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The consistency of ensemble forecasts from three global miedh-range
prediction systems with the observed transition behaviourof a three cluster
model of the North Atlantic eddy-driven jet is examined. Thethree clusters
consist of a Mid jet cluster taken to represent an undisturbel jet, and a South
and North jet cluster representing southward and northward shifts of the
jet. The ensemble forecasts span a period of three extendednters (October,
November, December, January, February) from October 2007d February 2010.
The mean probabilities of transitions between the clustergalculated from the
ensemble forecasts are compared to those calculated from &-2xtended-winter
climatology taken from the European Centre for Medium-Range Weather
Forecasts 40-Year Re-analysis (ERA40) data-set. No evidsn of a drift with

increasing lead-time of the ensemble forecast transitionrpbabilities towards

values inconsistent with the 23-extended-winter climatalgy is found. The
ensemble forecasts of transition probabilities are foundd have positive Brier
Skill at 15-day lead-times. It is found that for the three-exended-winter forecast
set, probabilistic forecasts initialised in the North jet duster are generally less
skillful than those initialised in the other clusters. Thisis consistent with the
shorter persistence time-scale of the North jet cluster olsved in the ERA40 23-
extended-winter climatology. Copyright(C) 2011 Royal Meteorological Society
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Thisisa preprint of an article accepted for publication regime classifications such as Grosswetterlagen (Hess and
in Quarterly Journal of the Royal Meteorological Society Brezowsky 1952) aimed to provide a qualitative partiti@nin
Copyright ©2011 Royal Meteorological Society. of the observed atmosphere into a discrete set of flow
types, each associated with different weather conditions.
The advent of dynamical systems theory and the discovery

The concept of weather regimes has long been invol%dehaos (I'_orenz 1963) both debunked the atmospheric
to explain the perception that weather conditions app@éplogues idea and appeargd to prowde an explananpn for
to persist longer than the passage of individual systerH¥ €xistence of atmospheric regimes. In low-dimensional
This idea was initially closely related to the concept ¢ton-linear systems, the regimes are associated with stable
weather analogues: the assumption that similar largesd@r weakly unstable) equilibrium solutions to the dynarhica
flow patterns are associated with similar weather typeguations to which the state remains close. The wings of
and evolve in a similar manner. In this vein catalogues thfe Lorenz (1963) “butterfly” are the classic example of

1. Introduction
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this behaviour. Whilst there have been attempts to expl&lorth Atlantic sector and are designed to be representative
atmospheric regimes through equilibrium solutions to lowf the North Atlantic eddy-driven jet. The use of low-
dimensional atmospheric models (Charney and DeVdesel winds as a diagnostic is designed to separate the
1979; Crommelin 2003), the link to high-dimensionaddy-driven component from the subtropical jet, since
atmospheric Global Circulation Models and the actutile former is assumed to have a signal throughout the
atmosphere remains unclear. Regimes in such higlepth of the atmosphere, whereas the latter is assumed
dimensional systems are usually diagnosed from output d@tabe more confined to the upper-levels. The physical
by examination of probability density function estimatemotivation behind this assumption is the interpretation
for evidence of multi-modality (Woollinget al. 2010b; of the subtropical jet as a vertically confined upper-level
Ambaum 2008; Cortiet al. 1999; Silverman 1981) andbaroclinic jet in vorticity balance with the meridional
applying statistical techniques such as clustering (Smyterturning circulation. By contrast the eddy-driven jet
et al. 1999; Cassou 2008; Hannachi 2007; Franekel. is assumed to have a more barotropic structure reflecting
2009), rather than by analysis of the dynamical equatiathg tendency of synoptic eddies to reduce baroclinicity
themselves. by accelerating the westerly flow throughout the depth
One of the motivating factors for interest in regimesf the atmosphere (Hoskinat al. 1983). We define the
is their implications for predictability. These implicatis North Atlantic eddy-driven jet profile to be the zonally
are something of double-edged sword: on the one haadd vertically averaged zonal wind betwean= 300° and
knowing that you have entered a persistent regime = 360° East, and between thg = 700hPa andp,; =
may provide useful predictive skill for extended-rang&5hPa pressure surfaces, i.e.
forecasting, but conversely failing to accurately predict

a change of regime may lead to a significant loss 1 P2 Ao
in skill. One of the stated purposes of medium-range U,t) = 5 o> ulhe,p,t),
ensemble forecasting is to account for the possibility of PEA pmpi A=

small uncertainties in initial conditions leading to large

differences in forecast outcomes, due to the non-linedperes andt denote latitude and time respectively, a¥g
nature of the atmosphere. As such, if regimes (which are&tfl [V are the number of levels and grid-points betwgen
inherently non-linear phenomena) exist, ensemble fotecadpz, andA; and\, respectively.

should, by design, be able to capture the transitions The three jet clusters are identified by K-means
between them. Regardless of the existence (or not)csstering (Jain 2010) with three degrees of freedom,
atmospheric regimes, cluster analysis provides a lo@pplied to daily mean jet profiles calculated for ERA40
dimensional approximation to the atmospheric phase spaiia (Uppalaet al. 2005) covering the extended winters
which optimally characterises the broad characteristiéactober, November, December, January, February) from
of atmospheric data with respect to a chosen measupetober 1978 to February 2002. The operation of K-means
This paper addresses the question of whether operaticialthe data may be summarised as follows. With the
medium-range ensemble forecasts replicate the statis@igice of three degrees of freedom, the K-means algorithm
and predict the future state of such low-dimensionglentifies three jet profile cluster centroids which define a
representations of the atmosphere. This is approachédtitioning of the jet profile data into three clusters. The
by examining the ability of the global 15-day ensembfartitioning is defined such that each jet proflgg, t), is
forecasts from three different forecasting centres takakpcated to the cluster whose centradid,(¢), it is closest
from the Thorpex Interactive Grand Global Ensembte in the squared Euclidean norm,

(TIGGE) dataset (Parket al. 2008) to replicate the

transition statistics of a three cluster model designed to 5 ¢z )
characterise the behaviour of the North Atlantic eddy-efiv U=U* = > (U,t) = Ue(9)”
jet (Woollingset al. 2010a). The ensemble forecasts used p=¢1

in the study come from the European Centre for Medium- . ) . ) )
Range Weather Forecasts (ECMWF), the (UK) Met officéhe K-means algorithm identifies the three centroids which
and the Meteorological Service of Canada (CMC). F8inimise the sum of the squared Euch'dean distances of all
details on the forecast models and data the reader is refelfé Profiles from their respective centroids. ,
to http://tigge.ecmwf.int. Figure 1 shows the three cluster centroids which are
The rest of the paper is divided into four sectionibelled South ('S’), Mid ('M’) and North ('N’) to reflect
Section 2 provides an introduction to the three NortRe latitude of the wind maxima associated with each.
Atlantic eddy-driven jet regimes and the clustering meth&dgure 2 shows composites of 500hPa geopotential height
used to identify them in forecast data. Section 3 contains@Pmalies obtained from the mean over all days allocated to
examination of the ability of the forecast models to reiica®@ch regime in the 23-extended-winter climatology. These
the climatological probabilities of regime transition. 1§0MPosites also show a close qualitative similarity to éhos
Section 4 the skill of the forecasts in predicting reginfePtained by Woollingset al. (2010a) using the latitude
transitions is assessed. A summary and conclusions @rdhe maximum of the zonal jet profile to partition the

contained in Section 5. data. The Mid and South jet composites are reminiscent of
the positive and negative North Atlantic Oscillation (NAO)
2. Cluster and transition probability definition regimes identified by Cassou (2008).

The choice of the number of degrees of freedom
Following Woollingset al. (2010a) we decompose the lowfor the K-means algorithm can be somewhat arbitrary
level zonal wind in the North Atlantic sector into thre€Christiansen 2007), particularly for atmospheric data
possible jet configurations. These three configurations areich does not usually provide strong evidence of multi-
identified from low-level zonally averaged zonal wind in thenodality; e.g. Stephensaat al. (2004), Ambaum (2008).
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In the case of the work presented in this paper the choice Since a single ensemble forecast contains multiple
of the number clusters is based on both the eviderestimates of the atmospheric state at a lead-timet
of three preferred jet locations presented by Woollings possible to use the ensemble to calculate probabilities
et al. (2010a), and by the more heuristic argument that th&individual events. The simplest strategy for converting
three clusters appear to adequately capture the quaditaémsembles into a probabilistic prediction of a categorical
behaviour observed in time-series of the jet prdfileHere event is to use the fraction of the ensemble for which
the cluster analysis is not intended to provide evidente event occurs as an estimator. For TIGGE ensemble
of multimodality but rather to provide a simple means dérecasts we define the predicted probability of membership
characterising the variability of the jet which can be réadiof the clusterB at lead-timer to be the fraction of the
applied to forecast data. ensemble in clusteB at lead-timer. For an ensemble
The choice to use jet profiles to partition the data rathfarecast with initial analysis in clusted, the predicted
than a partitioning based on the jet maxima, as might peobability of membership of clusteB at lead-timer is
suggested by the work of Woollings al. (2010a), is made taken as analogous to a predicted transition probability
because it is found to produce much greater consisterity_. 5(7); note that this definition ignores the fact that
when applied to different datasets. As a test of consistenagiding perturbations to the initial analysis to create the
the K-means algorithm was applied to jet profiles fromnsemble of initial conditions means that not all ensemble
the National Centers for Environmental Prediction (NCER)embers are guaranteed to initially be in cluster
reanalysis (Kalnayt al. 1996) for the same 23 extended-
winters, producing cluster centroids with mean-squar8d Comparison of ‘climatological’ transition
difference (normalised by mean-squared amplitude) frqerobabilities from forecasts with reanalysis
the ERA40-derived clusters- 0.01 (once the centroids . ) )
were interpolated onto the same grid) an85% agreement The first question to ask when assessing whether the
in the allocation of data to clusters. By contrast, tests of korecasting systems are able to replicate the observed
means and Gaussian mixture models applied to the latit@di¢stering behaviour, is whether their statistics lie with
of the jet maxima could 0n|y produ(}e 75% agreement the bpunds of the observed Cllmatology TO answer this
between the allocation of the data to clusters. The greslgestion, we compare transition probabilities calculated
consistency between the clustering of the two datasets wH&Hg the 23-extended-winter ERA40 climatology (ONDJF,
jet profiles data is used is probably attributable to tféctober 1978 to February 2002), to those calculated using
fact that the K-means algorithm picks out the large-scdfyee extended-winters of TIGGE operational analyses
structure of the jet profiles and is therefore less sensitive(ONDJF, October 2007 and February 2010), and those
noise and resolution. obtained by averaging the predicted transition probadslit
The result of the K-means clustering is that the ERA4PM TIGGE ensemble forecasts for the same three
jet profile datal/ (¢, ¢), is reduced to an indicator variable€xtended-winters.

Xt, which takes one of the Va|u& M or N depending on Figure 3 shows the transition prObabiIities calculated
which cluster the Jet be|ongs to at tinnel.e. from the ERA40 data (tthk solid IinES), and those
calculated from TIGGE ECMWF operational analysis data

X (U(¢,t)) = argmin {|U — U.|*} . (thick dashed lines); note that the use of Met Office and

e=5,M,N CMC analyses rather than those from ECMWF is found

iR make negligible difference to the results. To give an

The TIGGE dataset is reduced to a similar form using tmdication of how much transition probabilities calcukhte

cluster centroids obtained from the ERA40 data.

To gain some insight into the manner in which the jé
moves between clusters in time, and to facilitate comparis
between analyses and ensemble forecasts, we defl
a lagged conditional probability of cluster membersh
between two clusterd andB as

om a three-extended-winter sub-sample are expected to
eviate from those of a longer term climatology, the
rey shading shows a relative frequency histogram of
e transition probabilities calculated using three-edles-
inter sub-samples of the ERA40 data. The three-extended-
winter sub-samples are overlapping. Each sub-sample
Pip(t)=P(Xpyr =B| X, = A). comprises adjacent winters as this most closely resembles
the nature of the three-extended-winter TIGGE dataset. For
This is the probability that the jet belongs to clustgrat each transition probability’4_. 5, the thin horizontal black
time ¢ + 7 given that it belonged to clustet at time¢. line indicates climatological occupandy(X = B), of the
This probability measure takes no account of the valkiescluster B calculated for the ERA40 data; i.e. the total
takes in the time interval betweeérmndt + 7. Despite this, fraction of the ERA40 data in clustés.
for small 7, one can loosely interpret thBy_ 4(7) as a The smallest values of for which the ERA40 tran-
probability of A persisting forr days, andP4_. 5 (7) as the sition probabilities (thick solid lines) intersect theroh-
probability of transition fromA to B in time 7. For this tological occupancy indicates the timescale over which the
reason and for concision we shall refer to the probabilitizansition probability converges to the climatologicatoe
P4 p loosely as transition probabilities. pancy; this may be thought of as the timescale over which
Given a time-seriesX;, the transition probability knowing the state at time provides no more information
P4 . p is estimated by the following steps: take the indicedout the state at + r than could be inferred by the
of the subset of all time-points for whick; = A; count climatological occupancy. Comparing the climatological
the numberN 4, of data points in the the subset; shift theansition probabilities (thick solid lines), with the wia-
indices of the subset forward by, count the number of tological occupancy (thin horizontal lines), it is evidéimat
data pointsN, in the forward-shifted subset which belongransition probabilities involving only the South and Mid
to cluster B; the transition probability is then given byclusters (Ps—s, Ps—ar, Pvi—s, Py—as ) remain notice-
Ps_.p=Np/Na. ably different from the climatological occupancy out to 15
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days. In fact with further analysis (not shown) it is foundrobabilities. Whereas at long lead-times the mean
that 7 needs to be longer thakn 30 days before the two ensemble predicted transition probabilities tend to bseclo
lines intersect. This is consistent with the South and Mid or somewhere between the ERA40 climatological mean
clusters being related to the negative and positive phdseamd the TIGGE analysis transition probabilities; see for
the NAO, which is known to possess a long decorrelatiexampleA Py _. x. This is consistent with a gradual loss of
timescale (Ambaum and Hoskins 2002; Keedegl. 2009). skill/predictability over the course of the forecast ldade.
By contrast transitions involving the North clustéts(.n, APy_.gs is a particularly striking example in that the mean
Py—n, Pv—s, Pv— . Pv—n) approach very close to orpredicted transition probabilities from all three foretag
intersect the climatological occupancy within 15 days. centres follow TIGGE analysis transition probabilities up
The variation in the transition probabilities calculatetb about - =7 days, then drift back to the ERA40
using different three year periods of the ERA40 data (greymatological value by day fifteen.
shading) is large. This large variation means that one can
reasonably expect the transition probabilities calcdlatg. Skill of TIGGE forecast transition probabilities
using three years of TIGGE data to differ significantly
from those of the longer term ERA40 climatology. Thith Section 3 it is shown that there is no evidence of a
is born out by the thick dashed lines in Figure @rift of the mean TIGGE forecast transition probabilities
which show the transition probabilities calculated usirigwards climatologically inconsistent values. It is found
the ECMWF operational analysis data from the TIGGEther, that the behaviour of the forecast transition
data. However, despite their deviation from the longrobabilities with increasing lead-time is consistenthvat
term climatology, the transition probabilities calcuthtedrift toward climatological values consistent with loss of
using the TIGGE analysis do not lie beyond the greyredictability/forecastskill. To assess the skill of tH&EGE
shaded area and are therefore not unprecedented giverfdtecast transition probabilities we will utilise the Brie
ERA40 climatological record. Whether the variation dbkill Score (Brier 1950). The Brier Skill Score provides
the transition probabilities calculated for three-extead a means of assessing the quality of probabilistic forecasts
winter periods should be interpreted as sampling error,afrcategorical (‘yes/no’) events relative to some baseline
as non-stationarity in the statistic itself are beyond timeethod of forecasting. This baseline forecasting method is
scope of this work. The primary focus is the assessmeasually taken to be repeatedly issuing the climatological
of the consistency of the ensemble predicted transitiprobability of the event. The Brier Skill Score (BSS) is
probabilities with those of analysis/re-analysis. defined in terms of the ratio of the Brier Score (BS) for the
To see clearly the relationship between the TIGGHo forecasting methods
ensemble predicted transition probabilities and those

calculated from the ERA40 and TIGGE analysis data, BSS_ | _ _BS 1)
Figure 4 shows the deviations, n BStiim
APs_p=Pa_p— Pj'iEB, such that a score of one implies perfect skill and scores less

N . than or equal to zero imply one would be better or no worse
of transition probabilities, P4, from the values, off simply issuing the climatological probability of the
PE'™My, calculated using the 23-extended-winter ERA48ent instead of attempting to produce a more informative

climatology. The thick solid line showind P4 .5 = 0iS forecast. The Brier Score is defined
analogous to the thick solid line in Figure 3. Consistent

with Figure 3 the grey shading shows a relative frequency 1 s

histogram of transition probability deviations calcuthte BS= — Z(fi —0;)%;

from three year sub-samples of the ERA40 data, and Ny i=1

the thick dashed line shows the transition probability

deviations calculated from the TIGGE ECMWF operationalhere N is the number of forecastg; is thei'" forecast

analysis data. The crossed, circled and asterisked lipggbability of the event, and the outcome

show the mean (over the TIGGE dataset) predicted

transition probability deviations for the ECMWF, CMC, and 0 — { 1, eventoccurs

Met Office ensemble forecasts respectively. Two general 71 0, eventdoes notoccur.

points stand out in Figure 4. Firstly, at no point do

the mean predicted transition probabilities deviate fmrthForecasting high probabilities for events that occur amd lo

from the ERA40 climatological transition probabilitiesth probabilities for events that do not occur reduces the Brier

would be expected given variability associated with threSeore. Note that BS is defined such that it is decreased by

extended-winter sub-samples; i.e. the mean deviationneéking better forecasts, whereas for BSS (1) the converse

the predicted transition probabilities remain on the gréytrue.

shaded area. Secondly, large deviatiodsP}_.p = 0.1) The Brier Skill Score for each of the possible forecast

of mean predicted transition probabilities frofy_,p are transition probabilities is calculated using the ERA40

closely associated with large deviations of the TIGG&imatological transition probabilities as the baseline

analysis transition probabilities; see for exam@l®s .s method of forecasting. The TIGGE forecast transition

and APs_.),. Considering both these points, Figure grobabilities,P4_.5(7), are defined as described in Section

provides no evidence of the forecast transition probaduslit 2, but for clarity the method is briefly summarised here.

drifting towards unphysical climatological values overs 1 The forecast probability of being in clustés at lead-

day lead-time. time 7 is calculated as the fraction of the ensemble in
At short lead-times the mean predicted transitiarluster B at lead-timer. The initial cluster @) and

probabilities tend to follow the TIGGE analysis transitiothe verifying outcome are defined from the ECMWF
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operational analyses. To avoid bias in favour of any ogeantitatively accurate (calibrated), the plotted poimiié
centre, only forecasts for which the initial and outcome exactly on the diagonal. Vertical and horizontal lines
cluster were the same for the analyses from all forecastimgrk the climatological probability of each transitiondan
centres were used to assess the skill, although this decisfte grey shaded area marks regions associated with positive
was found to have negligible impact on the results. Tleentribution to the Brier Skill Score. It should be notedttha
Brier Skill Score versus lead-time are shown in Figure 5. in Figure 6 the horizontal/vertical lines and grey shadireg a

A noticeable feature of Figure 5 is the high degrgsiotted for day fifteen values, although from Figure 3 it can
of similarity in the manner in which the skill of the threée seen that day ten values would not be markedly different
different forecasting centres changes with lead-time. Timemost cases. The bar chart beneath each diagram shows
similarity of the skill scores provides evidence for ththe number of forecasts in each probability bin at day 10
general applicability of the results to recently/currgnt{open bars) and day 15 (shaded bars). For a full discussion
operational forecasting systems. The fact that they aregigeliability diagrams, the reader is referred to Murphgian
similar, even containing similar ‘boumps’ and ‘wiggles’de. winkler (1977), Hsu and Murphy (1986).
at nine days forPy;.s), is an indication that the scores | goking first at the reliability diagrams for transitions
may be strongly influenced by individual synoptic evenigsm the North jet cluster, the forecast transition
which occurred during the TIGGE period. A clear examp|§opapilities are more densely concentrated near the

of this (not shown) is that removal of a large section @fimatological values at day fifteen (filled bars) than
data from the winter of 2009-2010, during which the flowy, qther transitions. This greater contraction of the

was characterised by a persistent southward shift of fagecast transition probabilities to climatological vedu
jet or negative NAO (Cattiaut al. 2010), removes muchig cqonsistent with the shorter timescale over which the

of the skill of forecasts initialised in the South jet cluste=pa40 climatological transition probabilities involving
(Ps—s, Ps—u, Ps—n) beyond about seven days. Thegye North cluster become equal to the climatological

sensitivity to the removal of long persistent sections @f t..,hancy (Figure 3). For transitions from the North to
data, serves to highlight the fact that the statistical @81 g i jet cluster, flatness of the day 15 reliability curve
of freedom of the Brier Skill Score for the forecast trarsiti olid line) betweerPy . — 0 and Py . — 0.5 relative

probabilities is likely to be smaller than the number the da ; ; :
; X y 10 curve (dashed) is consistent with over
forecasts in the TIGGE dataset. This means that we shog ‘iiimation of the transition probability in the forecasts

not assume that the performance of the TIGGEforecast%?npared to the analyses, and with the drift the mean

representative of a larger population of forecasts. Howe\ﬁGGE f " e
; . ; . orecast transition probabilities to the ERA40
using the Brier Skill Score to verify the TIGGE data aIIOWélima\tological transition probabilities seen in Figure 4.

us to distinguish between skillful forecast probabilitiel§Or Ps_.s the skill of the TIGGE forecasts is associated

and ensembles constructed by drawing randomly frqm . g . e

clmatdogia siatsics s long 23 we remember oSS WD secisel predetng very hoh tansion
BS and hence BSS are conditionally distributed on the o y
Véry low probabilities for transitions that do not occur€Th

outcomes;; e.g. Ferro (2007). L - ; ;
The broag feature(s of Izigure 5 are that all differeS8Y 15 reliability curve (solid line) is, however, fairly fla

o ; . . : - betweenP, =0.1andP, = 0.7. This is consistent
transitions are skillfully predicted in the first few daystvi > 9= S5 . ;
skill dropping off quite sharply after about three to fivith skill in TIGGE forecasts ofPs_.s being associated

days. Several of the transitions show a distinct reducti}ffl? @ long-lived predictable Southward shift of the jet in

; : : ; i winter 2009/2010. A noticeable feature of Figure 6 is that
in the rate at which skill falls off with lead-time afte;gnsistent with them being more skillful) the TIGGE day

about seven to ten days. This feature is most apparen |3 " -
y bp forecasts of the probability of transition from the Mid je

transitions involving the South and Mid clusters, and le loselv foll h
apparent in those involving the North cluster (particylarFlUSter €ar—s, Prr—ar, Prr—n) more closely follow the

transitions between North and South). At long lead-timg&gonal than forecasts initialised in other clusters.

(days thirteen-fifteen), the forecasts initialised in thartN Another means of assessing the quality of probabilistic
jet cluster are less skillful than those initialised in treugh forecasts of categorical events is the Receiver Operating
and Mid jet cluster. The skill of predictions of transitioreharacteristic (ROC) curve (Mason 1982; Buizza and

between the South and North clustéts(. ) is also low Palmer 1998). The ROC curve provides a means of
relative to the other transitions. assessing the ability of a forecast system to discriminate

To examine further the possible reasons for ttRetween the occurrence and non-occurrence of an event

differences between the skill of predictions of the differeWhich is largely independent of forecast calibration
transitions, Figure 6 shows a reliability (or attribute)Viatcheslav and Zwiers 2003); i.e. whether the forecast
diagram computed for day 10 (dashed line) and day REpbability matches the observed relative frequency. To
(solid line) of the ECMWF forecasts (similar diagrams fotalculate a single point of the ROC curve one selects a
the other centres produce qualitatively similar resulige  probability threshold which the forecast probability oéth
reliability diagram provides a graphical means of assgssgvent must exceed before the event is predicted to occur.
whether the predicted probabilities of an event correspoRide hit rate (HR) and false alarm rate (FAR) for this
to the observed frequency. To construct the diagram, e#lateshold are then respectively defined as the frequency
forecast is allocated into one of a set of discrete bipg occurrence and the frequency of non-occurrence of
depending on the forecast probability. For each forec#se event when it is predicted to occur. The ROC curve
probability bin the observed relative frequency (the ageraconsists of HR plotted against FAR for all such probability
of the outcome variable; for all the forecasts in thethresholds in a discritization of the range 1]. The area
bin) is calculated. The observed relative frequencies areder the ROC curve (AUR) is an associated measure of
then plotted against the forecast probability so that (farecast skill, with AUR= 1 corresponding to perfect skill,

a large enough sample) if the forecast probabilities ard AUR= 0.5 corresponding to no skill.
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5. Summary and Conclusions
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Figure 1. Jet profile cluster centroids obtained by K-means cluggefivith three degrees of freedom) of ERA4O jet profile dateecimg 23 extended-
winters (ONDJF) from October 1978 to February 2002.
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Figure 2. Composite of ERA40 500 hPa geopotential height anomaliesilezed from all ONDJF days (October 1978 to February 2@0i2gated to
each of the three jet profile clusters. From top to bottom INf&t days, Mid jet days and South jet days. Contour interv@bim; shading indicates
positive (anti-cyclonic) values; the thick line is the zeantour. Latitudinal grid lines every5°. Longitudinal grid lines everg0°.
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Figure 3. Estimated probabilities of transition between the clssiér M andS versus lag. Thick solid line: 23-extended-winter (ONDJEtdber 1978

to February 2002) ERA40 climatological transition proliébs. Thin horizontal line: ERA40 23-extended-winteinthtological cluster occupancy.
Dashed line: operational analysis from TIGGE data (ONDJ®ker 2007 to February 2010). Grey shading: relative fraquéistogram of transition
probabilities obtained from three-extended-winter saimsles of the ERA40 data (zero values shown in white).

Copyright(© 2011 Royal Meteorological Society Q. J. R Meteorol. Soc. 00: 1-7 (2011)
Prepared using gjrms4.cls



0 0.25 0.5 0.75 1

Figure 4. Deviation of transition probabilities from ERA40 climatgjical values. Dashed line, TIGGE operational analysissiten probabilities
(ONDJF: October 2007 to February 2010). Asterisked, cbasel circled lines: mean forecast transition probabdliftem the three forecasting centres
(ONDJF: October 2007 to February 2010). Grey shading:iveldtequency histogram of transition probabilities ob&l from three-extended-winter

sub-samples of ERA40 data (zero values shown in white).
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Figure 5. Brier Skill Score as a function of lead time computed for jiret transition probabilities derived from TIGGE enseenturecasts (ONDJF,
October 2007 to February 2010). The Asterisked, Crosseantéd lines show the different forecasting centres.
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Figure 6. Reliability diagrams (see text) computed for 10 day (dadheg) and 15-day (solid line) lead ECMWF forecasts (ONDJEtdber 2007

to February 2010). The number of data points in each prababih are shown in the bar charts beneath each diagram:adeshbars show 10 day
lead-time results; shaded bars show 15-day results. B3@s/ahown are ordered 10 day, 15 day. Grey shading indicegésns which contribute
positively to the Brier Skill Score at 15-day lead-times.
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Figure 7. ROC curves computed for 10 (dashed line) and 15 (solid liag)ldad ECMWF forecasts (ONDJF, October 2007 to Februar2@UR

values are shown are ordered 10 day, 15 day.
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