MATHEMATICAL AIDE MEMOIR FOR DATA ASSIMILATION

DAIMG MSc programme, Univ. of Reading, RNB

1. Vectors and matrices

1.1. Vector representation of information.

$$
\mathbf{v}=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{i} \\
\vdots \\
v_{n}
\end{array}\right), \quad \mathbf{v} \in \mathbb{R}^{n}, \quad v_{i}=(\mathbf{v})_{i}
$$

1.2. Matrix operator.

$$
\begin{gathered}
\mathbf{N}=\left(\begin{array}{ccccc}
N_{11} & \cdots & N_{1 j} & \cdots & N_{1 n} \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
N_{i 1} & \cdots & N_{i j} & \cdots & N_{i n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
N_{m 1} & \cdots & N_{m j} & \cdots & N_{m n}
\end{array}\right), \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad N_{i j}=(\mathbf{N})_{i j} . \\
\mathbf{v}^{\mathrm{b}}=\mathbf{N v}^{\mathrm{a}}, \quad \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{m}, \quad \mathbf{v}^{\mathrm{a}} \in \mathbb{R}^{n}, \quad v_{i}^{\mathrm{b}}=\sum_{j=1}^{n} N_{i j} v_{j}^{\mathrm{a}}, \quad 1 \leq i \leq m .
\end{gathered}
$$

1.3. Identity/unit matrix.

$$
\mathbf{I}_{p}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right), \quad \mathbf{I}_{p} \in \mathbb{R}^{p \times p}, \quad\left(\mathbf{I}_{p}\right)_{i j}=\delta_{i j}
$$

1.4. Matrix addition.

$$
\mathbf{N}=\mathbf{N}^{\mathrm{a}}+\mathbf{N}^{\mathrm{b}}, \quad N_{i j}=N_{i j}^{\mathrm{a}}+N_{i j}^{\mathrm{b}}, \quad \mathbf{N}, \mathbf{N}^{\mathrm{a}}, \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{m \times n}
$$

1.5. Matrix multiplication.

$$
\mathbf{N}=\mathbf{N}^{\mathrm{a}} \mathbf{N}^{\mathrm{b}}, \quad N_{i j}=\sum_{k=1}^{p} N_{i k}^{\mathrm{a}} N_{k j}^{\mathrm{b}}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{a}} \in \mathbb{R}^{m \times p}, \quad \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{p \times n}
$$

In general, matrices are non-commutative $\mathbf{N}^{\mathrm{a}} \mathbf{N}^{\mathrm{b}} \neq \mathbf{N}^{\mathrm{b}} \mathbf{N}^{\mathrm{a}}$. Pre-multiplication by the identity matrix gives $\mathbf{I}_{p} \mathbf{N}^{\mathrm{b}}=\mathbf{N}^{\mathrm{b}}$ and post-multiplication by the identity matrix gives $\mathbf{N}^{\mathrm{a}} \mathbf{I}_{p}=\mathbf{N}^{\mathrm{a}}$. Multiplication by a scalar gives $(\alpha \mathbf{N})_{i j}=\alpha N_{i j}$.
1.6. Matrix adjoint. The matrix adjoint makes rows into columns (and vice-versa), and does a complex conjugate on each element.

$$
\begin{aligned}
& \text { If } \mathbf{N}^{\mathrm{b}}=\mathbf{N}^{\mathrm{a} \dagger}, \quad N_{i j}^{\mathrm{b}}=N_{j i}^{\mathrm{a} *}, \quad \mathbf{N}^{\mathrm{b}} \in \mathbb{C}^{m \times n}, \quad \mathbf{N}^{\mathrm{a}} \in \mathbb{C}^{n \times m} . \\
& \mathbf{N}^{\mathrm{a}}=\left(\begin{array}{ccc}
N_{11}^{\mathrm{a}} & N_{12}^{\mathrm{a}} & N_{13}^{\mathrm{a}} \\
N_{21}^{\mathrm{a}} & N_{22}^{\mathrm{a}} & N_{23}^{\mathrm{a}}
\end{array}\right), \quad \mathbf{N}^{\mathrm{b}}=\left(\begin{array}{cc}
N_{11}^{\mathrm{a} *} & N_{21}^{\mathrm{a} *} \\
N_{12}^{\mathrm{a} *} & N_{22}^{\mathrm{a}} \\
N_{13}^{\mathrm{a}} & N_{23}^{\mathrm{a} *}
\end{array}\right) .
\end{aligned}
$$

If $\mathbf{N}^{\mathrm{a}}=\mathbf{N}^{\mathrm{a}}{ }^{\dagger}$ then matrix \mathbf{N}^{a} is self-adjoint/Hermitian (only square matrices can be Hermitian). If the matrix is real then the matrix adjoint is the same as the matrix transpose.

1.7. Matrix transpose.

$$
\begin{aligned}
& \text { If } \mathbf{N}^{\mathrm{b}}=\mathbf{N}^{\mathrm{aT}}, \quad N_{i j}^{\mathrm{b}}=N_{j i}^{\mathrm{a}}, \quad \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{a}} \in \mathbb{R}^{n \times m} . \\
& \mathbf{N}^{\mathrm{a}}=\left(\begin{array}{ccc}
N_{11}^{\mathrm{a}} & N_{12}^{\mathrm{a}} & N_{13}^{\mathrm{a}} \\
N_{21}^{\mathrm{a}} & N_{22}^{\mathrm{a}} & N_{23}^{\mathrm{a}}
\end{array}\right), \quad \mathbf{N}^{\mathrm{b}}=\left(\begin{array}{cc}
N_{11}^{\mathrm{a}} & N_{21}^{\mathrm{a}} \\
N_{12}^{\mathrm{a}} & N_{22}^{\mathrm{a}} \\
N_{13}^{\mathrm{a}} & N_{23}^{\mathrm{a}}
\end{array}\right) .
\end{aligned}
$$

If $\mathbf{N}^{\mathrm{a}}=\mathbf{N}^{\mathrm{aT}}$ then matrix \mathbf{N}^{a} is symmetric (only square matrices can be symmetric). Symmetric matrices are also Hermitian.

1.8. Transpose of a product of matrices.

$$
\left(\mathbf{N}^{\mathrm{a}} \mathbf{N}^{\mathrm{b}}\right)^{\mathrm{T}}=\mathbf{N}^{\mathrm{bT}} \mathbf{N}^{\mathrm{aT}}
$$

1.9. Matrix inversion. Let \mathbf{N} be a square ($m=n$) non-singular matrix.

$$
\begin{gathered}
\text { If } \mathbf{v}^{\mathrm{b}}=\mathbf{N}^{\mathrm{a}}, \text { then } \mathbf{v}^{\mathrm{a}}=\mathbf{N}^{-1} \mathbf{v}^{\mathrm{b}}, \quad \mathbf{v}^{\mathrm{a}}, \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{n}, \quad \mathbf{N} \in \mathbb{R}^{n \times n} . \\
\text { In general }\left(\mathbf{N}^{-1}\right)_{i j} \neq(\mathbf{N})_{i j}^{-1} \\
\text { For } n=2, \quad \mathbf{N}=\left(\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right), \quad \mathbf{N}=\frac{1}{\operatorname{det}(\mathbf{N})}\left(\begin{array}{cc}
N_{22} & -N_{12} \\
-N_{21} & N_{11}
\end{array}\right), \quad \operatorname{det}(\mathbf{N})=N_{11} N_{22}-N_{12} N_{21} .
\end{gathered}
$$

If \mathbf{N} is singular then it has a zero determinant and the inverse cannot be found in general.

1.10. Moore-Penrose generalized inverse.

$$
\mathbf{N}^{+}=\mathbf{N}^{\mathrm{T}}\left(\mathbf{N} \mathbf{N}^{\mathrm{T}}\right)^{-1}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad n>m
$$

1.11. Diagonal matrix. A matrix is diagonal if $N_{i j}=0$ if $i \neq j, \mathbf{N} \in \mathbb{R}^{m \times n}$. If \mathbf{N} is square $(m=n)$:

$$
\mathbf{N}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & \cdots \\
0 & \lambda_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

The inverse of a square diagonal matrix is $\left(\mathbf{N}^{-1}\right)_{i i}=(\mathbf{N})_{i i}^{-1},\left(\mathbf{N}^{-1}\right)_{i i}=0$ for $i \neq j$:

$$
\left(\begin{array}{ccl}
N_{11} & 0 & \cdots \\
0 & N_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / N_{11} & 0 & \cdots \\
0 & 1 / N_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

1.12. Gramian matrix. A Gramian matrix is symmetric and has the form $\mathbf{N}^{\mathrm{T}} \mathbf{N}$:

$$
\mathbf{N}^{\mathrm{T}} \mathbf{N} \in \mathbb{R}^{n \times n}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{N}^{\mathrm{T}} \in \mathbb{R}^{n \times m}
$$

1.13. Euclidean vector inner product (scalar product/dot product).

$$
\begin{gathered}
a=\mathbf{v}^{\mathrm{a}} \cdot \mathbf{v}^{\mathrm{b}}=\mathbf{v}^{\mathrm{aT}} \mathbf{v}^{\mathrm{b}}=\left\langle\mathbf{v}^{\mathrm{a}}, \mathbf{v}^{\mathrm{b}}\right\rangle=\sum_{i=1}^{n} v_{i}^{\mathrm{a}} v_{i}^{\mathrm{b}}, \quad \mathbf{v}^{\mathrm{a}}, \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{n}, \quad a \in \mathbb{R} . \\
b=\mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{\mathrm{T}} \mathbf{v}=\langle\mathbf{v}, \mathbf{v}\rangle=\sum_{i=1}^{n} v_{i}^{2}=\|\mathbf{v}\|^{2}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad b \in \mathbb{R}
\end{gathered}
$$

1.14. Non-Euclidean vector inner product.

$$
\begin{gathered}
a=\mathbf{v}^{\mathrm{a}} \cdot\left(\mathbf{C v}^{\mathrm{b}}\right)=\mathbf{v}^{\mathrm{aT}} \mathbf{C} \mathbf{v}^{\mathrm{b}}=\left\langle\mathbf{v}^{\mathrm{a}}, \mathbf{v}^{\mathrm{b}}\right\rangle_{\mathbf{C}}=\sum_{i=1}^{n} v_{i}^{\mathrm{a}} \sum_{j=1}^{m} C_{i j} v_{j}^{\mathrm{b}}, \quad \mathbf{v}^{\mathrm{a}} \in \mathbb{R}^{n}, \quad \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{m}, \quad \mathbf{C} \in \mathbb{R}^{n \times m}, \quad a \in \mathbb{R} . \\
b=\mathbf{v} \cdot(\mathbf{C v})=\mathbf{v}^{\mathrm{T}} \mathbf{C} \mathbf{v}=\langle\mathbf{v}, \mathbf{v}\rangle_{\mathbf{C}}=\sum_{i=1}^{n} v_{i} \sum_{j=1}^{n} C_{i j} v_{j}=\|\mathbf{v}\|_{\mathbf{C}}^{2}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad \mathbf{C} \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R} .
\end{gathered}
$$

1.15. Vector outer product.

$$
\mathbf{N}=\mathbf{v}^{\mathrm{a}} \mathbf{v}^{\mathrm{bT}}, \quad N_{i j}=v_{i}^{\mathrm{a}} v_{j}^{\mathrm{b}}, \quad \mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{v}^{\mathrm{a}} \in \mathbb{R}^{m}, \quad \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{n}
$$

1.16. Schur/Hadamard product.

$$
\begin{aligned}
& \text { For matrices: } \mathbf{N}=\mathbf{N}^{\mathrm{a}} \circ \mathbf{N}^{\mathrm{b}}, \quad N_{i j}=N_{i j}^{\mathrm{a}} N_{i j}^{\mathrm{b}}, \quad \mathbf{N}, \mathbf{N}^{\mathrm{a}}, \mathbf{N}^{\mathrm{b}} \in \mathbb{R}^{m \times n} . \\
& \qquad \text { For vectors: } \mathbf{v}=\mathbf{v}^{\mathrm{a}} \circ \mathbf{v}^{\mathrm{b}}, \quad v_{i}=v_{i}^{\mathrm{a}} v_{i}^{\mathrm{b}}, \quad \mathbf{v}, \mathbf{v}^{\mathrm{a}}, \mathbf{v}^{\mathrm{b}} \in \mathbb{R}^{n} .
\end{aligned}
$$

1.17. Orthogonal matrix. If \mathbf{V} is orthogonal then:

$$
\begin{gathered}
\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}_{n}, \quad \mathbf{V} \in \mathbb{R}^{m \times n}, \quad n \leq m \\
\text { If } n=m \text { then } \mathbf{V}^{\mathrm{T}}=\mathbf{V}^{-1}
\end{gathered}
$$

1.18. The trace of a matrix. The trace of a square matrix $\mathbf{N}, \operatorname{tr}(\mathbf{N})$, is:

$$
\operatorname{tr}(\mathbf{N})=\sum_{i=1}^{n} N_{i i}, \quad \mathbf{N} \in \mathbb{R}^{n \times n}
$$

1.19. The Sherman-Morrison-Woodbury formula.

$$
\left(\mathbf{A}+\mathbf{C D}^{\mathrm{T}}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{C}\left(\mathbf{I}+\mathbf{D}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{C}\right)^{-1} \mathbf{D}^{\mathrm{T}} \mathbf{A}^{-1}
$$

Replacing $\mathbf{C} \rightarrow \mathbf{C B}$ and then setting $\mathbf{C}=\mathbf{D}=\mathbf{H}$ and $\mathbf{A}=\mathbf{R}$, the following useful formula results:

$$
\left(\mathbf{B}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right) \mathbf{B} \mathbf{H}^{\mathrm{T}}=\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{R}+\mathbf{H B} \mathbf{H}^{\mathrm{T}}\right)
$$

2. Functions

2.1. Scalar valued function of a vector and its derivative.

$$
f(\mathbf{v}), \quad f \in \mathbb{R}, \quad \nabla_{\mathbf{v}} f(\mathbf{v})=\left(\frac{\partial f}{\partial \mathbf{v}}\right)^{\mathrm{T}}=\left(\begin{array}{c}
\partial f / \partial v_{1} \\
\partial f / \partial v_{2} \\
\vdots \\
\partial f / \partial v_{n}
\end{array}\right), \quad \mathbf{v}, \nabla_{\mathbf{v}} f(\mathbf{v}) \in \mathbb{R}^{n}
$$

2.2. Generalised chain rule.

Consider $f\left(\mathbf{v}^{\mathrm{b}}\right)$, where $\nabla_{\mathbf{v}^{\mathrm{b}}} f\left(\mathbf{v}^{\mathrm{b}}\right)$ is known, $\quad f \in \mathbb{R}, \quad \mathbf{v}^{\mathrm{b}}, \nabla_{\mathbf{v}^{\mathrm{b}}} f\left(\mathbf{v}^{\mathrm{b}}\right) \in \mathbb{R}^{m}$.

$$
\text { If } \mathbf{v}^{\mathrm{b}}=\mathbf{N} \mathbf{v}^{\mathrm{a}} \text {, then } \nabla_{\mathbf{v}^{\mathrm{a}}} f\left(\mathbf{v}^{\mathrm{a}}\right)=\mathbf{N}^{\mathrm{T}} \nabla_{\mathbf{v}^{\mathrm{b}}} f\left(\mathbf{v}^{\mathrm{b}}\right), \quad \mathbf{v}^{\mathrm{a}}, \nabla_{\mathbf{v}^{\mathrm{a}}} f\left(\mathbf{v}^{\mathrm{a}}\right) \in \mathbb{R}^{n}, \quad \mathbf{N} \in \mathbb{R}^{m \times n} .
$$

2.3. Generalised Taylor series for f. Let $f(\mathbf{v})$ be a linear or non-linear function. The Taylor series of $f(\mathbf{v})$ about \mathbf{v} is:

$$
\begin{gathered}
f(\mathbf{v}+\delta \mathbf{v})=f(\mathbf{v})+\frac{\partial f}{\partial \mathbf{v}} \delta \mathbf{v}+\frac{1}{2} \delta \mathbf{v}^{\mathrm{T}} \frac{\partial^{2} f}{\partial \mathbf{v}^{2}} \delta \mathbf{v}+\text { higher order terms } \\
f \in \mathbb{R}, \quad \mathbf{v}, \frac{\partial f}{\partial \mathbf{v}} \in \mathbb{R}^{n}, \quad \frac{\partial^{2} f}{\partial \mathbf{v}^{2}} \in \mathbb{R}^{n \times n} \text { is the Hessian matrix, }\left(\frac{\partial^{2} f}{\partial \mathbf{v}^{2}}\right)_{i j}=\frac{\partial^{2} f}{\partial v_{i} \partial v_{j}} .
\end{gathered}
$$

2.4. Vector valued function of a vector.

$$
\mathbf{f}(\mathbf{v}), \quad \mathbf{f} \in \mathbb{R}^{m}, \quad \mathbf{v} \in \mathbb{R}^{n}
$$

2.5. Generalised Taylor series for \mathbf{f}. Let $\mathbf{f}(\mathbf{v})$ be a linear or non-linear function. The Taylor series of $\mathbf{f}(\mathbf{v})$ about \mathbf{v} is:

$$
\begin{aligned}
\mathbf{f}(\mathbf{v}+\delta \mathbf{v}) & =\mathbf{f}(\mathbf{v})+\mathbf{F} \delta \mathbf{v}+\text { higher order terms } \\
\mathbf{F}=\left.\frac{\partial \mathbf{f}}{\partial \mathbf{v}}\right|_{\mathbf{v}}, \quad F_{i j} & =\left.\frac{\partial f_{i}}{\partial v_{j}}\right|_{\mathbf{v}}, \quad \mathbf{f} \in \mathbb{R}^{m}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad \mathbf{F} \in \mathbb{R}^{m \times n}
\end{aligned}
$$

\mathbf{F} is the Jacobian of $\mathbf{f}(\mathbf{v})$ about \mathbf{v} and $\partial f_{i} / \partial v_{j}$ are called Fréchet derivatives.

3. Matrix decompositions

3.1. Eigenvectors and eigenvalues. The k th eigenvector $\left(\mathbf{v}_{k}\right)$ and eigenvalue $\left(\lambda_{k}\right)$ of matrix \mathbf{N} satisfies:

$$
\begin{gathered}
\mathbf{N v}_{k}=\lambda_{k}, \quad \mathbf{N} \in \mathbb{R}^{n \times n}, \quad \mathbf{v}_{k} \in \mathbb{R}^{n}, \quad \lambda_{k} \in \mathbb{R}, \quad 1 \leq k \leq n \\
\text { Let } \mathbf{V}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots \mathbf{v}_{n}\right)=\left(\mathbf{v}_{1}\right)\left(\mathbf{v}_{2}\right) \cdots\left(\begin{array}{c}
\left.\mathbf{v}_{n}\right), \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}\right) \\
\\
\mathbf{N V}=\mathbf{V} \Lambda, \quad \mathbf{N}, \mathbf{V}, \Lambda \in \mathbb{R}^{n \times n}
\end{array}\right.
\end{gathered}
$$

If \mathbf{N} is Hermitian (if a real matrix then this is equivalent to \mathbf{N} being symmetric) then \mathbf{V} (the matrix of eigenvectors) is orthogonal (see below), and Λ (the matrix of eigenvalues) is real.

For a general 2×2 matrix:

$$
\begin{gathered}
\mathbf{N}=\left(\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right), \quad \mathbf{V}=\left(\begin{array}{cc}
\alpha_{1} \gamma_{1} & \alpha_{2} \gamma_{2} \\
\alpha_{1} & \alpha_{2}
\end{array}\right), \quad \Lambda=\left(\begin{array}{cc}
\frac{N_{11}+N_{22}-\beta}{2} & 0 \\
0 & \frac{N_{11}+N_{22}+\beta}{2}
\end{array}\right), \\
\beta=\sqrt{N_{11}^{2}-2 N_{11} N_{22}+4 N_{12} N_{21}+N_{22}^{2}}, \\
\gamma_{1}=\frac{N_{11}-N_{22}-\beta}{2 N_{21}}, \quad \gamma_{2}=\frac{N_{11}-N_{22}+\beta}{2 N_{21}}, \quad \alpha_{1}=\frac{1}{\sqrt{\gamma_{1}^{2}+1}}, \quad \alpha_{2}=\frac{1}{\sqrt{\gamma_{2}^{2}+1}} .
\end{gathered}
$$

3.2. Singular vectors and singular values.

$$
\begin{aligned}
\mathbf{N V}=\mathbf{U} \Lambda, \quad \mathbf{N}^{\mathrm{T}} \mathbf{U}=\mathbf{V} \Lambda, \quad \mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}_{p}, \quad \mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}_{p} \\
\mathbf{N} \in \mathbb{R}^{m \times n}, \quad \mathbf{V} \in \mathbb{R}^{n \times p}, \quad \mathbf{U} \in \mathbb{R}^{m \times p}, \quad \Lambda \in \mathbb{R}^{p \times p}, \quad, p=\operatorname{rank} \text { of } \mathbf{N} .
\end{aligned}
$$

\mathbf{V} is the matrix of right singular vectors of \mathbf{N}, \mathbf{U} is the matrix of left singular vectors of \mathbf{N}, and Λ is the matrix of singular values of \mathbf{N}. The following eigenvalue equations exist for \mathbf{V} and \mathbf{U} :

$$
\mathbf{N}^{\mathrm{T}} \mathbf{N} \mathbf{V}=\mathbf{V} \Lambda, \quad \mathbf{N} \mathbf{N}^{\mathrm{T}} \mathbf{U}=\mathbf{U} \Lambda
$$

3.3. The rank of a matrix. The rank of \mathbf{N} is the number of independent rows or columns of \mathbf{N} (consider, e.g. the i th column of \mathbf{N} as vector \mathbf{n}_{i}). A column (or row) is dependent if it can be written as a linear combination of the other columns (or rows). The rank of a matrix is also the number of non-zero singular values of \mathbf{N}. The rank of a square matrix is also the number of non-zero eigenvalues.

4. Mean, (co)variance, correlation and Gaussian statistics

4.1. The variance, standard deviation and mean of a scalar. Consider a population of N scalars, $s^{l}, 1 \leq l \leq N$. The following are for the variance, $\operatorname{var}(s)$, standard deviation, σ_{s}, and mean, $\langle s\rangle$ (common notations are given) ${ }^{1}$:

$$
\begin{aligned}
\operatorname{var}(s)=\left\langle(s-\langle s\rangle)^{2}\right\rangle=\overline{(s-\bar{s})^{2}} & =\mathcal{E}\left((s-\mathcal{E}(s))^{2}\right) \approx \frac{1}{\tilde{N}} \sum_{l=1}^{N}\left(s^{l}-\langle s\rangle\right)^{2}, \quad \sigma_{s}=\sqrt{\operatorname{var}(s)}, \\
\langle s\rangle & =\bar{s}=\mathcal{E}(s) \approx \frac{1}{N} \sum_{l=1}^{N} s^{l}
\end{aligned}
$$

4.2. The covariance between two scalars. Consider two populations, each of N scalars, s^{l}, t^{l}, $1 \leq l \leq N$. The following is for the covariance, $\operatorname{cov}(s, t)$ (common notations are given) ${ }^{2}$:
$\operatorname{cov}(s, t)=\langle(s-\langle s\rangle)(t-\langle t\rangle)\rangle=\overline{(s-\bar{s})(t-\bar{t})}=\mathcal{E}((s-\mathcal{E}(s))(t-\mathcal{E}(t))) \approx \frac{1}{\tilde{N}} \sum_{l=1}^{N}\left(s^{l}-\langle s\rangle\right)\left(t^{l}-\langle t\rangle\right)$.
The covariance between two scalars can be negative, zero or positive.

4.3. The correlation between two scalars.

$$
\operatorname{cor}(s, t)=\frac{\operatorname{cov}(s, t)}{\sigma_{s} \sigma_{t}}, \quad-1 \leq \operatorname{cor}(s, t) \leq 1, \quad \operatorname{cor}(s, s)=1
$$

[^0]4.4. The covariance matrix between two vectors. Consider two populations, each of N scalars, $\mathbf{u}^{l}, \mathbf{v}^{l}, 1 \leq l \leq N$. The following is for the covariance matrix, $\operatorname{cov}(\mathbf{u}, \mathbf{v})$ (common notations are given):
\[

$$
\begin{aligned}
\operatorname{cov}(\mathbf{u}, \mathbf{v}) & =\left\langle(\mathbf{u}-\langle\mathbf{u}\rangle)(\mathbf{v}-\langle\mathbf{v}\rangle)^{\mathrm{T}}\right\rangle=\overline{(\mathbf{u}-\overline{\mathbf{u}})(\mathbf{v}-\overline{\mathbf{v}})}=\mathcal{E}((\mathbf{u}-\mathcal{E}(\mathbf{u}))(\mathbf{v}-\mathcal{E}(\mathbf{v}))), \\
& \approx \frac{1}{N-1} \sum_{l=1}^{N}\left(\mathbf{u}^{l}-\langle\mathbf{u}\rangle\right)\left(\mathbf{v}^{l}-\langle\mathbf{v}\rangle\right)^{\mathrm{T}} \\
(\operatorname{cov}(\mathbf{u}, \mathbf{v}))_{i j} \approx & \frac{1}{N-1} \sum_{l=1}^{N}\left(u_{i}^{l}-\left\langle u_{i}\right\rangle\right)\left(v_{j}^{l}-\left\langle v_{j}\right\rangle\right) \\
& \mathbf{u} \in \mathbb{R}^{m}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad \operatorname{cov}(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{m \times n}
\end{aligned}
$$
\]

If $\mathbf{u}=\mathbf{v}$, then $\operatorname{cov}(\mathbf{v}, \mathbf{v})$ is the auto-covariance matrix of \mathbf{v}, where $\mathbf{v} \in \mathbb{R}^{n}, \operatorname{cov}(\mathbf{v}, \mathbf{v}) \in \mathbb{R}^{n \times n}$. Diagonal elements are variances of each element of \mathbf{v}, i.e. $(\operatorname{cov}(\mathbf{v}, \mathbf{v}))_{i i}=\operatorname{var}\left(v_{i}\right)$.

4.5. The correlation matrix between two vectors.

$$
\begin{gathered}
\operatorname{cor}(\mathbf{u}, \mathbf{v})=\Sigma_{\mathbf{u}}^{-1} \operatorname{cov}(\mathbf{u}, \mathbf{v}) \Sigma_{\mathbf{v}}^{-1}, \quad \Sigma_{\mathbf{u}}=\operatorname{diag}\left(\sigma_{u_{1}}, \sigma_{u_{2}}, \cdots \sigma_{u_{m}}\right), \quad \Sigma_{\mathbf{v}}=\operatorname{diag}\left(\sigma_{v_{1}}, \sigma_{v_{2}}, \cdots \sigma_{v_{n}}\right) \\
(\operatorname{cor}(\mathbf{u}, \mathbf{v}))_{i j}=\frac{(\operatorname{cov}(\mathbf{u}, \mathbf{v}))_{i j}}{\sigma_{u_{i}} \sigma_{v_{j}}}, \quad \mathbf{u} \in \mathbb{R}^{m}, \quad \mathbf{v} \in \mathbb{R}^{n}, \quad \operatorname{cor}(\mathbf{u}, \mathbf{v}), \operatorname{cov}(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{m \times n}
\end{gathered}
$$

4.6. Gaussian/normal probability density function.

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{P})}} \exp \left[-\frac{1}{2}(\mathbf{x}-\langle\mathbf{x}\rangle)^{\mathrm{T}} \mathbf{P}^{-1}(\mathbf{x}-\langle\mathbf{x}\rangle)\right], \quad \mathbf{P}=\operatorname{cov}(\mathbf{x}, \mathbf{x})
$$

5. Fourier analysis

5.1. The Fourier transform. The real-to-spectral space transform in 1-D (1-D Fourier transform):

$$
\bar{f}(k)=\frac{1}{\sqrt{2 \pi}} \int f(x) \exp (-i k x) d x, \quad i=\sqrt{-1} .
$$

The spectral-to-real transform in 1-D (1-D inverse Fourier transform):

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int \bar{f}(k) \exp (i k x) d k
$$

The real-to-spectral space transform in d dimensions:

$$
\bar{f}(\mathbf{k})=\frac{1}{(2 \pi)^{d / 2}} \iiint f(\mathbf{x}) \exp (-i \mathbf{k} \cdot \mathbf{x}) d \mathbf{x}
$$

The spectral-to-real transform in d dimensions:

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}} \iiint \bar{f}(\mathbf{k}) \exp (i \mathbf{k} \cdot \mathbf{x}) d \mathbf{k}
$$

The Fourier transforms rely on the orthogonality relationships:

$$
\begin{aligned}
& \iiint \exp (i \mathbf{k} \cdot \mathbf{x}) \exp \left(-i \mathbf{k}^{\prime} \cdot \mathbf{x}\right) d \mathbf{x}=(2 \pi)^{d} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \\
& \iiint \exp (i \mathbf{k} \cdot \mathbf{x}) \exp \left(-i \mathbf{k} \cdot \mathbf{x}^{\prime}\right) d \mathbf{k}=(2 \pi)^{d} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
\end{aligned}
$$

and satisfies the convolution theorem:

$$
\int g\left(x-x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime} \quad \text { has Fourier transform } \quad 2 \pi \bar{g}(k) \bar{f}(k)
$$

5.2. Fourier series. Fourier series are the discrete versions of the Fourier transforms (real and spectral spaces comprising N discrete points). In 1-D:

$$
\begin{aligned}
& \bar{f}\left(k_{i}\right)=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} f\left(x_{j}\right) \exp \left(-i k_{i} x_{j}\right), \quad f\left(x_{j}\right)=\frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \bar{f}\left(k_{i}\right) \exp \left(i k_{i} x_{j}\right) \\
& \sum_{j=1}^{N} \exp \left(i k_{i} x_{j}\right) \exp \left(i k_{i^{\prime}} x_{j}\right)=N \delta_{i i^{\prime}}, \quad \sum_{i=0}^{N-1} \exp \left(i k_{i} x_{j}\right) \exp \left(i k_{i} x_{j^{\prime}}\right)=N \delta_{j j^{\prime}}
\end{aligned}
$$

Representing $f\left(x_{j}\right)$ as the vector \mathbf{f} and $\bar{f}\left(k_{i}\right)$ as the vector $\overline{\mathbf{f}}$ allows the discrete Fourier series, its inverse, and the orthogonality relations to be written compactly via an orthogonal matrix transform:

$$
\overline{\mathbf{f}}=\mathbf{F} \mathbf{f}, \quad \mathbf{f}=\mathbf{F}^{\dagger} \overline{\mathbf{f}}, \quad \mathbf{F}^{\dagger} \mathbf{F}=\mathbf{I}_{N}, \quad \mathbf{F} \mathbf{F}^{\dagger}=\mathbf{I}_{N}, \quad \text { where matrix elements } F_{i j}=\frac{1}{\sqrt{N}} \exp \left(-i k_{i} x_{j}\right)
$$

6. Variational calculus

6.1. Lagrange multipliers. Problem: find the stationary point of $f\left(x_{1}, x_{2}, \cdots x_{N}\right)$ subject to the constraint $g_{m}\left(x_{1}, x_{2}, \cdots x_{N}\right), 1 \leq m \leq M$. This problem has N degrees of freedom and M constraints. The constrained variational problem can be written as (f and g_{m} are implied functions of $\left.x_{1}, x_{2}, \ldots x_{N}\right)$:

$$
\frac{\partial}{\partial x_{n}}\left(f+\sum_{m=1}^{M} g_{m} \lambda_{m}\right)=0, \quad 1 \leq n \leq N
$$

where λ_{m} is the Lagrange multiplier associated with the m th constraint. This can be written in the following matrix form:

$$
\nabla_{\mathbf{x}} f+\mathbf{G}^{\mathrm{T}} \lambda=0, \quad \mathbf{x} \in \mathbb{R}^{N}, \quad \lambda \in \mathbb{R}^{M}, \quad \mathbf{G} \in \mathbb{R}^{M \times N}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{N}\right)^{\mathrm{T}}$ and $G_{m n}=\partial g_{m} / \partial x_{n}$.

[^0]: ${ }^{1}$ Sample variance and sample mean are those (approximate expressions) given in terms of a finite population (a sample). In the expression for the sample variance, $\tilde{N}=N$ if $\langle s\rangle$ is the exact mean, but $\tilde{N}=N-1$ if $\langle s\rangle$ is the sample mean.
 ${ }^{2}$ Sample covariance and sample mean are those (approximate expressions) given in terms of a finite population (a sample). In the expression for the sample covariance, $\tilde{N}=N$ if $\langle s\rangle$ and $\langle t\rangle$ is the exact means, but $\tilde{N}=N-1$ if $\langle s\rangle$ and $\langle t\rangle$ are the sample means.

