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1. (a) (i) Expanding, 
where  and not .
Differentiate with respect to  using the product
rule for differentiation

JB = 1
2 ∑ij (xi − xB

i ) B−1
ij (xj − xB

j )
B−1

ij = (B−1)ij (Bij)−1

xk

∂ JB

∂ xk
=

1
2 (∑

ij

(xi − xB
i )B−1

ij δjk + ∑
ij

δik ),B−1
ij (xj − xB

j )

=
1
2 (∑

i

(xi − xB
i )B−1

ik + ∑
j

).B−1
kj (xj − xB

j )

These partial derivatives can be assembled into a
vector as shown in the handout, §D.1.  In the
first term of the above, use the fact that  is
symmetric, , and in the second term
relabel 

B−1

B−1
ik = B−1

ki

j → i

∂ JB

∂ xk
=

1
2 (∑

i

(xi − xB
i )B−1

ki + ∑
i

),B−1
ki (xi − xB

i )

= ∑
i

. (A)B−1
ki (xi − xB

i )

This is the th element of the vector 
.
k ∇xJB =

B−1(xå − xå B)
(ii) Differentiate (A) again, with respect to xl

∂ 2JB

∂ xk∂ xl
= ∑

i

= B−1
kl .B−1

ki δil

This is simply the  matrix element of .(k, l) B−1

(b) (i) Expanding, 
where  and not .

JO = ∑qr (yq − hq) R−1
qr (yr − hr) ,

R−1
qr = (R−1)qr (Rqr)−1

Differentiate with respect to  using the product
rule for differentiation

hi

∂ JO

∂ hi
= −

1
2 (∑

qr

(yq − hq)R−1
qr δri + ∑

qr

δqi ),R−1
qr (yr − hr)

= −
1
2 (∑

q

(yq − hq)R−1
qi + ∑

r
).R−1

ir (yr − hr)

These partial derivatives can be assembled into a
vector as shown in the handout, §D.1.  In the
first term of the above, use the fact that  is
symmetric, , and in the second term
relabel 

R−1

R−1
qi = R−1

iq

r → q

∂ JO

∂ hi
= −

1
2 (∑

q

(yq − hq)R−1
iq + ∑

q
),R−1

iq (yq − hq)

= − ∑
q

. (B)R−1
iq (yq − hq)

This is the th element of the vector 
.  Now use the generalised chain rule

with (B) to find 

i ∇hJO =
−R−1(yå − hå )

∂ JO / ∂ xk

∂ JO

∂ xk
= − ∑

p

i =1

Hik ∑
q

,R−1
iq (yq − hq)

= − ∑
p

i =1

HT
ki ∑

q

. (C)R−1
iq (yq − hq)

This is the th element of the vector 
.

k ∇xJO =
−HTR−1(yå − hå )
(ii) Differentiate (C) again, with respect to xl

∂ 2JO

∂ xk∂ xl
= ∑

p

i =1

HT
ki ∑

q

∂ hq

∂ xl
,R−1

iq

= ∑
p

i =1

HT
ki ∑

q

Hql.R−1
iq

This is the  matrix element of .(k, l) HTR−1H

2. (a) The linearized OI formula is

xå A = xå B + K (yå − hå [xå t] − Hεå B).
Take away  from each sidexå t

εå A = εå B + K (εå y − Hεå B).

(b) Use this to evaluate PA = 〈εå Aεå T
A〉

PA = 〈{K (εå y − Hεå B) + εå B}{K (εå y − Hεå B) + εå B}T〉,

= 〈K(εå y − Hεå B)(εå y − Hεå B)TKT + εå Bεå T
B +

K (εå y − Hεå B)εå T
B + εå B(εå y − Hεå B)TKT〉,

= K〈εå yεå T
y 〉KT + KH〈εå Bεå T

B〉HTKT −

K 〈εå yεå T
B〉HTKT − KH〈εå Bεå T

y 〉KT +

〈εå Bεå T
B〉 + K 〈εå yεå T

B〉 − KH〈εå Bεå T
B〉 +

〈εå Bεå T
y 〉KT − 〈εå Bεå T

B〉HTKT.
Substitute the outer products ( ,  and

) with the respective error covariances.  It
is usual to assume that the observation errors are
uncorrelated with the background errors, ie,

 and 

〈εå Aεå T
A〉 〈εå Bεå T

B〉
〈εå yεå T

y 〉

〈εå yεå T
B〉 = 0 〈εå Bεå T

y 〉 = 0

PA = KRKT + KHBHTKT + B − KHB − BHTKT.
The last two terms in the above are equal (this is
proved by substituting with )K

PA = K (R + HBHT)KT + (I − 2KH)B.
Substitute with  into the second occurrence of

 only
K

K

PA = K (R + HBHT)(R + HBHT)−1HB +
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(I − 2KH)B,

= KHB + (I − 2KH)B = (I − KH)B.
The analysis error covariance is found to be the
background error covariance reduced by 
due to the introduction of observational
information (combining obs. with the
background state reduces uncertainty).

KHB

(c) Substituting with  and using the S-M-W
identity in Q5 gives

K

PA = {I − BHT(R + HBHT)−1H}B,

= {I − (B−1 + HTR−1H)−1HTR−1H}B,

= (B−1 + HTR−1H)−1

  {(B−1 + HTR−1H)B − HTR−1HB},

= (B−1 + HTR−1H)−1

 {I + HTR−1HB − HTR−1HB},

= (B−1 + HTR−1H)−1.

3. (a) Acting with the inverse matrix on the forward
matrix should give the identity

1
ac − b2 ( )( ) =c −b

−b a
a b
b c

1
ac − b2 ( ) = I.ca − b2 cb − bc

−ba + ab −b2 + ac

(b) The inverse cannot be found if the determinant (
 for this  matrix) is zero.ac − b2 2 × 2

(c) The matrix is singular.

(d) A singular Hessian matrix means that the cost
function is flat (zero curvature) in at least one
direction in phase space.  It then has no unique
minimum and has an infinitely large error (the
error covariance is the inverse of the Hessian -
see Q2) in that (or those) direction(s).

4. (a) The total column ozone in a column is the sum
over the  layersn − 1

1
4 ∑

n−1

i =1

(ρi + ρi +1)(φi + φi +1)(zi +1 − zi).

(b) The observation covariance matrix and its
inverse

R = ( ),  R−1 = ( ).
σ2

1 0

0 σ2
2

σ−2
1 0

0 σ−2
2

(ie since  is diagonal we can simply invert the
diagonal elements).  Note that the diagonal
elements of  are variances, which are the
squares of the standard deviations specified.

R

R

(c) The innovation vector is

−  obs background model obs

= ( ).
y1 − 1

4 ∑n−1
i =1 (ρi + ρi +1)(φB

i + φB
i +1)(zi +1 − zi)

y2 − 1
4 ∑n−1

i =1 (ρi + ρi +1)(φB
i + φB

i +1)(zi +1 − zi)

(d) There are  elements to the Jacobian.  We are
asked to work out six of them.  First work out
the sensitivity of the th observation to the 
model ozone concentration

2n

k j

∂ hk

∂φj
=

1
4 ∑

n−1

i =1

(ρi + ρi +1)(∂φi

∂φj
+
∂φi +1

∂φj
)(zi +1 − zi)

=
1
4 ∑

n−1

i =1

(ρi + ρi +1)(δi,j + δi +1,j)(zi +1 − zi)

=
1
4

(ρj + ρj + 1)(zj + 1 − zj)(1 − δj,n) +

1
4

(ρj −1 + ρij)(zj − zj −1)(1 − δj,1)

(1 − δj,n) j = n,excludes 

(1 − δj,1) j = 1.excludes 

This result is independent of  because the two
measurements  have the same forward
model.  Substitute this result to find elements of
the Jacobian.

k
k = 1,2

k = 1,2, j = 1 :
∂ hk

∂ x1
=

1
4

(ρ1 + ρ2)(z2 − z1),

k = 1,2, j = 2 :
∂ hk

∂ x2
=

1
4

(ρ2 + ρ3)(z3 − z2) +

1
4

(ρ1 + ρi2)(z2 − z1),

k = 1,2, j = n :
∂ hk

∂ xn
=

1
4

(ρn−1 + ρn)(zn − zn−1).

The observation operator is linear and so the
Jacobian is independent of  values.φ

(e) J = ∇xJB + ∇xJO = B−1(xå − xå B) − HTR−1(yå − hå [xå ]).
On the first iteration of Var. , , and so the
contribution to the first term is zero.

xå = xå B

(f) The Hessian is the sum of the observation and
background second derivatives

= B−1 + HTR−1HHessian

= ( ) +

β11 β12 … β1n

β21 β22 … β2n

… … … …
βn1 βn2 … βnn
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( )∂ h1/∂φ1 ∂ h2/∂φ1

∂ h1/∂φ2 ∂ h2/∂φ2

… …
∂ h1/∂φn ∂ h2/∂φn

( )σ−2
1 0

0 σ−2
2

   

×( )∂ h1/∂φ1 ∂ h1/∂φ2 … ∂ h1/∂φn

∂ h2/∂φ1 ∂ h2/∂φ2 … ∂ h2/∂φn

(g) The inverse of the Hessian evaluated at the
minimum of the cost function is the covariance
matrix for the least squares fitting procedure (ie
the error covariance matrix of the analysis).  The
diagonal elements of  are the analysis
variances,  (the square of the analysis errors).
In operational data assimilation however  is too
large to allow explicit calculation of the Hessian.

−1
Hessian

σ2
i

n

(h) The Hessian should be positive definite, ie
.  If  is a unit

eigenvector of the Hessian for example (with
eigenvalue ), then the positive definite test
simplifies to

zå T −1 zå > 0  ∀zå ≠ 0Hessian zå

λ

zå T −1 zå = zå Tzå λ = λ > 0.Hessian

This will be satisfied providing that all
eigenvalues are positive.  Compare this in 1d
where for a function to have a minimum,

.d2 J / dx2 > 0

5. Simply take the matrices that are outside of the
brackets inside.  Allow matrices to cancel with
inverse matrices and preserve the ordering.

(B−1 + HTR−1H)BHT =
?

HTR−1(R + HBHT)

HT + HTR−1HBHT =
?

HT + HTR−1HBHT

 

6. Hints:

• An analysis increment field is .xå A − xå B

• A single observation means that  is a
scalar, .  Also  is a scalar, .

yå
y R σ2

O

• Let the observation be of the quantity stored
at the th position of the state vector, .
The forward operator is a row vector full of
' 's, apart from '' at position ,

.

k xk

0 1 k
H = (0 …  1 …  0)
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