PDF symmetry of difference between two iid variables

Ross Bannister

May 29, 2013

Suppose that two variables x_A and x_B are drawn from independent and identical (but otherwise arbitrary) distributions. Let this common distribution be p(x):

 x_A drawn from $p(x_A)$, x_B drawn from $p(x_B)$.

Ingelby et al (2012) (Sec. 2.3) states that if two variables are drawn from identical distributions then their differences must be from a symmetric distribution. No condition of symmetry is imposed on the identical distributions, p(x). A number of questions arises:

- 1. How do we prove that this is correct?
- 2. What is this symmetric distribution in terms of p(x)?

Let the difference be $y = x_B - x_A$ and let the probability of getting a particular difference, y, for a specific set of variables x_A and x_B be $p_{\text{diff}}(y, x_A, x_B)$:

$$p_{\text{diff}}(y, x_A, x_B) = p(x_A)p(x_B)\delta(x_A - x_B - y).$$

We want to know the probability of this difference, y, without the conditioning on x_A and x_B . To calculate this (call this $p_{\text{diff}}(y)$), integrate over all values of x_A and x_B :

$$p_{\text{diff}}(y) = \int \int dx_A dx_B p_{\text{diff}}(y, x_A, x_B),$$

$$= \int \int dx_A dx_B p(x_A) p(x_B) \delta(x_A - x_B - y),$$

$$= \int \int dx \ p(x) p(x - y),$$

where we have relabelled x_B as x. Now let v = x - y/2 be an alternative variable for x. Then

$$dv = dx,$$

$$x = v + y/2,$$

$$x - y = v - y/2,$$

 $p_{\text{diff}}(y)$ is then equivalent to

$$p_{\text{diff}}(y) = \int \int dv \, p(v+y/2)p(v-y/2).$$

The important property of this last result is that $p_{\text{diff}}(y) = p_{\text{diff}}(-y)$, which is a symmetric distribution. It also says what the form of the symmetric distribution is.

Ingleby N.B., Lorenc A.C., Ngan K., Rawlins F., Jackson D.R., Improved variational analyses using a non-linear humidity control variable, QJRMS DOI:10.1002/qj.2073 (2012).