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1. WHAT IS "4D-VAR"?

All forecast models, whether they represent the state of the weather, the spread of a disease, or

levels of economic activity, contain unknown parameters.  These parameters may be the model's

initial conditions, its boundary conditions, or other tunable parameters which have to be found for

a realistic result.  Four dimensional variational data assimilation, or "4d-Var", is a method of

estimating this set of parameters by optimizing the fit between the solution of the model and a set

of observations which the model is meant to predict.  In this context, the procedure of adjusting the

parameters until the model 'best predicts' the observables, is known asoptimization.  The "four

dimensional" nature of 4d-Var reflects the fact that the observation set spans not only three

dimensional space, but also a time domain.

For weather forecasting, the method of 4d-Var has been adopted by many numerical weather

prediction (NWP) agencies as it is flexible enough to allow a range of atmospheric observations of

many different types to be digested within a framework of a numerical model of the atmosphere.

This has proved to be a valuable tool in estimating the initial conditions of a weather prediction
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model, which are essential for a good forecast.  In 4d-Var the method supersedes the simpler and

less expensive "3d-Var", in which no proper account is made of the time of which an observation is

made.  Although the method of 4d-Var described in these notes is not restricted to any particular

system, the application described here has a NWP model at its core, and the parameters to be

determined are the model's initial conditions.

The optimization problem is quite demanding and all of the following issues must be considered:

• When determining the optimal solution (also known as theanalysis, i.e. the best estimate of

the initial conditions), account should be taken of the time evolution of the system.  In the

context of NWP this means that the best fit should be consistent not only with the

observations themselves, but also with the governing equations (e.g. the laws of physics) in

whatever form they are represented in the model.

• All measurements and model states have uncertainties and contain spatial correlations.  The

solution should reflect this, with largest consideration given to that knowledge of the

system which is of highest accuracy.  The term 'knowledge' in this context does not refer

only to the observational data, but also to the information contained in model forecasts

made previously (thebackground state - see below).  The method should incorporate a

representation of how the known errors of the background state and of the observations

combine in the analysis.

• The procedure must cope with observations spread in both space and time, and the optimal

solution should exist even in regions with no observational data.

All of the above aspects are automatically taken into account in the method of 4d-Var.

Optimization, as we have defined it, should be regarded as a class ofinverse problem.  Indeed, we

assume that theforward problem is soluble.  That is, given a set of initial conditions, a set of

forward models can be run to predict the observations.  The most important forward model is the

core NWP forecast model which gives the evolution in time of the model's state.  Other forward

models are important but secondary.  These have as their input a model state (pertaining to a

particular time), and predict the observables at that time.  Examples of such predicted observations

commonly used in an NWP context are of the meteorological variables (wind, temperature and

humidity) interpolated from the model grid to the position of an instrument (in a field station, or on

a sonde or aircraft), a layer mean mixing ratio (e.g. water vapour) as derived in a satellite profile,

or a radiance measurement as observed by satellite.  The predicted 'observations' may or may not

match the actual observations; this depends on the choice of initial conditions (and on the

suitability of the models).  We are interested in solving the inverse problem which can be posed as

follows: what set of initial conditions will seed the models to best predict the known observations?
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Such inverse problems are in general much harder to solve than the forward analogue.  Indeed, the

inverse problem relies on the existence of the forward models themselves which are run many

times in an iterative fashion to give the analysis (Fig. 1).

4d-Var is a powerful way of interfacing models and observations in this way.  This is a difficult

task as observations are generally not suitable for direct initialization of models.  For the

application of weather forecasting, it is sometimes confusing to understand our interest in

initializing a model to run forward over time, some of which has already passed (after all, if

observations have been made then the weather has happened).  The answer is to develop a model

state which is representative of the actual weather just before a forecast model is launched.  This

state is expected to yield the best possible forecast.  

time

t = 0 ∆t 2∆t

ob
se

rv
ab

le

ASSIMILATION PERIOD FORECAST PERIOD

model prediction

observation

Figure 1: the model 'trajectory' - the model's prediction of an observable quantity (curve)
- is shown which best fits the set of observations (bars).  The height of the bars
denote the degree of uncertainty in the measurements.  The method of 4d-Var
involves adjusting the model's initial conditions (bold arrow at ) for this
best fit.

t = 0

Although the principle product of data assimilation is to obtain well initialized forecasts, other

important 'spin-offs' have emerged.  Global and complete model analyses (four dimensional

datasets of meteorological variables) are routinely produced from historical data to aid the science

of climate.  Well known examples include the European Reanalysis datasets of the European

Centre for Medium Range Weather Forecasts (ERA-15 or ERA-40) and the global dataset of the

National Center for Environmental Protection.  The technique also provides a valuable

quantification of model performance and a measure of observation quality.
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2. THE COST FUNCTION

The approach of this inverse modelling technique is to find the initial conditions of a model,,

such as to minimize some scalar quantity,.  is known as thecost or penalty function.  is a

functional of the state vector, and is defined to be a global measure of the simultaneous misfit

between , the current guess of the true atmospheric state, and two independent 'versions' of the

atmospheric representation.  One of these versions is that according to the observations themselves,

and the other is taken from a model forecast.  The latest observations (for a manageable time slice

of 6-12 hours) are contained in the vector.  Using observations alone for the purpose of

initializing a model is inadequate as measurements are not evenly spread over the atmosphere.

Furthermore the number of degrees of freedom in the model (the size of the vector space,,

describing ) far outweighs the number of reliable observations taken within the time period, and

different observations do not necessarily provide independent pieces of information.  To help

overcome this problema priori information is needed.  This comes from a previous model

forecast, and is the second version of the atmospheric state used in the cost function.  This state is

called the background, , valid at time , serving as an information 'filler' for data voids.

x(0)

J J J[x]

x

x

y

N

x

xB t = 0

We can now proceed to define a form of which simultaneously penalizes a bad fit between (i) the

model state  and the background, and the (ii) model state and the predicted observations [1].  The

usual form of  reflects these two contributions ( and  respectively):

J

x

J JB JO

J [x] =
1
2

(xB − x)T B−1 (xB − x) +
1
2 ∑

∆t

t = 0

(y (t) − Ho
t [x (t)])T E−1 (y (t) − Ho

t [x (t)])

=        JB     +        JO, (1)
where here and in the remainder of this report, the model state,, applies to the initial time

(defined to be at the start of the current assimilation cycle) unless explicitly labelled otherwise.

Other symbols are the following: is thebackground error covariance matrix,  is the set of

observations made at time,  is the part of the forward model which predicts the

observations based on the model's current state, and is the observational error covariance

matrix.  The vector  is known as a residual.  

x t = 0

B y(t)

t Ho
t [x(t)]

E

y(t) − Ho
t [x(t)]

We have made various assumptions when writing down this cost function.  Firstly, we have

assumed that the errors are unbiased and Gaussian [1].  If the former condition is not met, and the

biases are known, observations can be corrected in the preprocessing performed on the raw

observations when compiling.  Another assumption is that the model is 'perfect' over the

assimilation period.  This leads to the so-calledstrong constraint formalism as used in Eq. (1).  We

could write an alternative cost function with a third term which is the additional constraint which

y
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penalises model error.  This would be an example of the weak constraint formalism [2].

The compactness of the definition of in Eq. (1) is good for brevity, but the apparent simplicity is

somewhat misleading, as the underlying operators are complicated and difficult to deal with.

Before we explain why, let us describe each term.  The form of each term is, assuming any non-

linearity in the forward models to be weak, roughly quadratic in.  For this reason, the process of

minimising  is a generalisation of themethod of least squares.  A cost function which is exactly

quadratic is guaranteed to possess a global minimum.

J

x

J

2.1 The background penalty

The state vectors and  exist in the model space and consist of elements.  The meaning of

each element depends upon the type of model and how it represents the meteorological fields.  In

a grid-point model, e.g., the vectors will contain information pertaining to the values of each

field (e.g.  and  to use standard meteorological symbols for zonal wind, meridional

wind, potential temperature, pressure and water vapour mixing ratio respectively) at each grid

position.  In a spectral model, similar quantities will be stored for the weights of each spectral

component at each level.  Either way, a huge amount of information is stored in these vectors.

x xB N

u,  v,  θ,  p q

Even greater is the amount of information contained in which consists of  elements.  The

diagonal elements of  are the variances of the components of the background state

(proportional to the square of the uncertainty in, provided that there are no biases).  Due to the

structure of , components of  with large uncertainty will contribute little influence in the

minimization.  The off-diagonal elements are a measure of the correlation between different

components and contain information regarding how the variational scheme couples different

elements of the state vector.  Strictly, will contain covariances not only between the same

quantity (e.g. ) at different positions, but also covariances across different quantities (the latter

elements are known asmultivariate covariances).  It is very important to have a reasonable

knowledge of the elements of as it contains crucial statistical information summarizing the

behaviour of the system.  Fundamentally, it is found by evaluating the matrix,

B N2

B

xB

JB xB

B

θ

B

B = (xB − xT) (xB − xT)T , (2)
where  is the true state of the atmosphere.  This matrix is far too large to calculate, use, or even

store in any practical way (let alone invert as required in the cost function).  Besides, the true

state of the atmosphere in Eq. (2) is unknown.  Attempts have been made to represent with far

fewer pieces of information than  and by using approximations to the truth.  In weather

forecasting, it is usual to transform from the meteorological variables (as listed above) to an

xT

B

N2
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alternative set which are not strongly correlated (ie transforming to a set ofunivariate variables)

and to treat vertical and horizontal covariances separately.  For the purposes of this report we

will not worry about this and presume that we know how to act with the inverse (  itself

must be non-singular).

B−1 B

2.2 The observation penalty

 represents the observational forward model which appears in the observation term.  It has

already been mentioned in section 1.  It acts directly on the model state.  The time evolution

operator, , is required to produce this state given .  This is done via the sequence,

Ho
t

x(t)

Mt x

x (t) = MtMt−δt… Mδtx. (3)

Mδt M2δt M3δt M∆t

HO
δt HO

2δt HO
3δt HO

∆tHO
δt

t = 0 t = δt t = 2δt t = ∆t

x x (δt) x (2δt) x (∆t)x (3δt)

ymodel (0) ymodel (δt) ymodel (2δt) ymodel (3δt) ymodel (∆t)

y (0) y (δt) y (2δt) y (3δt) y (∆t)

Figure 2: schematic illustration of the purpose of the forward models.  The time
evolution operators,  (blue boxes) move the model state forward in time,
and the observation operators (green boxes),, use each model state to
predict the observations close to their proper times. could be a NWP
forecast model (often linearized) and  is itself subdivided into parts
pertaining to the different observation types.  The mathematical form of the
combined operator is given in Eq. (4).  The model-predicted observations
form the pink vector which are compared with the actual observations stored
in the yellow vector.

Mt

Ho
t

Mt

Ho
t

Due to the complexity of the  and  forward models,  is the more complicated of the two

penalty terms.  Given the initial conditions,, the model's prediction of the observations at time

Mt Ho
t JO

x t
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is,

ymodel (t) = Ho
t [x (t)] = Ho

t [MtMt−δt… Mδtx] , (4)
which is illustrated in Fig. 2 for all times in the time window.  The lengths of each observation

vector pertaining to the each time can be different in each case to cope with the asynoptic nature

of the available observations.

Both the time evolution and observation types of forward model are generally non-linear,

although observation operators for some observations involve only linear interpolation.  The

allowance of non-linear forward models in 4d-Var means, importantly, that information directly

from satellite radiances (which are a complicated non-linear function of the temperature,

pressure and chemical constituents along the path of the radiation into the instrument) can, in

principle, be assimilated directly into the system.  The implementation of such operators has had

a striking positive impact on the success of weather forecasts [3].

Errors in the observations are represented by the diagonal elements of.  Observations are

usually independent pieces of information and are thus uncorrelated.  For this reason, is often

taken to be diagonal and is then easy to invert.  Some observations though will be highly pre-

processed (e.g. satellite retrieval profiles) and strictly are correlated.

E

E

3. MINIMIZING THE COST FUNCTION

The whole process of finding the initial conditions, can be summarised as the task of finding the

set of  elements of which minimise the value of.  In the limit of linear operators, the definition

of  ensures that it is real and positive semi-definite ( ).  At first, we can only guess what is

and its value is refined iteratively by adescent algorithm [4] which we shall not discuss here.  The

first guess of  is often taken to be the background, , as it is readily available.

x

N x J

J J ≥ 0 x

x xB

For the descent algorithm to work, it does not actually need to evaluate the value of itself

(although it is a useful diagnostic).  Only its gradient with respect to the initial conditions need be

found.  This is,

J

∇xJ ≡ (dJ

dx)T

, (5)

which will be used, e.g., by asteepest descent algorithm to find how  should be modified to

reduce the value of.  At the minimum,  is stationary ( ).  The derivative of Eq. (5) is a

column vector containing  components, the th one being,

x

J J ∇xJ = 0

N i
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(∇xJ)i ≡
∂ J

∂ xi
, (6)

 being the theth component of .  The reason for the presence of the transpose instruction in Eq.

(5) is to make the differential operator  (which is by convention a row vector) into a column

as required.  Although this point seems unimportant at this stage, it is crucial to define our terms

properly now as such details will become significant later, especially when we discuss theadjoint

method.

xi i x

dJ/dx

In order to see how the gradient will help us minimize, consider the cost function expanded as a

Taylor series about the guess state generalised to the many variables contained in the vector.  To

second order:

J

x

J [x = xG + δx] = J [xG] +
dJ

dx|
x = xG

δx +
1
2
δxT (( d

dx)T dJ

dx) |
x = xG

δx, (7)

where  is a guess of the analysis (in the first instance this could be taken as).  Contained in the

last term of Eq. (7) is the Hessian matrix written in compact notation.  Expanded, the Hessian is,

xG xB

Hess = ( d
dx)T dJ

dx
= ( ) . (8)

∂ 2J/∂ (x1)2 ∂ 2J/∂ x1∂ x2 … ∂ 2J/∂ x1∂ xN

∂ 2J/∂ x2∂ x1 ∂ 2J/∂ (x2)2 … ∂ 2J/∂ x2∂ xN

… … … …
∂ 2J/∂ xN∂ x1 ∂ 2J/∂ xN∂ x2 … ∂ 2J/∂ (xN)2

We require the increment, , which should be added to to make  stationary.  Differentiating

in Eq. (7) with respect to , and setting to zero for a stationary value gives (this procedure is

similar to that made explicitly to the more complicated cost function as shown in section 3.1),

δx xG J J

δx

∇xJ = ∇xJ|x = xG
+ Hess|x = xG

δx = 0. (9)
Rearranged for , Eq. (9) gives,δx

δx = − (Hess|x = xG)−1  ∇xJ|x = xG
, (10)

which shows that the required increment is related to the gradient in a linear sense.  This result is

nothing more than a generalisation of the Newton-Raphson method, here applied to finding roots

of the gradient of a multi-dimensional function.  Note that the inverse Hessian has, in general, the

effect of altering the direction and length of the gradient vector.

As an aside, this stresses the importance ofpreconditioning, which is the process of choosing new

variables (call the state vector represented in these new variables, related to  via a

transformation) which are uncorrelated and which have unit variance.  For perfectly preconditioned

variables, the Hessian measured with respect to changes in the components of would be the unit

matrix and, in -space,

v x

v

v
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δv = − ∇vJ|v = vG
. (11)

In the remainder of this report we shall return to-space as we are more interested here in the

method of 4d-var, rather than in preconditioning techniques.

x

3.1 The gradient of J

We proceed to calculate the gradient of.  In order to do this explicitly from first principles, Eq.

(1) can be expanded from its usual 'matrix form' into 'series form',

J

J [x] =
1
2 ∑

ij

(xi
B − xi) (B−1)ij (xj

B − xj) +

1
2 ∑

t
∑
mn

(ym(t) − Ho,m
t [x (t)]) (E−1)mn (yn (t) − Ho,n

t [x (t)]) , (12)

where the indices  run over model components,  run over observation components, and

runs over time steps (each of length) in the time window.  The gradient with respect to the

individual component, , is (making use of the product rule),

i , j m, n t

δt

xk

∂ J

∂ xk
= −

1
2 ∑

ij

((xi
B − xi) (B−1)ij δjk + δik (B−1)ij (xj

B − xj)) −

1
2 ∑

t
∑
mn

((ym(t)−Ho,m
t [x (t)]) (E−1)mn

∂Ho,n
t [x (t)]
∂ xk

+
∂Ho,m

t [x (t)]
∂ xk

(E−1)mn (yn (t)− Ho,n
t [x (t)])) ,

(13)
where  is the th component of the initial state of the model (in the state of its current guess).

This expression can be tidied up by making use of covariance matrix symmetry,

xk k

(B−1)ij = (B−1)ji  ,  (E−1)mn = (E−1)nm , (14)

∴ 
∂ J

∂ xk
= − ∑

i

(B−1)ki (xi
B − xi) − ∑

t
∑
mn

∂Ho,m
t [x (t)]
∂ xk

(E−1)mn (yn (t) − Ho,n
t [x (t)]) . (15)

All components of  can be assembled into a column vector.  This is compactly written by

reverting to matrix form,

∇xJ

∇xJ = −B−1 (xB − x) − ∑
t

(dHo
t [x (t)]
dx )T

E−1 (y (t) − Ho
t [x (t)]) . (16)

A point on linear algebra: the object  in Eq. (16) is a matrix, known as aJacobian,

and its elements are,

dHo
t [xt] /dx

(dHo
t [x (t)]
dx )

mk
=

∂Ho,m
t [x (t)]
∂ xk

, (17)

which is the sensitivity of the th model-predicted observation at time due to changes in the

th component of the model's initial condition vector.  It has been transposed in Eq. (16) to work

with the matrix notation.

m t

k
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Forward models which predict the subset of observations at a time operate on the model state at

that time, yet the sensitivities highlighted in Eq. (17) are made with respect to theinitial  state of

the model.  A more natural Jacobian to calculate would be one like,

t

(dHo
t [x (t)]

dx (t) )T (dHo
t [x (t)]
dx )T

, (18)rather than

where the derivatives on the left hand side are made with respect to the model state at the same

time that the observation forward model is relevant to.  We can facilitate this change by using the

generalised chain rule [5].  Noting the relationship between and  (Eq. (3)), then the chain

rule for derivatives gives,

x(t) x

( d
dx)T

= (MtMt−δt… Mδt)T ( d
dx (t))T

, (19)

where the non-linear model operators (in bold italic font in Eq. (3)) have been linearised (bold

Roman font in Eq. (19), e.g. element of matrix  is ).  Inserting

this transformation into Eq. (16) yields,

i , j Mt (Mt)ij = ∂ xi (t)/∂ xj (t − δt)

∇xJ ≈ −B−1 (xB − x) − ∑
t

(MtMt−δt… Mδt)T (dHo
t [x (t)]

dx (t) )T

E−1 (y (t) − Ho
t [x (t)]) . (20)

In Eq. (20) we have linearized the adjoint time evolution operators (the time evolution operator

implied in the innovation vector remains non-linear) as it is unclear how to find the adjoint of

non-linear terms (this results in the gradient calculation being approximate).  In this context,

these operators areperturbation forecast operators.  The differential  is

effectively a linearization of the forward observation operator.  We let,

dHo
t [x(t)] /dx(t)

dHo
t [x (t)]

dx (t)
= Ho

t , (21)

distinguishing again non-linear bold italic operators from matrix bold Roman operators.  This

makes the expression for the gradient into,

∇xJ ≈ −B−1 (xB − x) − ∑
t

MT
δt… MT

t−δtM
T
t Ho

t

T
E−1 (y (t) − Ho

t [x (t)]) . (22)

In Eq. (22) we have also applied the transpose action to each member in the sequence of time

evolution operators of Eq. (20) separately (remember that this involves reversing their order).

3.2 Evaluating the gradient of J

We can evaluate the gradient of  with respect to the initial conditions in one of three ways.J

1. Evaluate finite differences for the gradient of without using the results shown above.J
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For component , the gradient is given as Eq. (23) below for a centred difference

scheme, which must be performed for each.  Although this approach is useful to

understand the meaning of the gradient, it is too costly in practice, requiring

evaluations of the cost function.  Typically for a global forecast model,  (or

greater), and each evaluation would require a forward integration of the model over the

time period , which is extremely prohibitive.

i

i

2N

N ∼ 106

0 → ∆t

∂ J

∂ xi
≈

J (x1, … , xi + δx, … , xN) − J (x1, … , xi − δx, … , xN)
2δx

. (23)

2. Evaluate Eq. (22) directly.  This would involve, at each timestep, acting on

 with the sequence of operators .  Although better

than finite differencing, evaluating the time series in this way is still inefficient as there

is a lot of duplication as the same time evolution operators are used in many of the terms

in the time summation.

[y(t) − Ho
t [x(t)] MT

δt… MT
t−δtMT

t Ho
t
TE−1

3. Use the adjoint technique [6] (section 3.3).  This is at the heart of 4d-Var and is an

efficient means of calculating the gradient.  The method does not explicitly store or use

matrices.  Instead, an operator acts by applying a set of rules (in a program, this would

best be done by a subroutine).  The absence of matrices makes the transpose (oradjoint)

operator difficult to deal with which means that a set of code, pertaining to the adjoint

operator, needs to be implemented separately.  This is possible if the 'normal' operator is

linear, or has been linearized, and there are mechanical methods of doing this given the

normal operator [7].

3.3 The adjoint method

We identify an efficiency in evaluating Eq. (22) if we write out the sum in the following way,

t = ∆t −MT
δt MT

2δt � MT
∆t−δt MT

∆t Ho
∆t

T
E−1r (∆t) +

t = ∆t−δt −MT
δt MT

2δt � Ho
∆t−δt

T
E−1r (∆t−δt) +

Ho
∆t−2δt

TE−1r (∆t−2δt) +

t = 2δt −MT
δt MT

2δt

t = δt −MT
δt Ho

δt
T
E−1r (δt) +

t = 0 −Ho
0
T
E−1r (0) +

b/g −B−1(xB − x)

MT
∆t−δt

� � � �

� � � �

where,
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r (t) ≡ y (t) − Ho
t (x (t)) , (24)

is called theresidual, and the background term is for time .  Each row in the above sum is a

term in the summation of Eq. (22), with the time corresponding to each given on the left hand

side.  The rows are all added together and the coloured columns serve only to highlight the fact

that specific time evolution operators are repeated in different rows (operators of the same colour

background are the same).  Written in this way, it is possible to see that we can evaluate the

series in an alternative order by factorizing common operators according to the following

prescription.

t = 0

1. Perform an integration from  to  using the forward (and non-linear) version of

the forecast model.  As the initial conditions,, are as yet undetermined, use a guess.

This will be refined as a result of calculating the gradient of.  At each time step, store

the model state .  This stage is that shown in Fig. 2.

t = 0 t = ∆t

x

J

x(t)

2. Start the next stage of the algorithm at  and evaluate the vector  (call

this  - this appears on the extreme right hand side of the table above).  Vectors of

this kind (which will also be calculated at earlier times below) are known asadjoint

variables.  

t = ∆t Ho
∆t

TE−1r (∆t)

λ(∆t)

3. Integrate the adjoint backwards in time by.  This is done by replacing with  and

then calculating the term of Eq. (20) below (using the information,, stored from

step 1 to calculate ).  Equation (20) may be proved by mathematical induction

working from  to .  This action combines residual information from time

and adjoint information from time  to form an adjoint state at time.  This step

comes from the above table: the first term of Eq. (20) appears below each coloured

column, the adjoint time evolution operator, , is that which appears inside the filled

column above, and the adjoint variable,  represents everything to the right of the

column.

δt t t−δt

x(t)

r (t)

t = ∆t t = 0 t

t + δt t

MT
t+δt

λ(t + δt)

λ (t) = Ho
t

T
E−1r (t) + MT

t+δtλ (t + δt) . (25)
4. Go back to step 3 until .  At ,  is minus the gradient of  with respect to .t=0 t = 0 λ(0) JO x

5. Calculate the full gradient by including the background (the full gradient is then used in

the descent algorithm to refine our guess),

∇xJ ≈ − λ (0) . (26)−B−1(xB − x)

This method is called theadjoint method due to the use of adjoint variables,, in step 3 (Eq.

(25)) and the continuous operation with adjoint (transpose) operators.  It is the efficiency of the

adjoint technique which has meant that 4d-Var is practical.

λ
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Applied in this form, the method has two stages (Fig. 3): (i) a forward integration of the model

variables (step 1) followed by (ii) a backward integration of the adjoint variables by the adjoint

model (steps 2 to 4).  The final step (step 5) just adds on the background contribution.  Once the

gradient is calculated, the descent algorithm is applied and finds a refined initial condition,,

with which the whole process is repeated.  The optimal state is where  (by suitable

convergence) which means that the cost function has been minimized.

x

∇xJ = 0

background contribution

x x (δt) x (2δt) x (∆t − δt) x (∆t)

Ho
0 (x) Ho

δt (x (δt)) Ho
2δt (x (2δt)) Ho

∆t − δt (x (∆t − δt)) Ho
∆t (x (∆t))

y (0) y (δt) y (2δt) y (∆t − δt) y (∆t)

r (0) r (δt) r (2δt) r (∆t − δt) r (∆t)

λ(0) λ(δt) λ(2δt) λ(∆t − δt) λ(∆t)

∇x J ≈ - λ(0)−B−1 (xB − x)

FORWARD INTEGRATION STAGE

ADJOINT INTEGRATION STAGE

Figure 3: schematic illustration of the adjoint 4d-Var algorithm.  The forward
integration (green) is essentially the same process as that represented in Fig.
2, but with the additional residual information calculated.  The integration of
the adjoint variable, , is done backwards in time (blue box).  In this Fig.,

 is the model state at time,  is the observational forward operator,
 is the set of observations at time,  is the residual (Eq. 19), and

is the adjoint at time.  The vector  is the gradient (with respect to) of
the observational component of the cost function (Eq. (1)) which is
combined with the background gradient to give the total gradient.

λ
x(t) t Ho

t

y(t) t r (t) λ(t)
t λ(0) x

4. GLOSSARY OF TERMS

3d-Var Variational data assimilation in which, during a particular assimilation period,
no account is taken of the time that observations are taken.  The three
dimensions are spatial.  Although adjoint operators are used, there is, unlike
4d-var, no integration of the adjoint variables back in time.

4d-Var Variational data assimilation within three space dimensions plus one time
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dimension.  The times that observation are made is resolved by the
assimilation system.  The adjoint method is at the heart of the technique.

Adjoint The adjoint is the transpose of a matrix or vector (if complex numbers are
present, this should be accompanied by a complex conjugate of the elements).
The adjoint turns rows into columns and vice-versa.  Some operators are
effectively matrices (linear operators), but cannot, due to storage limitations,
be stored explicitly.  The adjoint operator must then be formulated as a
separate operator either manually or by automatic adjoint software.  In 4d-Var,
adjoint operators (matrices) help integrate the adjoint variables (cost function
gradient vectors) backwards in time.

Analysis The initial conditions of a forecast model that 'best-fits' (via a sequence of time
evolution and observation operators) a set of  observations and a background
state (also known as optimum analysis).  Usually the analysis is initialized
before the forecast is run (see the initialization entry).

Assimilation
period

The window of time in which observations are taken for the optimization
(assimilation) process.  The forecast period follows.

Background A model state which is thea-priori guess at the true state of the system.  It is a
forecast which has been started from the analysis at the previous assimilation
cycle and is used, in conjunction with a set of observations, to help find the
new analysis state.  The background state appears in the cost function (Eq.
(1)).

Control
variables

The variables that are actually adjusted during the descent algorithm.  These
are often not the meteorological variables in model space, but are some
transformation involving a new set of parameters and in a new vector space.
The gradient of the cost function with respect to each new control variable is
required for the descent algorithm.  The transformation to control variables is
part of the preconditioning process.

Cost function A scalar quantity measuring the misfit between a guess of the model state and
the background, and the guess (postprocessed to predict the observations) and
the observations themselves.  The cost function is minimised iteratively in
variational data assimilation.  Also known as the penalty function.

Covariance How one quantity varies with another.  A covariance error matrix is a
systematic means of storing the statistical information of how errors in each
quantity represented depend on the errors in others.  The covariance between
and  is found from:  where  mean.

x
y covariance= 〈(x − ½x¿)(y − ½y¿)〉 〈〉 =

Descent
algorithm

An algorithm that will adjust the state vector (in control variable space) to
yield a new value of the cost function which is lower.  The aim of the
algorithm is to minimize the cost function.  The algorithm requires as its input
the gradient of the cost function with respect to each control variable.

Errors Uncertainties of information pertaining to the system.  All observations have
errors as do all model states.  Errors can be systematic (e.g. biases) or random.
It is usual to correct for biases (if known) before the assimilation procedure
starts and to assume that random errors are Gaussian in nature (this leads to the
quadratic form of the cost function in 3d- and 4d-Var).  Errors are related to
variances.

Forecast period The period of time following the assimilation period where a model is run
freely, and where no observations are available to correct it.

Forward model In 4d-Var there are two types of forward model.  One kind predicts
observations given a model state (observation operators).  The other finds
future model states from earlier ones (time evolution operator).  In 3d-Var only
the observation operators are used.  'Forward modelling' is regarded as the
'usual' means of modelling (as opposed to inverse modelling which tries to do
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the reverse).
Hessian The matrix containing all of the second partial derivatives of the cost function,

, with respect to the control variables.  Element of the Hessian is
 (see Eq. (8)).

J i , j
∂ 2J/∂ xi∂ xj

Initialization The processing of a set of uninitialized initial conditions for a model.  The
processing could, e.g., be a filter to remove undesirable gravity waves which
could otherwise amplify and degrade the forecast.

Innovation
vector

The difference between the observations and the model's version of the
observations, found from the background state.  The innovation vector is the
residual (Eq. (24)) in the special case that the model integration is started from
the background state.

Jacobian A transformation matrix detailing how components of one set of variables
varies with another set.

Multivariate A fully consistent system where account is taken of the correlations, not just
between values of a quantity at different points in space, but between different
quantities.

NWP Numerical Weather Prediction (the application of computer models to weather
forecasting).

Observation
operator

An operator which predicts observations consistent with a model state.

Optimization The process of finding the initial conditions of a forecast model to best-fit a set
of  observations and a background state.  The methods of 3d- or 4d-var are
optimization techniques.

Penalty function See cost function.

Positive (semi)
definite

A variable  is positive (semi) definite if it is bounded by .J J > (≥) 0

Post processing
operator

See observation operator.

Preconditioning The process of choosing new control variables which are exactly, or
approximately uncorrelated, and form a unit Hessian matrix.  In a perfectly
preconditioned system of equations, contours of constant cost function are
circles in the new control variable space and the preconditioning number is
unity.

Preconditioning
number

The ratio of the highest to the smallest eigenvalues of the Hessian.  In a
perfectly preconditioned system of equations, the preconditioning number is
unity.

Residual The difference between an observation and the model's version of it.  The
residual vector is a structure containing many such differences, each an
element of the vector in Eq. (24).

Strong
constraint

A formulation of a 4d-Var data assimilation system that assumes a perfect
model, or where no account is taken of model error (as assumed here).

Time evolution
operator

The set of rules which advances the model state forward in time (see Eq. (3)).

Univariate This is the situation where one type of quantity is, or assumed to be,
uncorrelated with another.  Meteorological variables are rarely uncorrelated
with each other (the multivariate case), but sometimes new variables are
chosen that are approximately uncorrelated.  This is part of the preconditioning
procedure.
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Variance The variance of a variable is related to the error by:  (for a
single measurement).  The variance of the quantity is found from:

 where  is the mean.  A variance is the special case of a
covariance where both quantities ( and  in the glossary entry for covariance)
are the same.  Variances occupy the diagonal elements of a covariance matrix.

error = variance
x

variance= 〈(x − ½x¿)2〉 〈〉
x y

Weak constraint A formulation of a 4d-Var data assimilation system that takes into account
model error.
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