Regression formula

August 17, 2016

Ross Bannister

The problem

Suppose that we have a system of $n+1$ vectors: $\mathbf{x}, \mathbf{v}^{(j)}(1 \leq j \leq n)$ and that the $\mathbf{v}^{(j)}$ are predictors of \mathbf{x}, such that the following:

$$
\sum_{j=1}^{n-1} \mathbf{L}^{(j)} \mathbf{v}^{(j)}+\mathbf{v}^{(n)}
$$

is as close as possible to \mathbf{x}, such that the difference

$$
\mathbf{d}=\sum_{j=1}^{n-1} \mathbf{L}^{(j)} \mathbf{v}^{(j)}+\mathbf{v}^{(n)}-\mathbf{x}
$$

is as small as possible given the population. We ask the question: what set of regression matrices, $\mathbf{L}^{(j)}$, achieves this? We may solve the problem using the method of least squares.

Cost function

Define a cost function, J, that is a function of $\mathbf{L}^{(1)}, \ldots, \mathbf{L}^{(n-1)}$:

$$
\begin{aligned}
J\left[\mathbf{L}^{(1)}, \ldots, \mathbf{L}^{(n-1)}\right]= & \mathbf{d}^{\mathrm{T}} \mathbf{d} \\
= & \left(\sum_{j=1}^{n-1} \mathbf{L}^{(j)} \mathbf{v}^{(j)}+\mathbf{v}^{(n)}-\mathbf{x}\right)^{\mathrm{T}}\left(\sum_{j^{\prime}=1}^{n-1} \mathbf{L}^{\left(j^{\prime}\right)} \mathbf{v}^{\left(j^{\prime}\right)}+\mathbf{v}^{(n)}-\mathbf{x}\right), \\
= & \sum_{j, j^{\prime}=1}^{n-1} \mathbf{v}^{(j)^{\mathrm{T}}} \mathbf{L}^{(j)^{\mathrm{T}}} \mathbf{L}^{\left(j^{\prime}\right)} \mathbf{v}^{\left(j^{\prime}\right)}+\sum_{j=1}^{n-1} \mathbf{v}^{(j)^{\mathrm{T}}} \mathbf{L}^{(j)^{\mathrm{T}}}\left(\mathbf{v}^{(n)}-\mathbf{x}\right)+\sum_{j^{\prime}=1}^{n-1}\left(\mathbf{v}^{(n)}-\mathbf{x}\right)^{\mathrm{T}} \mathbf{L}^{\left(j^{\prime}\right)} \mathbf{v}^{\left(j^{\prime}\right)} \\
& +\left(\mathbf{v}^{(n)}-\mathbf{x}\right)^{\mathrm{T}}\left(\mathbf{v}^{(n)}-\mathbf{x}\right) .
\end{aligned}
$$

Expanding the notation into its components:

$$
\begin{aligned}
J\left[\mathbf{L}^{(1)}, \ldots, \mathbf{L}^{(n-1)}\right]= & \frac{1}{2}\left\{\sum_{j, j^{\prime}=1}^{n-1} \sum_{a, b, c} \mathbf{v}_{a}^{(j)} \mathbf{L}_{b a}^{(j)} \mathbf{L}_{b c}^{\left(j^{\prime}\right)} \mathbf{v}_{c}^{\left(j^{\prime}\right)}+\sum_{j=1}^{n-1} \sum_{a, b} \mathbf{v}_{a}^{(j)} \mathbf{L}_{b a}^{(j)}\left(\mathbf{v}_{b}^{(n)}-\mathbf{x}_{b}\right)\right. \\
& \left.+\sum_{j^{\prime}=1}^{n-1} \sum_{a, b}\left(\mathbf{v}_{b}^{(n)}-\mathbf{x}_{b}\right) \mathbf{L}_{b a}^{\left(j^{\prime}\right)} \mathbf{v}_{a}^{\left(j^{\prime}\right)}+\sum_{b}\left(\mathbf{v}_{b}^{(n)}-\mathbf{x}_{b}\right)^{2}\right\} .
\end{aligned}
$$

The minimum of the cost function with respect to the regression matrices

Differentiating J with respect to an arbitrary component of an arbitrary regression operator, $\mathbf{L}_{\alpha \beta}^{(p)}$, and assuming $p<n$ gives:

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{L}_{\alpha \beta}^{(p)}}= & \frac{1}{2}\left\{\sum_{j, j^{\prime}=1}^{n-1} \sum_{a, b, c} \mathbf{v}_{a}^{(j)} \delta_{\alpha b} \delta_{\beta a} \delta_{p j} \mathbf{L}_{b c}^{\left(j^{\prime}\right)} \mathbf{v}_{c}^{\left(j^{\prime}\right)}\right. \\
& +\sum_{j, j^{\prime}=1}^{n-1} \sum_{a, b, c} \mathbf{v}_{a}^{(j)} \mathbf{L}_{b a}^{(j)} \delta_{\alpha b} \delta_{\beta c} \delta_{p j^{\prime}} \mathbf{v}_{c}^{\left(j^{\prime}\right)} \\
& +\sum_{j=1}^{n-1} \sum_{a, b} \mathbf{v}_{a}^{(j)} \delta_{\alpha b} \delta_{\beta a} \delta_{p j}\left(\mathbf{v}_{b}^{(n)}-\mathbf{x}_{b}\right) \\
& \left.+\sum_{j^{\prime}=1}^{n-1} \sum_{a, b}\left(\mathbf{v}_{b}^{(n)}-\mathbf{x}_{b}\right) \delta_{\alpha b} \delta_{\beta a} \delta_{p j^{\prime}} \mathbf{v}_{a}^{\left(j^{\prime}\right)}\right\} \\
= & \frac{1}{2}\left\{\sum_{, j^{\prime}=1}^{n-1} \sum_{c} \mathbf{v}_{\beta}^{(p)} \mathbf{L}_{\alpha c}^{\left(j^{\prime}\right)} \mathbf{v}_{c}^{\left(j^{\prime}\right)}+\sum_{j=1}^{n-1} \sum_{a} \mathbf{v}_{a}^{(j)} \mathbf{L}_{\alpha a}^{(j)} \mathbf{v}_{\beta}^{(p)}\right. \\
& \left.+\mathbf{v}_{\beta}^{(p)}\left(\mathbf{v}_{\alpha}^{(n)}-\mathbf{x}_{\alpha}\right)+\left(\mathbf{v}_{\alpha}^{(n)}-\mathbf{x}_{\alpha}\right) \mathbf{v}_{\beta}^{(p)}\right\}
\end{aligned}
$$

In the first term on the penultimate line we can relabel the dummy variables $j^{\prime} \rightarrow j$, and $c \rightarrow a$:

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{L}_{\alpha \beta}^{(p)}} & =\sum_{j=1}^{n-1} \sum_{a} \mathbf{v}_{a}^{(j)} \mathbf{L}_{\alpha a}^{(j)} \mathbf{v}_{\beta}^{(p)}+\left(\mathbf{v}_{\alpha}^{(n)}-\mathbf{x}_{\alpha}\right) \mathbf{v}_{\beta}^{(p)} \\
& =\sum_{j=1}^{n-1} \sum_{a} \mathbf{L}_{\alpha a}^{(j)} \mathbf{v}_{a}^{(j)} \mathbf{v}_{\beta}^{(p)}+\left(\mathbf{v}_{\alpha}^{(n)}-\mathbf{x}_{\alpha}\right) \mathbf{v}_{\beta}^{(p)}
\end{aligned}
$$

This is the (α, β) element of the following matrix expression:

$$
\sum_{j=1}^{n-1} \mathbf{L}^{(j)}\left(\mathbf{v}^{(j)} \mathbf{v}^{(p)^{\mathrm{T}}}\right)+\left(\mathbf{v}^{(n)}-\mathbf{x}\right) \mathbf{v}^{(p)^{\mathrm{T}}}
$$

Setting this to zero for the optimum gives:

$$
\sum_{j=1}^{n-1} \mathbf{L}^{(j)}\left(\mathbf{v}^{(j)} \mathbf{v}^{(p)^{\mathrm{T}}}\right)+\left(\mathbf{v}^{(n)}-\mathbf{x}\right) \mathbf{v}^{(p)^{\mathrm{T}}}=0
$$

There are $n-1$ such equations $(1 \leq p<n)$.

Solving for the regression matrices

The outer products are covariance matrices and can be estimated from a population of \mathbf{x} and $\mathbf{v}^{(j)}$ vectors:

$$
\begin{aligned}
\mathbf{v}^{(j)} \mathbf{v}^{(p)^{\mathrm{T}}} & \equiv \mathbf{C}^{(j p)} \\
\mathbf{x}^{(p){ }^{\mathrm{T}}} & \equiv \mathbf{C}^{(x p)}
\end{aligned}
$$

Assembling all $n-1$ systems together gives:

$$
\left(\begin{array}{lll}
\mathbf{L}^{(1)} & \cdots & \mathbf{L}^{(n-1)}
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{C}^{(1,1)} & \cdots & \mathbf{C}^{(1, n-1)} \\
\vdots & \ddots & \vdots \\
\mathbf{C}^{(n-1,1)} & \cdots & \mathbf{C}^{(n-1, n-1)}
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{C}^{(x, 1)} & \ldots & \mathbf{C}^{(x, n-1)}
\end{array}\right)-\left(\begin{array}{lll}
\mathbf{C}^{(n, 1)} & \cdots & \mathbf{C}^{(n, n-1)}
\end{array}\right)
$$

Assuming that different $\mathbf{v}^{(j)}$-vectors are uncorrelated means that $\mathbf{v}^{(j)} \mathbf{v}^{(p)}{ }^{\mathrm{T}} \equiv \mathbf{C}^{(j p)} \delta_{p j}$, which makes the above into:

$$
\left(\begin{array}{lll}
\mathbf{L}^{(1)} & \cdots & \mathbf{L}^{(n-1)}
\end{array}\right)\left(\begin{array}{lll}
\mathbf{C}^{(1,1)} & & \\
& \ddots & \\
& & \mathbf{C}^{(n-1, n-1)}
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{C}^{(x, 1)} & \cdots & \mathbf{C}^{(x, n-1)}
\end{array}\right)
$$

If all vectors are of equal size then the regression matrices emerge:

$$
\mathbf{L}^{(i)}=\mathbf{C}^{(x, i)} \mathbf{C}^{(i, i)}-1
$$

