Lanczos method for hermitian and non-hermitian operators

Ross Bannister, July 2003

1. Hermitian operators

1. Generate Krylov subspace basis members

$$
\begin{equation*}
\vec{\psi}_{n+1}=\frac{1}{N_{n+1}}\left(\mathbf{O} \vec{\psi}_{n}-\sum_{j=1}^{n} \alpha_{j n} \vec{\psi}_{j}\right) . \tag{A}
\end{equation*}
$$

2. Impose orthogonality of subspace basis

$$
\begin{align*}
\vec{\psi}_{i}^{\dagger} \vec{\psi}_{j} & =\delta_{i j}, \tag{B}\\
\text { Eq. (B) into Eq. (A): } \vec{\psi}_{i}^{\dagger} \vec{\psi}_{n+1} & =\frac{1}{N_{n+1}}\left(\vec{\psi}_{i}^{\dagger} \mathbf{O} \vec{\psi}_{n}-\sum_{j=1}^{n} \alpha_{j n} \vec{\psi}_{i}^{\dagger} \vec{\psi}_{j}\right), \tag{C}\\
\delta_{i, n+1} & =\frac{1}{N_{n+1}}\left(O_{i n}-\sum_{j=1}^{n} \alpha_{j n} \delta_{i j}\right), \tag{D}\\
\text { where } O_{i n} & \equiv \vec{\psi}_{i}^{\dagger} \mathbf{O} \vec{\psi}_{n} . \tag{E}
\end{align*}
$$

3. Choose $i<n+1$

$$
\text { Eq. (D): } \begin{align*}
0 & =\frac{1}{N_{n+1}}\left(O_{i n}-\alpha_{i n}\right), \tag{F}\\
\alpha_{i n} & =O_{i n} . \tag{G}
\end{align*}
$$

4. Choose $i=n+1$

$$
\text { Eq. (D): } \begin{align*}
1 & =\frac{1}{N_{n+1}}\left(O_{n+1, n}-0\right), \tag{H}\\
N_{n+1} & =O_{n+1, n} . \tag{I}
\end{align*}
$$

5. Insert Eqs. (G) and (I) back into Eq. (D)

$$
\begin{equation*}
O_{n+1, n} \delta_{i, n+1}=O_{i n}-\sum_{j=1}^{n} o_{j n} \delta_{i j} . \tag{J}
\end{equation*}
$$

To prove that the matrix elements of \mathbf{O} in the $\vec{\psi}$ basis form a tridiagonal matrix, consider Eq. (J) for matrix element (i, n),
(i) $i>n+1$:

$$
\begin{equation*}
0=O_{i n} \tag{K}
\end{equation*}
$$

(ii) $i=n+1$:

$$
\begin{equation*}
O_{n+1, n}=O_{n+1, n} \tag{L}
\end{equation*}
$$

(iii) $i=n$:

$$
\begin{equation*}
0=O_{n n}-O_{n n} \tag{M}
\end{equation*}
$$

(iv) $i=n-1$:

$$
\begin{equation*}
0=O_{n-1, n}-O_{n-1, n} \tag{N}
\end{equation*}
$$

(v) $i<n-1$:
use hermitian property: $O_{i n}=O_{n i}^{*}(=0$ from Eq. (K)).
Eq. (A) is then,

$$
\begin{equation*}
\vec{\psi}_{n+1}=\frac{1}{N_{n+1}}\left(\mathbf{O} \vec{\psi}_{n}-O_{n n} \vec{\psi}_{n}-O_{n-1, n} \vec{\psi}_{n-1}\right) . \tag{P}
\end{equation*}
$$

2. Non-hermitian operators

1. Generate Krylov subspace basis members and their duals

$$
\begin{align*}
& \vec{\psi}_{n+1}=\frac{1}{N_{n+1}}\left(\mathbf{O} \vec{\psi}_{n}-\sum_{j=1}^{n} \alpha_{j n} \vec{\psi}_{j}\right), \tag{A1}\\
& \vec{\psi}^{n+1}=\frac{1}{N^{n+1}}\left(\mathbf{O}^{\dagger} \vec{\psi}^{n}-\sum_{j=1}^{n} \beta_{j n} \vec{\psi}^{j}\right) . \tag{A2}
\end{align*}
$$

2. Impose bi-orthogonality of subspace basis

$$
\begin{align*}
\vec{\psi}^{i} \vec{\psi}_{j} & =\delta_{i j}, \tag{B1}\\
\vec{\psi}_{i}^{\dagger} \vec{\psi}^{j} & =\delta_{i j}, \tag{B2}
\end{align*}
$$

Eq. (B1) into Eq. (A1): $\vec{\psi}^{i} \vec{\psi}_{n+1}=\frac{1}{N_{n+1}}\left(\vec{\psi}^{i} \mathbf{O} \vec{\psi}_{n}-\sum_{j=1}^{n} \alpha_{j n} \vec{\psi}^{i} \vec{\psi}_{j}\right)$,

$$
\begin{equation*}
\delta_{i, n+1}=\frac{1}{N_{n+1}}\left(O_{i n}-\sum_{j=1}^{n} \alpha_{j n} \delta_{i j}\right), \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } O_{i n} \equiv \vec{\psi}^{i \dagger} \mathbf{O} \vec{\psi}_{n} \tag{D1}
\end{equation*}
$$

Eq. (B2) into Eq. (A2): $\vec{\psi}_{i}^{\dagger} \vec{\psi}^{n+1}=\frac{1}{N^{n+1}}\left(\vec{\psi}_{i}^{\dagger} \mathbf{O}^{\dagger} \vec{\psi}^{n}-\sum_{j=1}^{n} \beta_{j n} \vec{\psi}_{i}^{\dagger} \vec{\psi}^{j}\right)$,

$$
\begin{align*}
& \qquad \delta_{i, n+1}=\frac{1}{N^{n+1}}\left(O_{i n}^{\dagger}-\sum_{j=1}^{n} \beta_{j n} \delta_{i j}\right), \tag{D2}\\
& \text { where } O_{i n}^{\dagger} \equiv \vec{\psi}_{i}^{\dagger} \mathbf{O}^{\dagger} \vec{\psi}^{n} .
\end{align*}
$$

3. Choose $i<n+1$

$$
\begin{align*}
\text { Eq. (D1): } 0 & =\frac{1}{N_{n+1}}\left(O_{i n}-\alpha_{i n}\right), \tag{F1}\\
\alpha_{i n} & =O_{i n}, \tag{G1}
\end{align*}
$$

Eq. (D2): $0=\frac{1}{N^{n+1}}\left(O_{i n}^{\dagger}-\beta_{i n}\right)$,

$$
\begin{equation*}
\beta_{i n}=O_{i n}^{\dagger} . \tag{F2}
\end{equation*}
$$

Eqs. (G1), (G2): $\alpha_{i n}=\beta_{n i}^{*}$

4. Choose $\boldsymbol{i}=\boldsymbol{n}+1$

$$
\begin{align*}
\text { Eq. (D1): } 1 & =\frac{1}{N_{n+1}}\left(O_{n+1, n}-0\right), \tag{H1}\\
N_{n+1} & =O_{n+1, n}, \tag{I1}\\
\text { Eq. (D2): } 1 & =\frac{1}{N^{n+1}}\left(O_{n+1, n}^{\dagger}-0\right), \tag{H2}\\
N^{n+1} & =O_{n+1, n}^{\dagger} . \tag{I2}
\end{align*}
$$

5. Insert Eqs. (G1), (G2) and (I1), (I2) back into Eqs. (D1), (D2)

$$
\begin{align*}
& O_{n+1, n} \delta_{i, n+1}=O_{i n}-\sum_{j=1}^{n} O_{j n} \delta_{i j}, \tag{J1}\\
& O_{n+1, n}^{\dagger} \delta_{i, n+1}=O_{i n}^{\dagger}-\sum_{j=1}^{n} O_{j n}^{\dagger} \delta_{i j} . \tag{J2}
\end{align*}
$$

To prove that the matrix elements of \mathbf{O} in the $\vec{\psi}$ basis and of \mathbf{O}^{\dagger} in the dual of the $\vec{\psi}$ basis form tridiagonal matrices, consider Eqs. (J1), (J2) for matrix elements (i, n),
(i) $i>n+1$

$$
\begin{align*}
& 0=O_{i n}, \tag{K1}\\
& 0=O_{i n}^{\dagger} . \tag{K2}
\end{align*}
$$

(ii) $i=n+1$

$$
\begin{align*}
O_{n+1, n} & =O_{n+1, n}, \tag{L1}\\
O_{n+1, n}^{\dagger} & =O_{n+1, n}^{\dagger} . \tag{L2}
\end{align*}
$$

(iii) $i=n$

$$
\begin{align*}
& 0=O_{n n}-O_{n n}, \tag{M1}\\
& 0=O_{n n}^{\dagger}-O_{n n}^{\dagger} . \tag{M2}
\end{align*}
$$

(iv) $i=n-1$

$$
\begin{align*}
& 0=O_{n-1, n}-O_{n-1, n} \tag{N1}\\
& 0=O_{n-1, n}^{\dagger}-O_{n-1, n}^{\dagger} . \tag{N2}
\end{align*}
$$

(v) $i<n-1$

> use general property: $O_{i n}=O_{n i}^{\dagger *}(=0$ from Eq. (K2)),
> use general property: $O_{i n}^{\dagger}=O_{n i}^{*}(=0$ from Eq. (K1)).

Eqs. (A1) and (A2) are then,

$$
\begin{align*}
& \vec{\psi}_{n+1}=\frac{1}{N_{n+1}}\left(\mathbf{O} \vec{\psi}_{n}-O_{n n} \vec{\psi}_{n}-O_{n-1, n} \vec{\psi}_{n-1}\right) \tag{P1}\\
& \vec{\psi}^{n+1}=\frac{1}{N^{n+1}}\left(\mathbf{O}^{\dagger} \vec{\psi}^{n}-O_{n n}^{\dagger} \vec{\psi}^{n}-O_{n-1, n}^{\dagger} \vec{\psi}^{n-1}\right) \tag{P2}
\end{align*}
$$

