CGA uses a modified
search directior (Fig. 17). (N.B.ﬁ here is not the forward model.)

» The CGA is widely used.

» The algorithm's equations are not derived here.

THE CONJUGATE
GRADIENT METHOD

%.1= % + AR (iine

R __ minimization)
G = —Vid (Xis2)

h

w1 = G + vih
y, = gT+1gi+1
' go
gg =0 :
o I # ], A Hessian

Fig. 17: Schematic of the conjugate gradient algorithm. The blue arrows are the
steepest descent directions and the red arrows show the actual path of the
algorithm from one iteration to the next.

Section G: Preconditioning And Control Variable Transforms

G.1: What is undesirable about minimizing (2) directly?

« The gradien¥,J is needed in Var. in the descent algorithm, Bndis needed to evaluate
the gradient (22).

« Bis far too large to store, let alone invert.
« In Var.,B andB™ can be approximated using 'control variable transforms'.
» Control variable transforms achieve many things:

« Avoids the need to deal with the very laBenatrix.

* Introduces a 'model' @ that contains the statistics and physics of forecast errors
(e.g. geostrophic balance properties as in Fig. 12).

» Preconditions the minimization problem to make it converge more quickly.
» Allows Var. to work effectively.

G.2 What is the control variable transform that preconditions the problem?

* Make a change of variablg, — ¥ such that the background errors in Jaeepresentation
have a very simple structure and are well conditioned (see 8§G.3).
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» Substitute the following into (2)
Let X-Xs = Uy, (21

.. . 1. T N e S T S
giving Ju]=EKNB%x+Ew—hwx+mwhlw—hwx+mn (22)

» Here,U'BU in the first term is the inverse of the background error covariance matri;

expressed in the nej¥representation.

+ DesignU such thatU'B*U = |. If the U that achieves this can be found, the impled
can be found by rearranging this express®ns UU'. The background term in the cost
function then 'loses' the complicated error covariance matrix as (22) becomes,

o 1.+, 1. - L T, oo
Ju]=§fx+§w—hwx+mwhlw—hwx+mu (23

* In (2) minimization is done by varyin& (X was the ‘control variable'). In the
preconditioned problem (23), minimization is done by varyin€y is the new control
variable) and th&J-operator is the 'control variable transform'.

¢ In (23)B has not disappeared - it has been absorbedlinto

* In the preconditioned problem, the analysis will hethat minimizes (23). In thé&-
representation, the analysis is found from (21)= Uya + Xs.

» The problem in terms ¢f (23) is better conditioned than that in term& ¢2).
* The design of th&J-transform is a whole new lecture series!

G.3: What is meant by 'better conditioned'?

« Geometrically, the condition number is the aspect ratio ofltbentours (Fig. 18). The
shape of the contours (and hence the aspect ratio) is determined from the Hessian.

BADLY CONDITIONED WELL CONDITIONED

condition
numbero(l)

*Fig. 18 Contours of] illustrating a high conditioning number (left)
and a low conditioning number (right).

+ The Hessian in terms dt is A, = B + H'RH (17) and it is assumed that the
contribution fromB~! dominates its properties (such as the condition number).

 The Hessian in terms ¢f is A, = | + U'TH'R'HU which is assumed to have a lower
condition number thaA, and hence easier to work with.
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