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Section A: List Of Topics And References

A.1: List Of Topics

A. References.

B. Introduction - why do data assimilation?

C. 3-dimensional variational assimilation and operational data assimilation.

D. The gradient and Hessian of the cost function.

E. Example observation operators.

F. Minimization algorithms.

G. Preconditioning.

A.2: Further Reading

• Kalnay E., Atmospheric Modelling, Data Assimilation and Predictability, Ch. 5.

• Daley, Atmospheric Data Analysis, Ch.13.

• ECMWF, Data assimilation course handouts,http://www.ecmwf.int/newsevents/training/

lecture_notes/LN_DA.html.

• Schlatter T.W.,Variational assimilation of meteorological observations in the lower
atmosphere: a tutorial on how it works, Journal of atmospheric and solar-terrestrial
physics 62, pp. 1057-1070 (2000).

• Lorenc et al.,The Met Office global 3-dimensional variational assimilation scheme,
QJRMS 126, pp. 2991-3012 (2000).
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Section B: The Need To Do Data Assimilation

B.1: Why do we need to do data assimilation (DA)?

DA is a tool that combines obs. and models and is used to infer knowledge about a dynamical
system (the atmosphere, the oceans, etc.).

• DA can estimate the initial conditions (called the 'analysis') of weather or ocean forecast
models.  An atmospheric analysis may include fields of wind, temperature, pressure,
humidity, and concentration of trace gases like ozone.

• DA has other applications, e.g. to generate scientific datasets at regular time intervals.
• Obs. and model data each used on their own have inadequacies.  Used together with DA,

their advantages can be combined (see table).
• DA can also estimate the uncertainty in the analysis.
• Bjerknes, 1911: The "ultimate problem in meteorology".
• Leith, 1993: The atmosphere "is a chaotic system in which errors introduced into the system

can grow with time ... As a consequence, data assimilation is a struggle between chaotic
destruction of knowledge and its restoration by new observations" (Fig. 1a).

Pros Cons

Observations 'Close' to reality. Irregular and incomplete coverage (Fig 1b).
May not be a direct measurement.
Observations have errors.

Modelled
data

Complete global coverage.
Can be processed (e.g.
differentiated).

Temporal growth of error in initial
conditions (Fig 1a).
Susceptibility to significant model error.

Fig. 1a: Two initially similar free-running forecasts (trajectories A and B) showing sensitive
dependence on initial conditions ('chaos').  After a point in time the trajectories diverge.  After this
point, it might be found that neither is close to the true trajectory.  Feeding-in observations (dots)
using DA (trajectory C) can help keep the model close to the 'truth'.

Radiosonde                                     ATOVS
Fig. 1b: Example coverage of radiosonde measurements and ATOVS satellite observation locations.
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B.2: Why can't we use just observations to determine the state of the atmosphere?

Early attempts to determine initial conditions of models simply interpolated obs. to grid points.  This
approach is severely limited:

• There are too few obs. to determine the state of the system.
• Many obs. are remotely sensed - measurements are of quantities that are indirectly related

to the desired model quantities (e.g. radiances are measured by satellites in orbit).  These
obs. cannot be simply inserted into the model.

• Direct use of obs. doesn't take account of measurement uncertainty.
• Interpolation of obs. onto a model grid doesn't ensure consistency with the laws of physics.

Obs. are instead assimilated.  DA could be viewed as an 'inverse problem'.  As long as we can solve
the 'forward problem' (the ability to predict the obs. from a model state) then DA solves the inverse
problem of determining the model state from the obs.  DA can deal with the above issues.

Section C: 3-d Var. And Operational Data Assimilation

C.1: How is data assimilation used in weather forecasting?
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Fig. 2: The intermittent 'data assimilation cycle' showing use of a variational
scheme as the data assimilation method.

C.2: What kinds of data assimilation system are there?

• Optimal interpolation (BLUE - Best Linear Unbiased Estimator).
• Kalman Filter (full KF, extended KF, ensemble KF, reduced rank KF, ...).
• Variational assimilation (1d-Var, 3d-Var., 4d-Var).

Optimal interpolation and the Kalman Filter are sometimes called 'sequential' methods; the analysis
is found from an explicit (but computationally demanding) formula (see §C.7).  Variational methods
(Var.) obtain the analysis in an iterative fashion that minimizes a 'cost function' (see §C.3).

C.3: What is the 3d-Var. cost function?

The cost function, , is a measure of the 'misfit' between a model state,, and other available data.
The data includes (i) the observations,, and (ii) the a-priori state, .  In Var. the aim is to find the
particular  that gives minimum  (least squares).  The that achieves this minimum is called the
'analysis', .  A simple version of the cost function is

J xå
yå xå B

xå J xå
xå A

J [xå ] ∼ (xå − xå B)2 + (yå − hå [xå ])2 ,
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∼ (xå − xå B)T (xå − xå B) + (yå − hå [xå ])T (yå − hå [xå ]) , (1)

J J [xå = xå A] . is minimized for 

•  contains the obs. values.  There are  obs.yå p
• Due to the large amount of information dealt with in DA, we use compact vector/matrix

notation.
•  is called the 'state vector'.  It is given in a vector space that describes the state of the

forecast model (ie the physical variables, each specified on a global grid, Fig. 3).,  and
 belong to the same vector space.

xå
xå xå B

xå A

• The state vector has components.  The component values are often plotted as a point in-
dimensional 'state space' or 'phase space', Fig. 4.

n n

•  is the 'a-priori', 'background' or 'first-guess' state.  It comes from a good quality forecast.xå B

• Part of the DA problem is to predict the obs. from a given.  is the 'observation
operator' and in Var. it can be a linear or non-linear function of.  The result of  exists in
the same vector space as .  See §E for examples.

xå hå [xå ]
xå hå

yå
• The observations are a source of information only about those elements of that the

function  is sensitive to.  See §E for examples.
xå

hå

•  is exactly a (convex) parabola if  is a linear function.J hå [xå ]

uå

 vå

θå

på

qå

ℓ1

ℓL

λ1

φ1

λ2

φ2

Fig. 3: The meaning of the state vector (, ,
are longitude, latitude and vertical level).  The
vector has  elements in total.

λ φ l

n

x1

x2

x3

Fig. 4: State space
schematic for .n = 3

Uncertainty of  and  is not dealt with in the simple form (1).  Introduce 'error covariance matrices'
 and  to account for uncertainty of  and  respectively to give the new cost function

xå B yå
B R xå B yå

J [xå ] =
1
2

(xå − xå B)T B−1 (xå − xå B) +
1
2

(yå − hå [xå ])T R−1 (yå − hå [xå ]) . (2)

•  is the observation error covariance matrix, Fig. 5 (and see §C.9).  It is a statistical
description of the random errors in.  It is usually 'diagonal' (off-diagonal elements are
zero) indicating that errors between each obs. are uncorrelated.  Diagonal elements of are
the error variances of elements of .

R
yå

R
yå

•  is the background error covariance matrix, Fig. 6 (and see §C.9).  It is a statistical
description of the random errors in.  It is an  matrix where matrix element ,
describes theerror covariance between components and  of .  is a complicated non-
sparse matrix.  Diagonal elements of  are the error variances of elements of .

B
xå B n × n i, j Bij,

i j xå B B
B xå B

• Cost function (2) can be derived from Bayes' theorem (see Kalnay §5.5).
• Sometimes the  is given without the factor of 1/2.J
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Fig. 5: The observation error covariance matrix (right)
shown against the observation vector (left).  Often
observation errors are taken to be uncorrelated with each
other and so  is diagonal.  The diagonal matrix elements
are the respective observation variances (equal to the
square of the standard deviations) and the off-diagonal
elements are zero.  There are  observations.
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  N.ward wind fieldvå
 pot. temp. fieldθå
 pressure fieldpå
 humidity fieldqå

Fig. 6: The background error covariance matrix
(right) for a forecast given in the state space of
Fig. 3.  Each square is itself a matrix here.
Sub-matrices along the diagonal (deep yellow)
are called 'self covariances' and off-diagonal
sub-matrices are called 'multivariate
covariances'.

C.4: What is '3d' about 3d-Var.?

The '3d' refers to the three spatial dimensions (e.g. longitude, latitude, height).  A fourth dimension
is time which is resolved in the 4d-Var. technique.  Weather forecasting centres that use 3d-Var. take
observations made typically within a six-hour time window.  The approximation under 3d-Var is that
the atmosphere does not evolve significantly within that time window (Fig. 7).

4d-Var.

3d-Var.

t = 0t = −3 t = +3 t = +6

time window

time window

Trajectory of
model quantity

Fig. 7: Under the formulation of 4d-Var. (top),
observations are used at their correct time.  In
3d-Var. (bottom), the observations within a
centred six-hour time period are taken as
though they had been made at the same time.
In each case, the analysis time is at .t = 0

Observation (this cycle)
(other cycles)

C.5: How 'large' is an operational 3d-Var. system?

•  has typically -  elements (∴ the -matrix has -  matrix elements!).xå n ∼ 106 107 B 1012 1014

•  has typically -  observations.  Note that this is an order of magnitude smaller
than the number of unknowns in  (hence the need to include the a-priori term ).
yå p ∼ 105 106

xå (xå B)
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Fig. 8: Typical numbers of observations made by instruments (red) and
assimilated in the ECMWF global data assimilation system (yellow).

Fig. 9: The amount of computer code written for the Met Office Var. system is
comparable to that of the Met Office forecast model.  (A. Lorenc, Oxford RAL
Spring School Lecture, 2001.)

C.6: How many iterations are required to minimize J?

The cost function is minimized iteratively using a descent algorithm (see §F).  The starting point is
.  Let  and  be the background and observation terms respectively in (2).xå = xå B JB JO

• As the iterations advance,  reduces,  reduces, but  increases (Fig. 10).J JO JB

• The value of  at the minimum is necessarily positive (and non-zero).  If the error
covariance matrices are accurate descriptions of the true error statistics, if there are no
biases in  and , if the forward operators are accurate, and if the variational assimilation
has converged, then we should expect the Bennet-Talagrand result to hold that

J

xå B yå

J [xå = xå A] ∼
p

2
. (3)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

J
Jb
Jo

0 5 10 15 20 25 30 35 40
iteration

co
st

 fu
nc

tio
n

Met Office Operational Forecast 14/01/03

Fig 10: Value of the cost function and its components as a function of iteration for Met Office 3d-Var.
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C.7: How is Var. related to the optimal interpolation formula?

A method of deriving the OI formula originates from the cost function.  Even though in (2) can be
non-linear, here we will first approximate it by linearization about the .

hå
xå B

xå = xå B + δxå , (4)Let    

hå [xå B + δxå ] ≈ hå [xå B] + Hδxå . (5)then    

 is a matrix which represents the linearization of about .  (5) is a Taylor expansion of about
 to first order where  is the first derivative (called the 'Jacobian'),

H hå xå B hå
xå B H

H =
∂ hå

∂ xå | , (6)
xå B

Hij =
∂ hi

∂ xj
   (1 ≤ i ≤ p,    1 ≤ j ≤ n) . (7)which is a matrix notation for the elements    

Substitute (4)-(5) into (2), and rearrange

J =
1
2
δxå TB−1δxå +

1
2

(yå − hå [xB
å ] − Hδxå )T R−1 (yå − hå [xB

å ] − Hδxå ) ,

=
1
2
δxå TB−1δxå +

1
2

(Hδxå − {yå − hå [xB
å ]})T R−1 (Hδxå − {yå − hå [xB

å ]}) .

 is minimized at the analysis, , where J xå A ∇xJ = 0

∇xJ [δxå =δxå A] = B−1δxå A + HTR−1 (Hδxå A − {yå − hå [xB
å ]}) = 0,

(see §D.1 and §D.2 to derive this gradient expression), where .  This expression can
be rearranged for 

xå A = xå B + δxå A

δxå A

(B−1 + HTR−1H)δxå A = HTR−1 (yå − hå [xB
å ]) ,

δxå A = xå A − xå B = (B−1 + HTR−1H)−1 HTR−1 (yå − hå [xB
å ]) . (8)

This equation can be written in a different way by using the following Sherman-Morrison-Woodbury
formula (see the problem sheet, Q5)

(B−1 + HTR−1H) BHT = HTR−1 (R + HBHT) , (9)
which can be proven easily.  It is straightforward to rearrange (9) to resemble the string of matrix
operators that are present in (8)

(B−1 + HTR−1H)−1 HTR−1 = BHT (R + HBHT)−1 , (10)
making (8) into an equivalent form

xå A − xå B = BHT (R + HBHT)−1 (yå − hå [xB
å ]) . (11)

(11) is the Optimal Interpolation (OI) or Best Linear Unbiased Estimator (BLUE) formula, derived
using the 'max. likelihood' (or 'min. cost') method.  Since OI and Var. are equivalent when the
forward model is linear (ie when (5) holds exactly), (11) can be used to understand how Var. works.

C.8: Why is 3d-Var. favoured over optimal interpolation?

Even though OI and Var. are equivalent when the forward model is linear, there are differences in
the practical implementation of the methods.  3d-Var. has advantages over OI:

• 3d-Var. is more efficient than OI.  For OI to be applicable to operational weather
forecasting, it finds analyses for separate patches of the globe, which are then sewn
together.  Var., on the other hand, allows a truly global solution.
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• With techniques shown in §G, 3d-Var. does not, unlike OI, have to explicitly invert large
matrices.

• 3d-Var. can handle  in a more accurate way than OI.B
• 3d-Var. can deal with indirect observations more easily than OI (indirect observations often

have non-linear forward models, ).hå [xå ]
• 3d-Var. is a stepping stone to 4d-Var.  4d-Var is very similar to 3d-Var. (it shares many

benefits), but has an additional forecast step as part of the forward model.
• The benefits of 3d-Var. have been demonstrated (Fig. 11).

Fig. 11: Performance of the Met Office 3d-Var. scheme for operational weather
forecasting vs. the old Analysis Correction (AC) scheme.  The AC scheme is a
flavour of OI.  Taken from Lorenc et al., 2000.

C.9: Why do we need to worry about the error covariance matrices?

Errors are a fundamental consideration in DA: all models are wrong and all observations are
inaccurate.  The assimilation should therefore take into account that  and  are known imperfectly.xå B yå

There are many types of error.  We assume that errors are random in nature, and follow statistically a
normal (Gaussian) distribution.  This is the assumption behind the cost function (2) (see Kalnay §5.5
to derive the cost function from probability distributions via Bayes' theorem).

• An error covariance matrix is a many-variable generalization of a variance.
• The cost function penalizes according to the 'distance' (in phase space) between the input

data (input data being  or ) and the assimilation's version of that data ( or ).  The
error covariance matrices define a non-Euclidean norm.

xå B yå xå hå [xå ]

• We can understand this more easily if we consider the error covariance matrices to be
diagonal (ie that errors between components of and between components of are
uncorrelated).

xå B yå

• If  is diagonal (as it usually is), the observation term in (2) becomesR

JO =
1
2

(yå − hå [xå ])T R−1 (yå − hå [xå ]) =
1
2 ∑

p

i = 1

(yi − hi [xå ])2

Rii
.

• The above is a sum of squares, weighted by the inverse variances.  If a particular
observation,  is known very well (ie small , large ) then any deviations from the
model's predicted value, , will suffer a very large penalty, and so  will be
strongly constrained to.  In the opposite regime, if is known only very poorly (ie large

, small ), then deviations will suffer only a very small penalty, and so  will be
only weakly constrained to .

R−1
ii

yi Rii R−1
ii

yi − hi [xå ] hi [xå ]
yi yi

Rii R−1
ii hi [xå ]

yi

• The errors in  originate from a combination of known instrument errors and representivity
errors in the ability of  to predict the observational values.

R
hå

• Similar arguments apply to the background term.  If is diagonal (for illustrative
purposes), the background term in (2) becomes

B
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JB =
1
2

(xå − xå B)T B−1 (xå − xå B) =
1
2 ∑

n

i = 1

(xi − xBi)2

Bii
.

• The variational assimilation will be constrained more strongly to fit those elements of the
background state that are known with smaller error than those with a larger error.

• It is a poor approximation to assume that is a diagonal matrix.  Off-diagonal elements
have an information-spreading effect.  In the OI equation (11), is the last operator that
acts (just like a convolution) to give the analysis increment.  This is seen in 'single-
observation' experiments in Var. (Fig. 12).

B
B

• The analysis also has uncertainties, described by an error covariance matrix,.  There are
many equivalent forms of .  One form (12) is the inverse of the Hessian matrix.  The
Hessian is the second derivative of the cost function (see §D.3 and §D.4).

PA

PA

PA = (B−1 + HTR−1H)−1 . (12)

Fig. 12: Analysis increments in Var., , due to assimilation of a pressure obs. made
over the E coast of N America.  Pressure (top left), potential temperature (bottom
left), zonal wind (top right), meridional wind (bottom right).  (11) says that these
results are proportional to a column of .

δxå A

B

C.10: How can the analysis error covariance be derived?

This result, and alternative forms for can be derived.  First define errors in each quantity as a
deviation from the 'truth', , and write outer product expressions for their error covariance matrices

PA

xå t

,xå A = xå t + εå A ,PA = 〈εå Aεå T
A〉

,xå B = xå t + εå B ,B = 〈εå Bεå T
B〉

,yå = hå [xå t] + εå y .R = 〈εå yεå T
y 〉

The optimal interpolation formula can be applied to find that

PA = (I − KH ) B, (13)
where  (see the problem sheet, Q2).  The analysis error covariance (13) is
found to be the background error reduced by  due to the introduction of observational
information (combining obs. with the background statereduces uncertainty).  Equation (13) may be
manipulated further to give (12), which is the inverse Hessian (see the problem sheet, Q2).

K = BHT (R + HBHT)−1

KH B
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Section D. The Gradient And Hessian Of The Cost Function

D.1: What is the gradient vector?

The gradient vector has already been used in the derivation of the OI formula in §C.7.  This vector is
the derivative of  in (2) with respect to each element of .J xå

∇xJ =
∂ J

∂ xå
= ( ) . (14)

∂ J / ∂ x1

∂ J / ∂ x2

…
∂ J / ∂ xn

There are  elements of , and so  also has  elements.  Sometimes gradient vectors are called
'adjoint vectors' or 'sensitivities'.

n xå ∇xJ n

D.2 How can the gradient vector be calculated?

The simplest means of computing the gradient vector is to use finite differences

∇xJ ≈ ( ) .

(J [x1 + δ1] − J [x1 − δ1]) / 2δ1

(J [x2 + δ2] − J [x2 − δ2]) / 2δ2

…
(J [xn + δn] − J [xn − δn]) / 2δn

This centred difference requires evaluations of  and is inefficient.  It is better to find the gradient
analytically.  This is found to be

2n J

∇xJ = B−1 (xå − xå B) − HTR−1 (yå − hå [xå ]) , (15)
which is derived in the problem sheet, Q1.  The 'transpose' of, denoted , is sometimes called the
'adjoint' of  (while  on its own is sometimes called the 'forward' operator).  Adjoint operators are
important in Var.  Note:  is not the inverse of .

H HT

H H
HT H

• The gradient is a key quantity used in the descent algorithm that minimizes  (see §F).J
• It needs to be evaluated many times during the Var. algorithm (ref. Fig. 2).

D.3: What is the Hessian matrix?

The Hessian, , is the symmetric  matrix of second derivative of  calculated with respect to .A n × n J xå

A =
∂ 2J

∂ xå 2
= ( ) . (16)

∂ 2J / ∂ x2
1 ∂ 2J / ∂ x1∂ x2 … ∂ 2J / ∂ x1∂ xn

∂ 2J / ∂ x2∂ x1 ∂ 2J / ∂ x2
2 … ∂ 2J / ∂ x2∂ xn

… … … …
∂ 2J / ∂ xn∂ x1 ∂ 2J / ∂ xn∂ x2 … ∂ 2J / ∂ x2

n

• The Hessian must be positive-definate and non-singular for a unique minimum of to exist
(see the problem sheet, Q3).

J

• The Hessian matrix is too large to be computed for an operational Var. systems (see §C.5),
but it is a useful object to understand.

• Its inverse is the error covariance of the analysis (see §C.10).
• The Hessian is used in the Newton algorithm to minimize  (see §F.3).J

D.4: How can the Hessian be derived?

The Hessian can be found to have the form
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A = B−1 + HTR−1H, (17)
which is derived in the problem sheet, Q1.  The inverse of the Hessian appeared in §C.10 (the error
covariance matrix of the analysis,  in (12)).PA

Section E: Example Observation Operators

E.1: Interpolation of temperature in a single column

Let a single column model consist of four levels.  Each level has a height, and carries temperature,
 (Fig. 13).  Two temperature measurements are made by a radiosonde on a weather balloon at

positions between the levels.  What is the forward operator, , the Jacobian, , and its adjoint ?

zm
i

Tm
i

hå H HT

Tm
4  zm

4

Tm
3  zm

3

Tm
2  zm

2

Tm
1  zm

1

Model temperatures
and level heights

Temperature measurement 1,  made at y1 = T1 z1

Temperature measurement 2,  made at y2 = T2 z2

Fig. 13: The model levels and the observations.

The model state vector  and the observation vector  are,(xå ) (yå )

xå = ( ) ,  yå = ( ) .

Tm
1

Tm
2

Tm
3

Tm
4

T1

T2

The forward model is found by e.g. linear interpolation,

hå [xå ] = ( ) = ( ) .
Tm

2 + Tm
3 − Tm

2
zm
3 − zm

2
(z1 − zm

2 )

Tm
1 + Tm

2 − Tm
1

zm
2 − zm

1
(z2 − zm

1 )

αTm
2 + βTm

3

γTm
1 + ηTm

2

This operator is linear.  The Jacobian and its adjoint are found by evaluating (7).

H = ( ) ,  HT = ( ) .
0 α β 0

γ η 0 0

0 γ
α η
β 0

0 0

• If these observations (only) were assimilated, then there would be no observational
information about , as it plays no part in the observation operator.Tm

4

• This kind of observation operator is used in part of operational 3d-Var. systems.
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E.2: Non-linear forward operator (radiative emission)

All bodies at a temperature above absolute zero emit thermal radiation.  In this example, the
radiation from a layer of the atmosphere is monitored by satellite.  A forecast model represents this
layer of the atmosphere with grid boxes and carries temperature in each (Fig. 14).  A flux
measurement is made above box 2.  What is the forward operator,, the Jacobian, , and its adjoint

?  Radiation flux, , is related to layer temperature, , by the Stefan-Boltzmann Law,
hå H

HT F T

F = κT4,
where  is the Stefan-Boltzmann constant.κ

layer

F

Tm
1 Tm

2

Fig. 14: Two grid boxes making up a layer of the atmosphere whose thermal
radiation is being monitored by a satellite instrument.

The model state vector  and the observation vector  are,(xå ) (yå )

xå = ( ) ,  yå = ( ) .
Tm

1

Tm
2

F

The forward model is,

hå [xå ] = ( ) .κ (Tm
2 )4

The Jacobian is found by evaluating (7), and its adjoint follows,

H =
∂ hå

∂ xå
= ( ) = ( ) ,  HT = ( ) .∂ h1 / ∂ x1 ∂ h1 / ∂ x2 0 4κ (Tm

2 )3
0

4κ (Tm
2 )3

• There is no observational information about  here, as it plays no part in the obs. operator.Tm
1

• Operators that predict the thermal emission of radiation to space from a column of the
atmosphere are used in 3d-Var.  The obs. operators deal with similar physics expressed via
radiative transfer equations.

• One group of satellites providing data for operational assimilation are the ATOVS satellites
(ATOVS: Advanced TIROS Operational Vertical Sounder, TIROS: Television Infrared
Observational Satellite).

Section F: Minimization (or Descent) Algorithms

F.1: What is a minimization (or descent) algorithm and what is the geometric interpretation of
the gradient vector?

• A minimization algorithm finds the argument  of a scalar function  that gives its
smallest value.  Var. systems use such an algorithm.

(xå ) (J)

• Algorithms are usually of an iterative (step-by-step) nature.  In Var.,  is the starting point.xå B

• Three algorithms are shown here (there are other variants).
• Many algorithms are based on being quadratically related to (or approximately so).  in

(2) is exactly quadratic if  is a linear function - we assume that any non-linear operators
are only marginally non-linear and so the quadratic algorithms are applicable.

J xå J
hå [xå ]
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• The gradient vector is a key input into descent algorithms.  It is required at each iteration.
• The algorithms work in -dimensional state space (where can be large).  Here, two

dimensional state space is shown schematically.
n n

• The gradient vector, evaluated at a point in state space, points in the direction of steepest
ascent.  The negative gradient points in the direction of steepest descent (Fig. 15).

∇xJ (xå )

x1

x2

minimum

−∇xJ (xå )

THE GRADIENT OF J

Fig. 15: Geometric representation of the
gradient vector (red), and its negative
(blue) in state space.  The curves are
contours of constant .J

F.2: What is the method of steepest descent?

• The method of steepest descent is the simplest and most intuitive algorithm.
• Move in the direction of steepest descent until in minimized along that line (Fig. 16) (this

'line minimization' gives the '' in Fig. 16).  Repeat until sufficiently close to the minimum.
J

λi

• This algorithm is inefficient, especially when the aspect ratio of the contour shape is large.
• The aspect ratio is related to the conditioning of the Hessian matrix (§G).

Fig. 16: Schematic of the
method of steepest descent.  The
blue arrows show the path of the
algorithm from one iteration to
the next.  The green arrow is the
direction from the starting place
to the minimum (in practice it is
unknown).

x1

x2

minimum

THE METHOD OF
STEEPEST DESCENT

xå i

xå i+1

xå i+3

xå i+2

λigå i

λ
i+1 gå

i+1

λi+2gå i+2

gå i = −∇xJ (xå i)
xå i+1 = xå i + λigå i (line

minimization)

F.3: What is the Newton algorithm (NA)?

• The min. can be reached in one iteration using the NA if  is exactly quadratic.J
• The Hessian matrix needs to be inverted, and so the NA is impracticable for large .n
• The NA can be derived from the many variable Taylor expansion of  to second order.J

Assuming  is exactly quadratic (ie that  is exactly linear), the Taylor expansion giving
can be written as follows given three pieces of information evaluated at: (i) , (ii)  and
(iii) the Hessian, ,

J hå [xå ] J [xå i + 1]
xå i J [xå i] ∇xJ [xå i]

A

J [xå i + 1] = J [xå i] + (∇xJ [xå i])T (xå i + 1 − xå i) +
1
2

(xå i + 1 − xå i)
T A (xå i + 1 − xå i) . (18)

Differentiate with respect to ,xå i + 1

∇xJ [xå i + 1] = ∇xJ [xå i] + A (xå i + 1 − xå i) , (19)
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((19) can be derived by expanding the matrix notation of (18), differentiating with respect to an
individual component of , and then restoring the matrix notation - similar to the analysis of
§D.2).  Set (19) to zero (for the turning point at the minimum) and rearrange to give ,

xå i + 1

xå i + 1

xå i + 1 = xå i − A−1∇xJ [xå i] . (20)
 minimises  (and so is the analysis state).  This result is identical to the OI formula (11), if the

Hessian (17) and gradient (22) are substituted into (20).
xå i + 1 J

F.4: What is the conjugate gradient algorithm (CGA)?

• The CGA is similar in principle to the method of steepest descent, but is more efficient.
• Unlike the Newton algorithm, it does not require the Hessian.
• Instead of using the negative gradient,, as the 'search direction', the CGA uses a modified

search direction,  (Fig. 17).  (N.B.  here is not the forward model.)
gå

hå hå
• The CGA is widely used.
• The algorithm's equations are not derived here.

x1

x2

minimum

gå i

xå i

xå i+1

gå i+1

xå i+2

THE CONJUGATE
GRADIENT METHOD

λihå i

λ
i+1 hå

i+1

xå i + 1 = xå i + λihå i (line

gå i+1 = −∇xJ (xå i+1)

hå i+1 = gå i+1 + γihå i

minimization)

γi =
gå T

i+1gå i+1

gå T
i gå i








   i ≠ j,  A 
   gå T

i gå j = 0

hå T
i Ahå j = 0

 Hessian

Fig. 17: Schematic of the conjugate gradient algorithm.  The blue arrows are the
steepest descent directions and the red arrows show the actual path of the
algorithm from one iteration to the next.

Section G: Preconditioning And Control Variable Transforms

G.1: What is undesirable about minimizing (2) directly?

• The gradient  is needed in Var. in the descent algorithm, and is needed to evaluate
the gradient (22).

∇xJ B−1

•  is far too large to store, let alone invert.B
• In Var.,  and  can be approximated using 'control variable transforms'.B B−1

• Control variable transforms achieve many things:

• Avoids the need to deal with the very large -matrix.B
• Introduces a 'model' of that contains the statistics and physics of forecast errors

(e.g. geostrophic balance properties as in Fig. 12).
B

• Preconditions the minimization problem to make it converge more quickly.
• Allows Var. to work effectively.

G.2 What is the control variable transform that preconditions the problem?

• Make a change of variable,  such that the background errors in the-representation
have a very simple structure and are well conditioned (see §G.3).

xå → χå χå
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• Substitute the following into (2)

 xå − xå B = Uχå , (21)Let

 J [χå ] =
1
2
χå TUTB−1Uχå +

1
2

(yå − hå [Uχå + xå B])T R−1 (yå − hå [Uχå + xå B]) . (22)giving

• Here,  in the first term is the inverse of the background error covariance matrix
expressed in the new -representation.

UTB−1U
χå

• Design  such that .  If the  that achieves this can be found, the implied
can be found by rearranging this expression, .  The background term in the cost
function then 'loses' the complicated error covariance matrix as (22) becomes,

U UTB−1U = I U B
B = UUT

J [χå ] =
1
2
χå Tχå +

1
2

(yå − hå [Uχå + xå B])T R−1 (yå − hå [Uχå + xå B]) . (23)

• In (2) minimization is done by varying (  was the 'control variable').  In the
preconditioned problem (23), minimization is done by varying (  is the new control
variable) and the -operator is the 'control variable transform'.

xå xå
χå χå

U
• In (23)  has not disappeared - it has been absorbed into .B U
• In the preconditioned problem, the analysis will be that minimizes (23).  In the-

representation, the analysis is found from (21), .
χå A xå

xå A = Uχå A + xå B

• The problem in terms of  (23) is better conditioned than that in terms of  (2).χå xå
• The design of the -transform is a whole new lecture series!U

G.3: What is meant by 'better conditioned'?

• Geometrically, the condition number is the aspect ratio of the contours (Fig. 18).  The
shape of the contours (and hence the aspect ratio) is determined from the Hessian.

J

BADLY CONDITIONED WELL CONDITIONED

>> 1condition
number

condition
number O (1)

•Fig. 18: Contours of  illustrating a high conditioning number (left)
and a low conditioning number (right).

J

• The Hessian in terms of is  (17) and it is assumed that the
contribution from  dominates its properties (such as the condition number).

xå Ax = B−1 + HTR−1H
B−1

• The Hessian in terms of is  which is assumed to have a lower
condition number than  and hence easier to work with.

χå Aχ = I + UTHTR−1HU
Ax
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