Adjoint coding

Ross Bannister, June 2004

1. When the forward calculation is a single summation Forward calculation

INPUTS: p_{k}; OUTPUT: L

$$
L=\sum_{k=1}^{N} A_{k} p_{k}
$$

Here there is one summation and one output.

Adjoint calculation

INPUT: \hat{L}; OUTPUTS: \hat{p}_{k}

$$
\begin{aligned}
\frac{\partial}{\partial p_{k}} & =\frac{\partial L}{\partial p_{k}} \frac{\partial}{\partial L} \\
\hat{p}_{k} & =A_{k} \hat{L}
\end{aligned}
$$

Now there are no summations and many outputs (i.e. different k).

2. When the forward calculation is a double summation Forward calculation

INPUTS: p_{k}; OUTPUT: L

$$
L=\sum_{k=1}^{N} A_{k} I_{k}, \quad \text { where } \quad I_{k}=\sum_{\substack{k^{\prime}=1 \\\left(k^{\prime} \leqslant k\right)}}^{k} B_{k^{\prime}} p_{k^{\prime}} .
$$

Here there are two summations and one output.

Adjoint calculation

INPUT: \hat{L}; OUTPUTS: \hat{p}_{k}

$$
\begin{aligned}
\frac{\partial}{\partial p_{k^{\prime}}} & =\sum_{\substack{k=k^{\prime} \\
k^{*} \leqslant k}}^{N} \frac{\partial I_{k}}{\partial p_{k^{\prime}}} \frac{\partial}{\partial I_{k}}, & \frac{\partial}{\partial I_{k}}=\frac{\partial L}{\partial I_{k}} \frac{\partial}{\partial L}, \\
\hat{p}_{k^{\prime}} & =\sum_{\substack{k=k^{\prime} \\
k^{\prime} \leqslant k}}^{N} B_{k^{\prime}} \hat{I}_{k}, & \hat{I}_{k}=A_{k} \hat{L} .
\end{aligned}
$$

Now there is one summation and many outputs (i.e. different k^{\prime}). It is important to distinguish between k and k^{\prime}. The above can be written as,

$$
\hat{p}_{k^{\prime}}=\sum_{\substack{k=k^{\prime} \\ k^{\prime} \leqslant k}}^{N} B_{k^{\prime}} A_{k} \hat{L}=\hat{L} B_{k^{\prime}} \sum_{\substack{k=k^{\prime} \\ k^{\prime} \leqslant k}}^{N} A_{k} .
$$

This result is found to pass the adjoint test,

$$
\langle O \vec{v}, O \vec{v}\rangle=\left\langle O^{T} O \vec{v}, \vec{v}\right\rangle .
$$

