PDF symmetry of difference between two iid variables

Ross Bannister

May 29, 2013

Suppose that two variables x_{A} and x_{B} are drawn from independent and identical (but otherwise arbitrary) distributions. Let this common distribution be $p(x)$:

$$
\begin{array}{lll}
x_{A} & \text { drawn from } & p\left(x_{A}\right), \\
x_{B} & \text { drawn from } & p\left(x_{B}\right) .
\end{array}
$$

Ingelby et al (2012) (Sec. 2.3) states that if two variables are drawn from identical distributions then their differences must be from a symmetric distribution. No condition of symmetry is imposed on the identical distributions, $p(x)$. A number of questions arises:

1. How do we prove that this is correct?
2. What is this symmetric distribution in terms of $p(x)$?

Let the difference be $y=x_{B}-x_{A}$ and let the probability of getting a particular difference, y, for a specific set of variables x_{A} and x_{B} be $p_{\text {diff }}\left(y, x_{A}, x_{B}\right)$:

$$
p_{\text {diff }}\left(y, x_{A}, x_{B}\right)=p\left(x_{A}\right) p\left(x_{B}\right) \delta\left(x_{A}-x_{B}-y\right)
$$

We want to know the probability of this difference, y, without the conditioning on x_{A} and x_{B}. To calculate this (call this $p_{\text {diff }}(y)$), integrate over all values of x_{A} and x_{B} :

$$
\begin{aligned}
p_{\text {diff }}(y) & =\iint d x_{A} d x_{B} p_{\text {diff }}\left(y, x_{A}, x_{B}\right), \\
& =\iint d x_{A} d x_{B} p\left(x_{A}\right) p\left(x_{B}\right) \delta\left(x_{A}-x_{B}-y\right), \\
& =\iint d x p(x) p(x-y),
\end{aligned}
$$

where we have relabelled x_{B} as x. Now let $v=x-y / 2$ be an alternative variable for x. Then

$$
\begin{aligned}
d v & =d x \\
x & =v+y / 2 \\
x-y & =v-y / 2
\end{aligned}
$$

$p_{\text {diff }}(y)$ is then equivalent to

$$
p_{\mathrm{diff}}(y)=\iint d v p(v+y / 2) p(v-y / 2)
$$

The important property of this last result is that $p_{\text {diff }}(y)=p_{\text {diff }}(-y)$, which is a symmetric distribution. It also says what the form of the symmetric distribution is.

Ingleby N.B., Lorenc A.C., Ngan K., Rawlins F., Jackson D.R., Improved variational analyses using a non-linear humidity control variable, QJRMS DOI:10.1002/qj. 2073 (2012).

