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Abstract 
 
The skill of medium range (3-16 days) weather forecasts has increased dramatically in the 

past decade or so. However, the focus amongst the meteorological community has primarily 

been on improving the forecasts of certain meteorological variables in their own right. Whilst 

this approach is perfectly valid from a scientific point of view, end users mostly do not judge 

a weather forecast in terms of meteorological criteria, but in terms of how it will aid their 

decision-making process, and ultimately, how much money the forecast will make or save 

them. The value of a forecast may differ radically between users, owing to their individual 

needs, response-variable models and decision-making processes. Hence, an integrated end-to-

end approach of forecast development, as well as skill and value assessment from the 

viewpoint of the end user is essential. Motivated by these issues, this study applies medium 

range temperature forecasts produced by the European Centre for Medium Range Weather 

Forecasts (ECMWF) and the National Centers for Environmental Predictions (NCEP) 

ensemble systems in end-to-end forecasting and decision-making processes of a specific user 

in the highly weather-dependent natural gas industry in Prague, the Czech Republic. Both 

user-specific skill and value of the forecasts are assessed. This study also innovatively 

contributes to the general issue of forecast calibration research. It is the first study to analyse 

forecast data from two different numerical weather prediction models, both comparatively as 

well as jointly, by extending the multi-model concept used in other areas of meteorology to 

location-specific medium-range temperature and user-response-variable forecasts. It applies 

commonly used post-processing methods, which have mostly been developed and tested 

exclusively on London Heathrow temperatures, to a different location. The following key 

findings were made: Ensemble forecasts add considerable skill in deterministic predictions of 

gas demand. The ECMWF’s Gain over climatology in the 2004-2005 heating season is 3.8mil 

m3 (~14.1% of mean daily weather-dependent demand) at a lead time of 1 day and 1.8mil m3 

at a lead time of days 10. Employing multi-model methods further enhances deterministic 

skill by up to 0.2mil m3 up to a lead time of 7 days. Commonly used post-processing methods 

applied at other locations do not enhance the deterministic skill of  Prague temperature and 

gas demand forecasts. Deterministic forecasts produced from the ECMWF ensemble add 

value to the decision-making process of gas demand nominations, especially at longer lead 

times, generating profits of almost 1 mil. currency units at lead 1, and around 62 mil. currency 

units at lead 10 over the 2004-2005 heating season. Probabilistic information contained in the 

raw ensemble spread adds only limited additional value to this specific application 

(approximately 100000 currency units at lead 1, and 340000 currency units at lead 10). Future 

research into forecast calibration is essential to determine whether this can be further 

increased. 
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Chapter 1: Introduction 
 

The skill of medium range (3-16 days) weather forecasts has increased 

dramatically in the past decade or so (Rodwell and Doblas-Reyes, 2004), especially 

with the improvement of dynamical models, greater computing power, and the advent 

of ensemble prediction techniques. As Palmer (2002) notes, the focus amongst the 

meteorological community has primarily been on improving the forecasts of certain 

meteorological features (e.g. 500mb geopotential height) in their own right, and 

measuring increases in forecast quality purely with regard to these variables.  

Whilst this approach is perfectly valid from a scientific point of view, it does 

not necessarily aim to optimise, nor quantify the value a specific forecast has to an 

end user. In addition, Jewson (2004b) points out that forecast quality has mainly been 

measured with metrics devised and used by meteorologists, though not broadly known 

to or accepted by forecast users who pertain to other disciplines (e.g. economics). 

Thus, this does not enable a decision-maker in a weather dependent industry to 

determine if or how a specific forecast product can improve a commercial decision, 

which could make or lose the company millions. End users mostly do not judge a 

weather forecast in terms of meteorological criteria, but in terms of how it will aid 

their decision-making process, and ultimately, how much money the forecast will 

make or save them. Hence, what is required is an integrated end-to-end approach of 

forecast development and value assessment from the viewpoint of the end user.  

Fulfilling this aim requires identifying the needs of the specific user, 

developing a tailored forecast product, and demonstrating how the product can be 

applied to provide value to the user. This necessitates close quantitative cooperation 

between forecast providers and forecast users. Forecast providers must understand the 

weather-sensitivity and decision-making process of the user in order to produce and 

format the forecast in a manner that will yield the maximum benefit to the user at an 

acceptable cost, whilst users must understand how to apply and interpret the forecast. 

Though seemingly simple, this can prove to be difficult. In some cases users do not 

even know their precise quantitative exposure to weather, let alone how to relate 

forecast information to their decision-making process. This is especially the case with 

probabilistic forecasts (Palmer, 2002). However, the greatest obstacle is that owing to 

the pivotal importance of weather to some industries, their quantitative weather 
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exposure and decision-making processes are confidential and thus not accessible to 

forecast providers.  

 Whilst much effort and funding in the meteorological community is allocated 

to improving numerical weather prediction models, there is a widely held view that 

large amounts of untapped value lie in the output of currently available forecast 

systems (O’Neill pers. com., Palmer, 2002). Hence, the initial onus should be on 

analysing, post-processing and tailoring output of existing models with regard to user 

applications. Only then should conclusions be drawn on how to improve numerical 

weather prediction systems to benefit the user.  

Motivated by the points made above, this study applies medium range 

temperature forecasts produced by the European Centre for Medium Range Weather 

Forecasts (ECMWF) and the National Centres for Environmental Predictions (NCEP) 

ensemble systems in end-to-end forecasting and decision-making processes of a 

specific user in the highly weather-dependent natural gas industry. The end-to-end 

approach is crucial for two main reasons: 

1. The forecast user wants to know the goodness of a weather forecast in terms 

    of predicting a response-variable - the actual variable of interest. 

2. The user’s models of temperature response-variables as well as his or her  

decision-making models may incorporate lags, non-linearities and 

threshold. Therefore, the value of a temperature forecast cannot simply be 

inferred form a standard skill assessment or linear scaling of the 

meteorological forecast. 

In the case of gas demand, well-developed statistical models relating temperature, 

amongst other meteorological and non-meteorological variables, to gas consumption 

already exist (e.g. van den Berg, 1994). Hence, the weather-dependency of gas 

demand is already known. In addition, well-defined decision-making processes are 

also established. Hence, the key question at this point is how to best integrate weather 

forecasts into the user’s demand forecasting and decision-making processes. 

In this study, raw and post-processed temperature forecasts for Prague Ruzyne 

Station are used as an input to the company’s gas demand function to produce 

deterministic and probabilistic end-to-end ensemble gas demand forecasts for the 

Czech Republic. This was made possible by the unique situation of both a sufficiently 

long archive of past temperature forecasts, provided by Weather Informatics Ltd., as 

well as a realistic gas demand function being made available by RWE Transgas.a.s., 
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for the purpose of this study. The two principal aims are to determine and enhance 

forecast skill in predicting gas demand as well as forecast value when used in the 

company’s economic decision-making process, including the probabilistic 

information contained in the ensemble spread. The latter aspect is explored by an 

approach based on von Neumann and Morgenstern’s (1944) economic utility theory. 

This was made possible by having access to a realistic economic utility function used 

by the gas company. The study therefore sets out to answer the following questions:  

 

1. What is the deterministic skill of the ensemble mean of an end-to-end gas 

demand forecast using raw ECMWF and NCEP temperature forecasts? 

2. Can the deterministic skill be improved by post-processing methods? 

3. Can the deterministic skill be improved by combining NCEP and ECMWF 

forecasts? 

4. What is the economic value of using raw and post-processed deterministic 

and probabilistic forecasts in a decision-making process? 

 

Apart from integrating temperature forecasts into a realistic user-specific and user-

defined application, rather than using imaginary problems and scenarios devised by 

meteorologists, this study also innovatively contributes to the general issue of forecast 

calibration research. As far as the author is aware, it is the first study to analyse 

forecast data from two different numerical weather prediction (NWP) models, both 

comparatively as well as jointly, by extending the multi-model concept used in other 

areas of meteorology to location-specific medium-range temperature and user-

response-variable forecasts. This study also applies commonly used post-processing 

methods, which, in the literature, have mostly been developed and tested exclusively 

on London Heathrow temperatures, to a different location. 
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Chapter 2 reviews the underlying concepts of ensemble forecasting and multi-model 

forecasting.  

 

Chapter 3 summarizes the climate of Prague with regard to temperatures. 

 

Chapter 4 describes the modelling of gas demand and the methods employed in this  

study to produce an end-to-end demand forecast. 

 

Chapter 5 reviews the post-processing methods that are employed to calibrate and 

combine the temperature forecasts to produce a deterministic best estimate, as well as 

presenting the metrics used to assess the deterministic skill of end-to-end gas demand 

forecasts. Thereafter, results of the deterministic skill assessment of end-to-end 

demand forecasts for the Czech Republic using raw temperature forecasts, as well as 

three bias correction and two multi-model methods are discussed. 

 

Chapter 6 reviews methods for generating probabilistic temperature and end-to-end 

demand forecasts, as well as for calibrating the ensemble spread. 

 

Chapter 7 discusses the concept of economic value of weather forecasts and proposes 

the use of a method based on von Neumann and Morgenstern’s economic utility 

theory to distil and assess the value of probabilistic forecasts in a decision-making 

process. Thereafter, the results of a comparative value assessment of deterministic and 

probabilistic forecasts in the context of a decision-making process of the gas company 

are discussed. 

 

Chapter 8 draws conclusions from the study and suggests avenues to be explored in 

future research. 
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Chapter 2: Principles of ensemble and multi-model  
 forecasting 

 

In this study, temperature output from the European Centre for Medium Range 

Weather Forecasting’s (ECMWF) Ensemble Prediction System (EPS) (Persson, 2001) 

and the National Centers for Environmental Prediction (NCEP) Medium Range 

Forecast (MRF) (Kalnay and Toth, 1996) are used. They were chosen since they are 

the pre-eminent operational ensemble systems currently in use1. The EPS is widely 

believed to be the world’s leading medium range forecast system at present, owing to 

its superior modelling and data assimilation capabilities, as well as its large ensemble 

size (Buizza et al., 2005). Furthermore, the fact that an extensive archive of past 

forecasts was made available for this study represented an opportunity for a project 

investigating the socio-economic application of ensemble forecasts.  

Both the ECMWF’s EPS and NCEP’s MRF temperature forecasts are 

produced by Atmospheric General Circulation Models (AGCM), which use discrete 

numerical methods to solve the governing equations of atmospheric flow. The 

atmosphere is divided into a three-dimensional grid. For each gridpoint some 

variables, such as temperature, pressure, wind velocity and humidity are directly 

calculated, whilst other sub-gridscale variables and processes, such as clouds and 

rainfall, are parametrised (McGuffie and Henderson-Sellers, 1999). A comparative 

summary of the main specifications of the NCEP and ECMWF models is given it 

table 1.1. To obtain a point-specific forecast of temperature, model output must be 

downscaled to the location of interest. Several methods ranging from simply using 

raw model output to computationally intensive optimal weighting of output at 

surrounding gridpoints related to synoptic conditions and the location’s climate (e.g. 

kriging), have been proposed (Hervada-Sala et al., 2000, Gutierrez et al., 2004). 

Owing to the limited scope of this study, only the most commonly used method, linear 

interpolation of the 2m temperature model output of the four nearest gridpoints to the 

location of interest, is employed in the case of Prague Ruzyne. 

                                                                          
1 For a summary of the most up-to-date developments in ensemble forecasting, the reader is referred to 
the WMO website. Currently, the Japan Meteorological Agency and the Canadian Meteorological 
Centre also produce ensemble forecasts. The latter uses different model versions and assimilation 
processes to generate an ensemble, rather than simply perturbing initial conditions (Lefaivre et 
al.,1997). If archived forecast data were to become available, the potential benefits of using these 
models should also be investigated in future. 
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  ECMWF NCEP 
Horizontal Resolution T255 ~80km T126 ~160km 
Vertical Levels 40 28 
Temporal Resolution 15 mins 20 mins 
Lead Time 10 days 16 days 
Ensemble Size 51 12 
Method for generating Initial 
Conditions Singular Vectors Bred Vectors 

 
Table 1.1: Summary of some key characteristics of the ECWMF and NCEP  
ensemble systems (adapted after Buizza et al., 2005 and Toth et al., 2004). 
 

Owing to the chaotic nature of the atmosphere (Lorenz, 1969), the two main 

sources of error in medium-range forecasting are model error and uncertainty in initial 

conditions. Initial conditions represent the best-estimate of the actual state of the 

atmosphere at the time the forecast is initialized and are the product of observations 

and other shorter model runs conducted in the data assimilation process. Despite the 

great effort and expense devoted to the assimilation process (Lyster et al., 2004), 

uncertainty remains in the initial conditions, because of the paucity of and errors in 

observations. Due to the non-linear nature of atmospheric processes, small initial 

errors can grow rapidly with time and affect large scale flow, if they occur in sensitive 

areas of the atmosphere (Palmer, 2000). Hence, even a forecast using a perfect model 

of the atmosphere would, in the course of a few days, be spoiled by errors in the 

initial conditions. 

Ensemble forecasting addresses the problem of uncertainty in initial 

conditions by using samples within the range of uncertainty to initialize several model 

runs. For the EPS (Persson, 2001), a set of 50 initial conditions is generated for the 

northern hemisphere by adding small perturbations to the analysis within the limits of 

uncertainty.  These, as well as the unperturbed analysis are used to initialise the 51 

members of the ensemble, which are then integrated forward in time to produce a set 

of possible future states of the atmosphere. These perturbations are calculated by the 

singular vector technique, which identifies the regions of greatest dynamical 

instability, in which errors in the initial conditions would lead to maximal forecast 

divergence (based on a 48-hour model integration) (Buizza and Palmer, 1995). Thus, 

initial conditions are not chosen at random in a statistical simulation, but in a manner 

that will result in the maximum growth in ensemble spread (Palmer, 2002). 

Hemispheric structures which could generate significant forecast divergence are 
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produced from the leading 25 singular vectors. These perturbations are then mirrored 

by reversing their signs to give the total of 50 perturbations (Persson, 2001). In 

addition, the ECMWF employs stochastic perturbations of the model physics (Palmer, 

2002). According to Persson (2001), the skill of the EPS over Europe is largely 

determined by the ability of the system to identify uncertainties in upstream baroclinic 

development and model alternative development scenarios. For predicting European 

weather on timescales of a few days, for example, initial conditions over the Western 

Atlantic and US East Coast are important, whilst for timescales of a week or so, initial 

conditions over the Western US and North-Eastern Pacific are crucial.  

Initial conditions for the NCEP model are generated using the so-called 

breeding method. For a more detailed discussion the reader is referred to Toth and 

Kalnay (1997). 

 

2.1 Benefits of ensemble forecasting for temperature forecasts 
One aim of ensemble forecasting is to produce a better estimate of the most 

likely outcome by using the ensemble mean as a deterministic forecast rather than a 

single integration (Leith, 1974). When considering the allocation of limited 

computing time, a compromise has to be struck between augmenting model resolution 

and augmenting ensemble size. Taylor and Buizza (2004) observed that the best 

estimate derived from the EPS 51 member (T255 L40) ensemble mean showed higher 

skill than the ECMWF’s single high resolution (T511 L60, i.e. with a resolution of 

around 40km and 60 vertical levels) integration at all lead times. This was especially 

the case at longer leads. It must be noted, though, that other studies (e.g. Mailier, pers. 

com.) found the skill of the single T511 integration to be higher than that of the T255 

ensemble mean at short leads (up to around 2 days). Hence, it appears that a better 

representation of the atmosphere (given by a higher resolution model) is 

comparatively more important at short lead times than sampling errors in initial 

conditions. 

Figure 1.1, produced in this study, shows the plot of EPS Prague temperature 

Root Mean Squared Error (RMSE) of the ensemble mean, the unperturbed control 

member and perturbed members 1-4 against lead time (days). The ensemble mean 

exhibits the lowest RMSE at all lead times. At leads 1-3 the control member is as 
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skilful as the ensemble mean. However, with increasing lead time, the skill of the 

former decreases more rapidly.  

 

 
Figure 1.1:  Root Mean Squared Errors of the 2m temperature forecasts for  
Prague of the EPS ensemble mean, control and perturbed members 1-4  
against lead time (days) for the period October 2004 – March 2005.   

 

Although the control integration was run at the same resolution as all other 

members, (data from the T511 L60 run were not available to this study), this shows 

that using the ensemble mean increases skill vis-à-vis a single integration. The skill of 

the individual perturbed members is lower than that of the control run at all lead 

times, which brings into question the assumption (Persson, 2001) that all ensemble 

scenarios are equally likely. Mailier (2001) argues that giving the control integration a 

higher weighting could be justified, since it is initialised with the best estimate of 

initial conditions. 

A further benefit of ensemble forecasts, which a single deterministic forecast 

is by definition not able to give, is a qualitative as well as quantitative estimate of the 

flow-dependent uncertainty in the forecast (NCEP Ensemble Homepage). Whilst 

probabilistic forecasts can be generated using a deterministic forecast and adding a 

historical error distribution, this does not enable forecast uncertainty estimates to vary 

with atmospheric state. However, this information may be vital for a forecast user 

who is severely affected by extreme temperatures that occur during rapid transitions. 

The divergence of the ensemble members is dependent on the sensitivity of the 

atmosphere to slightly varied initial conditions at the point in time in question. For 

this purpose, information contained in the ensemble spread (e.g. frequency 

distribution of the ensemble members) can be used to estimate a probability density 
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function of temperature (Taylor and Buizza, 2004). Figures 1.2a and 1.2b illustrate a 

qualitative example of high and low certainty for Prague 2m temperatures, 

respectively. 

 
a 

                
b    

  
Figure 1.2: ECMWF Ensemble forecasts of Prague daily mean temperatures. 
a: Produced on 09.01.2004 - the narrow spread of the ensemble indicates  
high certainty in the forecast. b: Produced on 20.01.2004 - the wide spread  
of the ensemble indicates low certainty in the forecast. 

 

However, caution must be taken when interpreting the ensemble spread in a 

quantitative fashion. Several studies (e.g. Toth et al., 2003) have noted that 

recalibration of the spread is necessary in order to gain reliable probabilistic 

information. This is mostly due to the ensemble spread of both systems tending to be 

too narrow (observations at times fall outside the range of possible outcomes 
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predicted by the ensemble), indicating that not all of the uncertainties in the forecast, 

especially with regard to model error, are incorporated (Buizza et al, 2005). Toth et al. 

(2003) found that this underestimation of uncertainty increased with lead time. 

 

2.2 Multi-model forecasting  
The aim of multi-model forecasting is to reduce the second major source of 

error in numerical weather prediction - model error - by combining two or more 

models, which show similar levels skill on their own, but have different dynamics and 

physics. These technical differences tend to result in different strengths, weaknesses 

and biases in different synoptic conditions and geographical areas. Just like ensembles 

sample uncertainty in initial conditions, multi-model techniques sample model 

uncertainty.  

Mylne et al. (2002) showed that combining United Kingdom Meteorological 

Office’s (UKMO) Unified Model (UM) and ECMWF EPS model increased both 

deterministic skill of the ensemble mean (assessed by RMSE) and probabilistic skill 

(assessed by Brier score; Brier, 1950) at times when one of the two models performed 

poorly. This was attributed to the fact that the combination of the models was 

producing solutions synoptically more different than each individual system. The 

multi model ensemble almost always performed as well as the best individual 

ensemble and on occasions better than either of them. At times when the EPS 

performed well, adding ensemble members from an ensemble performing less well 

did not degrade overall skill. The relative performance of the two ensemble systems 

varied from day to day. Apart from increasing ensemble size, the ensemble spread 

was also more representative – more so than it was from increasing the number of 

ensemble members of the individual models.  

The benefits of multi model ensembles were found to be flow-dependent and 

to vary in time and geographically. The multi model technique was found to be 

especially beneficial in the northern hemisphere during the December to February 

period. This is encouraging for the potential usefulness of this approach in forecasting 

winter gas demand in Prague. To maximise the benefit of multi model forecasting, 

Mylne et al. (2002) recommend that the models used should exhibit similarly high 

skill individually and, in terms of their physics and dynamics, be as different to each 

other as possible, in order to increase the likelihood of one model doing well when the 
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other does poorly. Additionally, Mylne et al. (2002) state that using different 

operational analyses widens the sampling of analysis errors. This hypothesis cannot 

be tested in this study, since the necessary data are not available. In any case, 

perturbations generated for one model but input into a different model would produce 

sub-optimal results, since perturbations are generated to specifically maximise 

ensemble spread in the model they are generated for (e.g. singular vectors for the 

EPS, and breeding method for the MRF).  

Although the results from Mylne et al. (2002) are encouraging, their study 

only verified model fields with ECMWF analyses for MSLP, 500hPa geopotential, 

850hPa temperature, and 24 h precipitation accumulation, not with point-specific 

observations or a user response variable. Hence, this study will examine the multi-

model technique in the end-to-end demand forecasting process. Apart from the user-

specificity aspect, the need for verification with station data is compounded by the 

fact that analysis fields are widely regarded as being less accurate than ground 

observations (Jewson and Ziehmann, 2004). In addition, Mylne et al. (2002) only used 

a one year period of data and did not conduct any calibration of the forecasts. 

A hybrid of ensemble and multi model concepts is what Ziehmann (2000) 

terms a ‘poor man’s ensemble’. This consists of single unperturbed forecasts from 

different NWP centres. Applying this concept, Ziehmann (2000) found that despite 

the small size of the ensemble used and the lack of perturbations, this approach 

proved to be an effective way of generating ensembles compared with the EPS. Since 

only EPS and NCEP data sets are available for the current study, this approach cannot 

be explored. 
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Chapter 3: Temperatures at Prague 
 
 

Before attempting to calibrate and interpret temperature forecasts for a specific 

site, it is essential to consider the underlying climatic features of the location. In this 

study, temperature model output was downscaled to and verified with observations at 

Prague Ruzyne station (latitude: 50:06:03°N, longitude: 14:15:28°E, elevation: 364m 

asl, WMO number: 11518; see fig. 3.1). 

  

 

Figure 3.1: Map segment of Central Europe, showing orography surrounding Prague Ruzyne. 
(Produced for this study using MapInfo GIS. Data Source: Bartholomew Digital Data).  
 

Since the station is located near the runway of Prague airport (around 10 km away 

from major conurbations; source: Czech Airport Authority) the effects of urban heat 

islands and increasing urbanisation should not be of great concern.  

This area of Central Europe is influenced by both oceanic and continental air 

masses. Years with warm winters and cold summers coincide with decreased 

continentality of the European climate, whilst years with cold winters coincide with 

increased continentality (Kysely, 2002). Due to the influence of the Atlantic, 

extremely low temperatures are not as common in Central Europe as they are in North 



 13

America or Asia. However, during blocking conditions2, cold polar and continental air 

masses can penetrate into central Europe resulting in temperatures plummeting as low 

as 20°C below climatological average (Domonkos and Piotrowicz, 1998). In addition, 

the Czech Republic’s location near the source regions of strongly contrasting air 

masses, makes transient eddies an important feature for the advection of air masses 

with very different thermodynamic properties (Wallen, 1977). This is especially the 

case  during winter, when mean horizontal temperature gradients are stronger, leading 

to rapid transitions in temperature (Domonkos et al., 2003).  Figures 3.2.a and b show 

the mean December to February and June to August potential temperature at the 

1000hPa level. Potential temperature, rather than temperature was chosen, since it is 

independent of topography and thus gives a clearer indication of the thermal property 

of air masses. Apart from showing stronger gradients in potential temperature in 

winter, the plots indicate a more zonal gradient in winter and a more meridional 

gradient in summer. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                          
2 See section 3.2 for a discussion. 
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a 

 
b 

 
Figure 3.2: 1000hPa long term mean potential temperature fields over  
Central Europe. a: December to February (major contour intervals: 6 K).  
b: June to August (major contour intervals: 2 K). Source: NCEP Reanalysis. 

 
 
The intrusion of continental and maritime air masses is to some extent impeded by the 

mountain ranges (mostly with heights above 1000m) which almost completely 

surround the Western and Central part of the Czech Republic (see fig. 3.1). 

The complex orography of the Czech Republic can pose a problem for NWP 

models to simulate near-surface temperatures, as well as for point predictions made 
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by interpolation of gridpoint values (Kysely, 2002). In a study related to Sardinia, 

Italy, Boi (2004) notes that differences in elevation between the station of interest and 

the adjacent gridpoints, as well as unrepresentative boundary layer and land surface 

parametrisations can have a particularly pronounced effect on forecasts for locations 

surrounded by complex orography. In conjunction with this, radiative and thermo-

dynamic processes (e.g. strong horizontal variations in radiative fluxes and Foehn 

effects leeward of mountains) can become an issue for temperature forecasting at 

Prague.  

Although some maritime influence is evident, the climate at Prague is more 

continental than at London Heathrow. This can be observed by comparing the 

seasonal temperature cycles of the two stations (fig. 3.3). 
 a 

 
b 

  
Figure 3.3: Temperature climatology (a: at Prague Ruzyne, b: at London  
Heathrow) +- 1 standard deviation. Derived from 1961-2005 measurements. 
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Prague temperatures exhibit a higher standard deviation (5.5°C versus 3.5°C), and a 

stronger seasonal variation of the mean (19°C versus 12°C) and standard deviation 

(2.5°C versus 1.5°C). London Heathrow is used as a comparison since most 

assessments of skill and commercial value as well as associated post-processing 

methods of ECMWF temperature forecasts mentioned in the literature use data from 

London Heathrow. The issues raised in this chapter must be borne in mind, since the 

climate of a location may affect forecast errors and the performance of specific bias 

correction methods. 

 
3.1 Synoptic types 

Many attempts have been made to summarize synoptic situations on particular 

days in the form of weather types. For the British Isles some subjective (e.g. Lamb, 

1972), as well as objective (e.g. Jenkinson and Collison, 1977) categorisations exist. 

Although all approaches have severe weaknesses, some form of categorisation may be 

useful in relation to forecast calibration, since forecast errors may be dependent on 

atmospheric state. A commonly used classification of synoptic patterns over Western 

and Central Continental Europe are the Hess-Brezowsky circulation types 

(Gerstengarbe et al., 1999). Though originally devised for Germany, they were found 

to be useful for central Europe, since they refer to the large-scale circulation (Kysely, 

2002). The classification allocates the synoptic circulation on a particular day to one 

of 9 major and 29 minor circulation classes (HBCs) according to the degree of 

zonality, direction of the prevailing flow and cyclonicity/anticyclonicity (Domonkos 

et al., 2003). Domonkos et al. (2003) found a strong connection of HBCs to 

temperatures, especially in winter. For example, extreme winter cold events at Prague 

(defined as days with mean temperature < -5°C) were shown to have a strong 

correlation with meridional and anticyclonic situations. Most extreme cold events 

(1902 to present) occurred under anticyclonic northerly flow and were rare under 

westerly and southerly flow. However, in blocking situations, the location of the 

anticyclone relative to Prague is crucial in determining the direction of large-scale 

airflow. On its eastern side, for example, the flow is northerly, advecting cool air 

southwards. The mean residence time of HBCs is 4 to 7 days (Domonkos and 

Piotrowicz, 1998). Hence, this appears to be the typical timescale of major changes in 

temperature. It is worth noting, though, that the persistence of types has increased in 

the 1990s (Kysely, 2002). 
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3.2 Predictability of blocking 
Predicting transitions in weather regimes on timescales longer than 1 or 2 days 

is a major problem in the extratropics (Pelly and Hoskins, 2003). As noted above, 

these transitions can lead to very abrupt changes in temperature. Perhaps the most 

crucial transition is that into and out of blocking conditions. Blocking conditions are 

quasi-stationary synoptic-scale high pressure systems in the mid-latitudes with 

sufficiently large amplitude to disrupt the prevailing Westerly flow. Both model 

uncertainty and uncertainty in initial conditions have been found to put an upper 

bound of around 3 to 4 days on the predictability of blocking by single integration 

deterministic forecasts if blocking conditions are not already included in the analysis 

(Tibaldi and Molteni, 1990). However, since the ECMWF’s EPS is designed to 

sample uncertainty in initial conditions and thereby generate several possible 

scenarios of atmospheric development, it can provide a probabilistic estimate of the 

onset or decay of blocking. 

In an assessment of one year of operational probabilistic blocking forecasts in 

the Euro-Atlantic sector using an objective blocking index based on potential vorticity 

and potential temperature, Pelly and Hoskins (2003) found that the EPS was skilful at 

predicting the onset and decay of blocking conditions out to 10 days. The EPS was 

more skilful than the control integration at all lead times. With increasing lead time, 

though, the EPS forecasts tended towards the model’s climatology, which has a 

westerly bias and hence underestimates the frequency of blocking observed in reality. 

The EPS was more skilful at predicting the decay than the onset of blocking. This was 

related to the fact that the onset is usually very rapid and primarily controlled by 

synoptic and planetary scale dynamics, whereas the decay is usually less rapid and 

related to a spin-down or diabatic decay of the system. 
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Chapter 4: End-to-end gas demand forecasting 
 

A meaningful assessment of a forecast with regard to its skill in aiding the 

prediction of a non-meteorological response variable and, more importantly, with 

regard to the economic value the forecast can offer to its user, is only possible if a 

specific forecast application is considered in an integrated manner from the 

perspective of the user. Hence, this study analyses the specific application of ECMWF 

and NCEP ensemble temperature forecasts in end-to-end gas demand predictions in 

the Czech Republic and decisions based upon these predictions. This is achieved by 

integrating the temperature forecasts into the demand and decision-making models of 

the gas company.  

Accurate energy demand forecasts have become increasingly important to 

network operators and distributors alike due to increasing uncertainty in supply and 

demand, fiercer competition and thus smaller profit margins, as well as the need to 

wisely plan investment decisions (McSharry et al., 2005). Improved demand forecasts 

can help decision-makers in the energy industry reduce risks and increase efficiency. 

In addition, accurate demand predictions play a pivotal role in energy commodity 

trading. 

Natural gas consumption is highly weather dependent, since it is 

predominantly used for space heating. Temperature is the key parameter, though other 

meteorological factors such as wind speed and luminosity have also been found to 

affect demand (van den Berg, 1994). In addition, non-meteorological variables, such 

as economic cycles and trends, days of the week and fluctuating customer numbers, to 

name but a few, play an important role (McSharry et al., 2005). Since these variables 

are non-meteorological, they will not be considered in this study. Taylor and Buizza 

(2003) investigated the use of ECMWF model output of several meteorological 

parameters for electricity demand forecasting in England and Wales. However, this 

present study on gas demand will solely focus on temperature, since the version of the 

demand model available for this project only contains temperature as a meteorological 

variable. In any case, it is important to analyse the use of each meteorological forecast 

parameter individually at first, in order to determine its skill and value to the end 

user’s application.  
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Initially, gas demand must be related to temperature. Several approaches to 

demand forecasting exist, including time-varying splines, judgemental forecasts, 

artificial neural networks and multiple regression models (McSharry et al 2005).  In 

practice, most gas companies use regression models based on historical consumption 

data to predict future gas demand. However, Palmer (2002) notes that a major 

difficulty faced by academic researchers is the fact that most demand models are 

proprietary. Fortunately, this obstacle was overcome in the case of this study through 

close cooperation with the gas company. A simplified version of the gas company’s 

daily consumption model was made available and is given in eqn. 4.1: 

 

1 2ˆ 0.13 1.10* 0.14* 0.45*
1.71* ( ) 4.37*
i i i iG HDD HDD HDD

ln d day
− −= + + +

+ −
   , (4.1) 

 
where 
Gi     is the estimated gas demand on day i, 
HDDi    is the number of heating degree days on day i, 
HDDi-1    is the number of heating degree days on day i-1, 
HDDi-2    is the number of heating degree days on day i-2, 
ln(d)     is the natural log of the day, continuously numbered from 01.01.1996, and  
day     is a dummy variable set to 0 on working and 1 on non-working days. 
 

Unlike electricity demand, which tends to be quadraticly related to 

temperature (McSharry et al., 2005), gas demand generally exhibits a linear increase 

with decreasing temperature below a threshold temperature (Quayle and Diaz, 1980). 

Gas is only used for heating when temperatures are low, and not for cooling when 

temperatures are high. The energy industry generally uses a threshold of 18°C for 

trading and derivative contracts (Banks, 2001) and defines the Heating Degree Day 

(HDD) as  

 

(0,18 )i iHDD Max T= −  ,     (4.2) 

where 
iT  is the mean temperature on day i. 

 
However, thresholds for consumption may vary from one geographical location to 

another (Heerdegen, 1988, Boehm, 1989), and the threshold used in the Czech 

Republic is 18.3°C. Hence, the model uses HDDs instead of temperatures to exclude 

days with temperatures above 18.3° C. In addition, gas demand is not only affected by 
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temperature on the specific day of interest, but over several days preceding the day of 

interest. Therefore, lagged HDDs are included in the model. The temperature-

independent base-load is represented by the intercept term as well as the day variable, 

accounting for reduced consumption on non-working days, and the logarithmic trend, 

representing increases in demand over time due to economic factors.  

Similar to the study by McSharry et al. (2005), the demand model was 

developed with historical consumption data, using meteorological and non-

meteorological predictor variables. Subsequently, all variables unaffected by the 

weather (day and ln(d)) were taken out of the model, whilst leaving regression 

coefficients of weather-dependent variables unchanged. In this manner, the weather 

dependent, and thus weather forecast dependent, portion of demand could be analysed 

separately. 

Taylor and Buizza (2003) note, that “the expected value of a non-linear model 

of random variables is not the same as the non-linear function of the expected values 

of the random variables.” Although the above gas model is linear, it uses lagged 

HDDs with different weightings. This may affect the shape of the PDF of gas demand 

in ways that are different to merely a linear scaling of a temperature PDF derived 

from the temperature forecast for the specific day of interest. In the case of 

probabilistic forecasts, using an end-to-end approach in demand forecasting translates 

the uncertainty in the weather into future uncertainty in gas demand. Therefore, an 

end-to-end approach was applied in this study to assess the skill and value of the 

temperature forecasts for predicting gas demand. It was designed as follows:  

The 2m temperature values of each ensemble member for the four nearest 

gridpoints of the ECMWF and NCEP forecasts were linearly interpolated to Prague 

Ruzyne station (Norton, pers. com). Individual ensemble members were then 

converted into HDDs and used as input in the Gas Demand Model. At lead times of 

two days or shorter, a combination of forecasts and available observations were used. 

Gas demand calculated by running the demand model with observed temperatures 

was taken as actual demand against which the forecast could be verified, as done by 

Taylor and Buizza (2003) in their study on end-to-end electricity demand forecasting 

in the UK. 
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Since the temperature dependency of gas demand is highest during the heating 

season, this study investigated forecast performance for the period October to March 

(generally regarded as the heating season in the gas industry). The seasons of 2003-

2004 and 2004-2005 were used in the analysis. 
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Chapter 5: Deterministic skill assessment 
 

As set out in chapter 2, one of the aims of ensemble forecasting is to provide a 

superior estimate of the most likely outcome of a variable to be predicted. Hence, in 

this respect the mean of the ensemble gas forecast members is treated as a 

deterministic forecast. Thornes and Stephenson (2001) remind us that when assessing 

the goodness of a deterministic forecast, we must distinguish between forecast 

accuracy - the correspondence between forecasts and observations – and the economic 

value of the forecast. This chapter deals with the former. After a brief review of the 

skill metrics and post-processing methods used, the accuracy of deterministic gas 

demand forecasts produced with the end-to-end method and various post-processing 

techniques is assessed. 

 

5.1 Metrics 
The choice of skill metric depends on what information and quality of the 

forecast is desired by the user (Jolliffe and Stephenson, 2003). It is often the case that 

several skill scores need to be used to deduce a more comprehensive picture of 

forecast performance.  For a more extensive treatment of skill measures for forecasts 

of a continuous variable the reader is referred to Deque (2003). A commonly used 

measure of accuracy to determine the quality of a forecast in meteorology and 

business applications is the Root Mean Squared Error (RMSE) (Wilks, 1995): 

 

        

        ,     (5.1) 

 

where  
Fi   is the forecast for day i, 
Oi  is the observation for day i, and 
n   is the number of days. 
 

One of its advantages is that it gives an indication of the average forecast error in 

units of the forecast quantity. In addition, it penalizes large errors more heavily than 

small errors, which can be beneficial if a user is more sensitive to large deviations. 

However, it is unrelated to the degree of difficulty in predicting the variable of 
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interest (Mason, no date), and is strongly affected by the background variability of 

temperature at a location (Deque, 2003). Goeber et al. (2004) note that the accuracy of 

weather forecasts is also strongly dependent on the actual weather at a location, not 

just the forecasting system used. Taking an example from this current study, the 

background variability of Prague temperatures is higher than at London Heathrow 

(compare figs. 3.3 a and b), suggesting that temperatures may be more difficult to 

predict at Prague in an absolute sense.  

A further measure of accuracy is Gain over climatology (Gain): 

 

 

       ,    (5.2) 

 

where 
Fi   is the forecast for day i, 
Oi  is the observation for day i, 
Ci  is climatology for day i, and 
n   is the number of samples. 
 

Unlike the RMSE, this measure expresses the skill of the forecast as an improvement 

of accuracy relative to a reference forecast, e.g. climatology, or any other forecast. 

Gain gives an indication of skill directly in the forecast quantity and is related to the 

difficulty in predicting the variable of interest. In addition, the Gain score is more 

resistant to outliers than the RMSE, and the statistical significance of the skill gained 

in estimating first order moments relative to a reference forecast can be tested with 

Student’s t-test (Deque, 2003). 

In addition to measures of accuracy, it is useful to consider a measure of 

association, i.e. the strength of the relationship between forecasts and observations. 

The Anomaly Correlation Coefficient (ACC) is a measure of the strength of the linear 

relationship between observed and predicted anomalies from climatology: 

 

   ,     (5.3) 

 
where 
F’  are the forecast anomalies: 'F F C≡ − , 
O’  are the observed anomalies: 'O O C≡ − , 
SF’  is the standard deviation of forecast anomalies, and 
SO’  is the standard deviation of observed anomalies. 
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Using correlation of full forecast data and observations is not a sensible skill measure 

due to the dominant effect of seasonality (even poor forecasts can predict lower 

temperatures in winter than in summer). Therefore, anomalies must be used. An 

advantage as well as a disadvantage of the ACC is that it is insensitive to shifts in the 

mean and rescaling of the forecast or observations. Hence, high correlation is not 

sufficient to provide a good forecast. Transposing or rescaling of the forecast may be 

necessary to achieve this. However, it also follows that correlation can therefore be 

taken as a measure of the potential skill of a forecast if its (linear) bias could be 

removed (Deque, 2003). A further point to consider, is that no correlation does not 

mean no association, since there could be a non-linear relationship between forecasts 

and observations. 

 

5.2 Stochastic temperature model as a baseline 
Wilks (1997) notes that calibrated persistence is a better baseline forecast to 

measure the skill of a forecast system against than climatology, since it exploits the 

high degree of memory inherent in the temperature time series over a few days. The 

time series of October-March daily mean temperature anomalies at Prague (1961-

2003) exhibits a lag 1 auto-correlation coefficient of 0.84. An example of a calibrated 

persistence forecast is a first order autoregressive model (AR1). 

  

   ,    (5.4) 

 
where 
Ti+1  is the predicted temperature on day i+1, 
Ti  is the temperature on day i, 
Ci  is climatology on day i, 
Ci+1  is climatology on day i+1, and 
α  is the lag 1 auto-correlation coefficient of anomalies.  

 

Since AR1 models are inexpensive and simple to produce, a numerical weather 

prediction system must show considerably higher skill or added value to justify its 

expense. This is especially the case in a commercial setting where the bottom line is 

the ultimate target. 

 

 

1 1( )i i i iT T C Cα+ +=  − +    
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5.3 Post-processing and calibration 
Whilst Jewson and Caballero (2003) acknowledge that end-to-end forecasting  

may indeed be useful for some applications, Jewson (2004a) stresses that any 

necessary post-processing of the meteorological forecast (e.g. removal of bias) should 

be performed before the data are input into a response-function. In order to investigate 

the effects of post-processing mid-way, this is tested empirically. 

 

5.3.1 Forecast bias 

A forecast may exhibit a high ACC with observations, i.e. possess the ability 

to resolve the predicted variable, but still exhibit large RMSE and low Gain. This 

indicates bias in the forecast. Bias can consist of a conditional and/or an unconditional 

element which can be defined as follows (Mason, no date): 

Unconditional bias is the mean difference between forecast and observation. The 

unconditional bias can be removed by subtracting it from the forecast.  

Conditional bias (Type I) is the degree to which the correspondence between forecast 

and observation varies with the forecast. An example of this is a forecast variance that 

is smaller than the observed variance. In this case, the conditional bias can be 

removed by scaling the forecast variance. Calibration can thus improve the accuracy 

of the forecast by removing biases. Potts (2003) points out that the worst forecast is a 

forecast that is statistically independent from the observations. In that case, no 

calibration can extract valuable information. 

 

5.3.2 Methods of calibration 

Various methods of forecast calibration are proposed in the literature, ranging 

from simply subtracting unconditional bias to forecast assimilation using Bayesian 

multivariate normal models (Stephenson et al., 2005). Jewson (2004b) suggests that 

bias correction should follow the principle of parsimony. Research should always 

begin with the simplest model against which progressively more sophisticated models 

can be evaluated. Any method devised should be tested empirically – in the case of 

regression models, out-of-sample tests are necessary.  
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Running mean 

The simplest method of bias correction consists of subtracting the mean 

forecast bias over the most recent preceding time period (typically 60 days) from the 

current forecast. This is computed separately for each forecast lead time. 

 

 

  ,    (5.5) 

 

where 
nd  is the number of preceding days over which mean bias is calculated, 
TE(i)   is the ensemble mean forecast temperature for day i, and  
TO(i) is the observed temperature on day i. 
 

The greatest advantages of this method are its simplicity as well as the fact that the 

estimated bias relates to the most recent performance of the model and thus implicitly 

takes updates in the numerical model into account. The method was found to 

significantly improve the skill of temperature forecasts at London Heathrow, as can 

be seen from fig. 5.1, produced in this study. A two-tailed paired sample t-test showed 

that the mean absolute errors of corrected and uncorrected forecasts were significantly 

different at the 0.05 level at all lead times. 

 

 

 
Figure 5.1: Comparison of Gain over climatology against lead time (days)  
achieved by the raw EPS ensemble mean and the ensemble mean corrected  
with a 60 day moving average bias correction for October 2004 to March 2005.  
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When selecting the length of the bias calculation period, a balance between 

several factors has to be established: On the one hand, any seasonal variations in 

forecast bias and potential numerical model updates require the period to be short 

(Jewson et al. (2005) suggest a running mean correction using no more than the last 

90 days), whereas on the other hand the presence of noise in the bias requires a large 

sample size. With regard to seasonal adjustment, the problem can only partially be 

solved by taking shorter averaging periods, since the correction is lagged in any case. 

Apart from seasonality, errors may depend on synoptic conditions at the time at which 

the forecast is produced or at the time at which it validates. Since large scale flow 

patterns can change on timescales of several days (the mean persistence of a Hess-

Brezowsky circulation type over central Europe is around 4 to 7 days; Domonkos et 

al., 2003) the bias correction relating to past forecasts, and thus past synoptic flow 

patterns, may not be representative of current forecast biases. A further problem is 

that this method only corrects the mean (unconditional) bias, not the magnitude-

dependent (conditional) bias. 

 

Bias correction by regression: 

As suggested by Jewson (2004b), a temperature forecast can be bias corrected 

by linear regression between observed temperatures and the corresponding ensemble 

mean forecasts for each lead time. The regression and subsequent correction should 

be performed on temperature anomalies.   

 

  ,     (5.6) 

 

TO’  are the observed temperature anomalies, 
TE’ are the corresponding ensemble mean forecast temperatures, 
α, β  are the regression coefficients, and 
ε are the residuals. 
 

This model corrects mean bias (unconditional bias) using α, as well as optimally 

scaling the variance of the ensemble mean (type I conditional bias) using β. If α and β 

are significantly different from 0 and 1 respectively, then the correction improves the 

forecast in sample. In addition, ε can provide an estimate of the flow-independent 

uncertainty of the forecast, if ε is assumed to be normally distributed (generally a 

valid assumption for temperature; Jewson and Caballero, 2003). Jewson (2004b) 

' 'O ET Tα β ε= + +
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found a regression model to improve ECMWF forecasts for London Heathrow. 

However, this method also has disadvantages. In order to ensure that the model is not 

over-fitted, it is essential that the model is tested out of sample. Due to the limited 

availability of past forecast data, this can be difficult. In addition, potential numerical 

model updates are not taken into account, since past data must be used to derive 

coefficients. Furthermore, not all skill measures are improved to the same extent by 

regression correction. Primarily, the RMSE is reduced, since least squares regression 

minimizes squared residuals. 

 

Seasonally varying parameters 

As noted before, forecast biases tend to vary with season (usually being negative in 

summer, and positive in winter). Standardised anomalies of Heathrow 60-day running 

mean forecast biases of the MRF and EPS at a lead time of one day are shown in fig. 

5.2 as an example. Taking standardised anomalies transforms two time series with 

different means and variances into the same dimensionless scale in order to enable 

comparison of their correlated fluctuations (see Wilks, 1995). Standardised anomalies, 

z, are calculated as follows: 

 

 
( )

( ) ( )
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− − −
=   ,     (5.7) 

where 
F   are the forecasts 
O are the observations, and 
S(F-O) is the standard deviation of forecast errors. 
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Figure 5.2: Standardised anomalies of the 60-day running mean bias of  
MRF and EPS forecasts at lead 1 for London Heathrow between  
December 2002 and March 2005, showing a distinct seasonal cycle.  

 

Hence, this seasonal variation should be incorporated into bias correction regression 

models. Jewson (2004b) found a considerable improvement for London Heathrow 

forecasts if the regression parameters in eqn. 5.6 are represented by a set of optimally 

tuned sinusoids as follows: 

 

0 sin coss i c iα α α φ α φ= + +      (5.8a) 

0 sin coss i c iβ β β φ β φ= + +      (5.8b) 

 
where 

iφ   is the day of the year. 
 
Again, the noise in the error time series can lead to over-fitting and forecasts being 

degraded by bias removal, rather than enhanced. As Deque (2003) suggests in 

general, if only small samples of forecasts are available, it may be better not to bias 

correct at all. An issue with all the above methods is that using past forecasts to assess 

skill and correct errors, implies that past performance and error patterns will reflect 

current performance and error patterns. However, Gilmour (2004) notes that the 

frequent updates in the dynamical models pose a challenge and mean that forecasts 

need to be tested and recalibrated frequently, often with insufficiently large sets of 

past forecasts produced by the model currently in operational use. The latter issue can 

only be resolved if modelling centres produce and make available re-forecasts using 

the most recent model version. 
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 Atmospheric state may be a key controlling factor on model bias, and thus 

other variables may need to be included in calibration. Therefore, determining which 

predictable or measurable atmospheric variables, if any, show a significant 

relationship to temperature forecast errors is a key task. Huth (1999 and 2002) 

investigated various methods of statistical downscaling of temperature forecasts in 

Central Europe. He tested two temperature variables (850hPa temperature and 1000-

500hPa thickness), as well as two circulation variables (surface pressure and 500hPa 

geopotential height) as potential predictors - both in the form of gridpoint values and 

principal components of their fields. Pressure was used as an indicator of large-scale 

flow, and upper air data since they are generally considered to be simulated more 

reliably by numerical models than surface variables. The method of multiple linear 

regression of gridpoint values (as opposed to full fields) with stepwise screening 

yielded the best results. In terms of predictors, Huth (2002) found that a combination 

of one temperature and one circulation variable gave the most accurate results.   

 

5.3.3 Multi-model 

The simplest way of combining two forecasts is to take their mean. Deque 

(2003) notes that this may in many cases lead to a cancelling out of biases. However, 

models may have different magnitude errors or have systematic biases of the same 

sign. In addition, one forecast may perform better than the other and vice versa 

depending on lead time. Hence, a regression model can be fitted for each lead time to 

optimally weight both forecasts and correct their joint unconditional bias. 

 

,   (5.9) 

 

where 
TEPS’  are the forecast temperature anomaly of EPS mean, 
TMRF’  are the forecast temperature anomaly of MRF mean, and 
α, βEPS , βMRF  are coefficients. 
 

However, as is the case with individual model performance, the relative 

performance of each model may also depend on atmospheric state. Incorporating 

these factors could involve Bayesian methods and neural networks, where algorithms 

could be tuned to weight forecasts differently according to synoptic situation. 

Methods such as those proposed by Coelho et al. (2004) for combining and calibrating 

' ' 'O EPS EPS MRF MRFT T Tα β β ε= + + +
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numerical and empirical forecasts of El Nino Southern Oscillation could be used. 

Whilst being a future possibility, the latter method is beyond the scope of this project, 

since it would require longer records of forecasts to enable a statistically stable 

relationship between forecasts and synoptic variables to be established. In this regard, 

Mylne et al (2002) note that differences between models are often subtle and 

impossible to identify synoptically. 

 

5.4 Results  
As far as the author is aware, this study is the first to assess the quality of end-

to-end forecasts of a user specific variable using two different NWP systems, both 

comparatively and jointly. In addition, this study addresses two recommendations for 

calibration research proposed by Jewson (2004b) – testing calibration methods on 

locations other than London Heathrow and using longer forecast records. Whilst 

Jewson (2004a) only used a single year of daily ECMWF temperature forecasts for 

London Heathrow, this study examines over two years of forecast data for Prague 

Ruzyne, a continental station with a distinctly different climate.  

Initially, end-to-end forecasts using the raw ensemble members of the EPS and 

MRF were created, and the respective ensemble mean gas demand taken to be the best 

estimate of consumption. The heating seasons 2003-2004 and 2004-2005 were 

analysed. Figures 5.3 to 5.5 show RMSE, Gain and ACC of the two systems plotted 

against lead time (days) respectively. Figures (a) are for the first, figures (b) for the 

second season.  The ensemble mean of both systems provides a skilful deterministic 

estimate of gas demand at all lead times (days 1 to 10) and both seasons investigated. 

Results for the 2004-2005 heating season show the EPS to have a Gain over 

climatology of 3.8 mil m3 at a lead time of 1 day (around 14.1% of mean daily 

weather-dependent demand, estimated at 27 mil m3) and 1.8 mil m3 at a lead time of 

10 days. The RMSE was 1.5 mil m3 at a lead time of 1 day and 4.7 mil m3 at a lead 

time of 10 days. 
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a       

 
 
b   

       
Figure 5.3: RMSE of raw end-to-end forecasts against lead time  
(days) for the heating seasons 2003-2004 (a) and 2004-2005 (b). 
RMSE increases with lead time and differs between MRF and EPS, 
as well as between the two seasons.  
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a 

   
     
b 

  
Figure 5.4: Gain of raw end-to-end forecasts against days lead time  
(days) for the heating season 2003-2004 (a) and 2004-2005 (b).  
Gain decreases with lead time and differs between MRF and EPS, 
as well as between the two seasons. 
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a     

      
 
 
 
b  

      
Figure 5.5: ACC of raw end-to-end forecasts against days lead time  
(days) for the heating season 2003-2004 (a) and 2004-2005 (b).   
ACC decreases with lead time and differs between MRF and EPS, 
as well as between the two seasons. 

 
 
5.4.1 Comparison of two seasons 

The RMSE of both NWP systems was lower in 2004-2005 than in 2003-2004 

at all lead times. At a first glance, this could either be due to improved model 

performance or the temperatures being more difficult to predict in the first season. To 

obtain a greater insight, the Gain score was considered. In 2003-2004, Gain over 

climatology was higher at short lead times compared to 2004-2005, but dropped off 

more rapidly with increasing lead time. Hence, the fact that Gain was higher in 2003-

2004 at short lead times, whilst RMSE was also higher suggests that temperature 
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anomalies from climatology were greater and more difficult to predict in the first 

season. Figures 5.6 a and b show the temperature time series of the two seasons. 
a 

 
 
b  

 
Figure 5.6: Recorded temperatures at Prague Ruzyne during the heating  
seasons 2003-2004 (a) and 2004-2005 (b), with climatological mean +- 1  
standard deviation. 2003-2004 exhibits more rapid and extreme transitions.  

 

Although the overall variance of temperature was slightly higher in 2004-2005 (σ = 

5.74°C) than in 2003-2004 (σ = 5.65°C), 2003-2004 was characterised by several 

rapid transitions, which resulted in high magnitude forecast errors. Whilst the 

ensemble mean exhibits greater skill at resolving rapid transitions at short lead times 

compared to climatology, the ensemble mean loses much of its skill over climatology 

at longer lead times. This is due to the fact that the ensemble spread grows more 

rapidly and merges sooner with the climatological spread in situations of large 
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forecast uncertainty (e.g. large and rapid transitions), than in more predictable 

situations. This more rapid decline in skill of the ensemble mean in the first season is 

also diagnosed by the ACC (figs. 5.7a and b), which decreases more rapidly with lead 

time in 2003-2004.  

 This raises questions as to the usefulness of the ensemble mean at different 

lead times. Figures 5.7a,b,c show the climatological and observed gas demand for the 

2003-2004 season, as well as the ensemble mean best estimate gas demand using the 

raw EPS forecasts at lead 1 (fig. 5.7a), lead 5 (fig. 5.7b) and lead 9 (fig. 5.7c). 
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a 

  
b 

 
c 

 
Figure 5.7: Comparison of actual and climatological gas demand during  
the heating season 2003-2004 with demand predicted by the ensemble  
mean of end-to-end forecasts using raw EPS data for leads of 1 (a), 5 (b)  
and 9 (c) days. The ability of the ensemble mean to resolve the magnitude  
of large anomalies decreases with lead time. 
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Figures 5.7 a, b and c reveal that at short leads, the ensemble mean resolves 

the timing and the amplitude of anomalies well. However, the magnitude of the most 

extreme peaks and troughs is not fully captured. In general, the amplitude is 

increasingly underestimated with increasing lead time. At longer leads the timing of 

anomalies is also lost. This is due to the fact that the ensemble mean tends to merge 

with climatology at long lead times. Hence, the ensemble mean becomes less useful 

with increasing lead time. In addition, even at short lead times, large extremes tend to 

be slightly underestimated by the mean. Thus, only a complete probability 

distribution, possibly inferred from the ensemble spread, may warn about potential 

extremes and their likelihood. Therefore it is essential to explore the potential use of 

probabilistic information contained in the ensemble spread. This is pursued in chapter 

7. 

 
5.4.2 Comparison with persistence and autoregressive model 

To assess whether the much simpler and cheaper alternatives to NWP -

persistence or a climatology reverting AR1 model (eqn. 5.4) temperature forecasts - 

could offer similar levels of skill in making deterministic gas demand predictions, 

temperature forecasts generated in this manner were used to create demand forecasts. 

As with NWP forecasts, a combination of forecasts and observations was used at lead 

times of 2 days or less. For the sake of brevity, only the Gain score is plotted. Since 

the raw EPS exhibited higher Gain than the MRF, the former was also plotted to 

provide a comparison. 
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a 

 
 
b 

 
Figure 5.8: Comparison of Gain over climatology of the EPS, persistence  
and a climatology-reverting AR1 model for predicting gas demand for the  
season 2003-2004 (a) and 2004-2005 (b). 

 

As can be seen from figs. 5.8 a and b, the EPS forecast was (as expected) 

superior at all lead times. However, the AR1 model showed statistically significant 

skill over climatology at the 0.05 level at leads 1 to 3 in 2003-2004 and at all leads in 

2004-2005 (using a two-tailed paired-sample t-test for the difference in means of the 

absolute errors of the two forecasts). At lead 1, the difference to the EPS is just under 

1mil m3. Persistence showed statistically significant skill over climatology at the 0.05 

level at leads 1 and 2 in both seasons. Whilst the skill of persistence was near 

identical to that of the AR1 model at lead 1, it declined rapidly thereafter. This was 
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especially the case in 2003-2004, when persistence performed worse than climatology 

beyond lead 3. Interestingly, the AR1 model performs slightly worse than climatology 

at leads 6 to 10, but exhibits an upward trend towards climatology beyond lead 7. 

Once more, this is due to the large and rapid transitions in the 2003-2004 season. 

Since both persistence and the AR1 model are purely statistical techniques and rely on 

past temperatures, they perform particularly badly in these events. Hence, numerical 

weather prediction is especially beneficial if rapid transitions to large anomalies 

occur, which only a dynamical model can simulate. The greatest added skill of the 

EPS is at leads of around 3 to 9 days. 

A similar comparison was conducted by Taylor and Buizza (2003) in the skill 

assessment of end-to-end electricity demand forecasts in the UK using the EPS. They, 

too, found the ensemble forecast to be significantly more skilful than a stochastic 

temperature model. 

 

5.4.3 Comparison of EPS and MRF 

In terms of Gain (figs. 5.4 a and b), the EPS is superior at all lead times, at 

some leads up to 0.6 mil m3. Two-tailed paired sample t-tests of the mean absolute 

errors of the two systems at each lead time show the differences to be statistically 

significant at the 0.05 level at leads 1 to 3 and 10 in 2003-2004, and at leads 1 to 3 in 

2004-2005. However, in terms of RMSE (figs. 5.3 a and b), the MRF is superior at 

leads 4 to 8 in 2003-2004. This suggests that whilst the MRF has greater errors 

overall, it has fewer large magnitude errors at leads 4 to 8, which are more heavily 

punished by the RMSE than the Gain score. This can be seen in fig. 5.9, showing the 

lead 5 forecast errors for the 2003-2004 season (note the two large positive errors of 

the EPS in January). 
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 Figure 5.9: EPS and MRF temperature forecast errors at lead 5 during  

the 2003-2004 heating season. Note the two large positive errors of the  
EPS in January. 

 

Furthermore, the ACC (fig. 5.5a) shows that the potential skill of the MRF is higher 

than that of the EPS in 2003-2004 at leads beyond day 4. Hence, a combination and 

calibration of forecasts may improve actual skill.  However, care must be taken, since 

this is not evident in 2004-2005 (fig. 5.5b), pointing towards a statistically unstable 

relationship. 

 
5.4.4 Calibration 

As explained above, bias correction may improve the skill of the forecast. The 

standardised anomalies of the 60-day running mean bias for EPS and MRF forecasts 

at lead 1 are shown in fig. 5.10. Patterns at other lead times are similar.  

 

 
Figure 5.10 Standardised Anomalies of 60 day running mean forecast bias  
of MRF and EPS at a lead time of 1 day December 2002 to March 2005. 
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Though more erratic than the patterns at London Heathrow (fig.5.2), the mean bias of 

both systems appears to be affected by seasonality, with large negative biases in late 

winter/early spring and mid-summer, and a less negative (in 2003-2004 large positive) 

bias in late autumn and late spring. The methods of bias correction discussed in 

section 5.3 were applied. 

 

5.4.4.1 Running mean 

The running mean forecast bias at each lead time over different lengths of 

averaging periods (60 days, 30 days, 15 days) was subtracted from the forecast, both 

for the EPS and the MRF. A comparison of Gain scores for the 2004-2005 season are 

presented in figures 5.11a and b.  
a 

  
b 

 
Figure 5.11: Comparison of Gain of running mean bias correction of MRF  
demand forecast using 15, 30 and 60 day averaging periods for the  
2004-2005 (a) and 2004-2005 (b) heating seasons at leads of 1 to 10 days. 
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All running mean corrections at all lead times degraded the skill of the EPS. This 

effect increased with increasing lead time and was most pronounced when using the 

15 day running mean. For the MRF, running mean bias correction slightly increased 

skill at leads up to 3 days, but thereafter degraded skill. Again, the 15 day mean 

performed worst. The general phenomenon may be due to the more erratic nature of 

the error patterns at Prague, compared with other stations, which could be attributed 

to the higher variance of temperatures. The particularly bad performance of the 15 day 

average, which deteriorated with increasing lead time, may partially be a reflection of 

the noisiness of the bias. In addition, the deterioration of the 15 day correction with 

lead time may be evidence of the dependence of bias on atmospheric state. Since the 

15 day average samples only the most recent biases, and thus biases that occurred 

under the most recent past states of the atmosphere, it is itself biased towards these 

states. As time progresses, atmospheric state is likely to change significantly, making 

the bias correction estimated in this manner less and less representative of the actual 

bias at more distant lead times of the forecast. The improvement in skill of the MRF 

up to lead 3 gained with the running mean bias correction may be further evidence of 

this, since flow patterns will be more likely to persist at short lead times. Reducing 

noise may be a more important factor in bias estimation at Prague than sampling the 

most recent model performance and seasonality. Using a longer averaging period 

partially offsets this problem, but does not lead to improvement over the raw forecast. 

 

5.4.4.2 Regression model 

To account for both unconditional as well as conditional bias, the regression 

model set out in eqn. 5.6 was fitted between EPS forecast and observed demand 

anomalies at each lead time. For all regression-based calibration models the 2003-

2004 season was used as the training and the 2004-2005 season as the out-of-sample 

test period, with the exception of the time varying parameters, which were trained on 

January 2003 – September 2004 data. 
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Figure 5.12: Comparison of Gain achieved by the raw forecast and by  
regression calibration out of sample. Training period: October 2003– 
March 2004. Test period: October 2004-March 2005.   

 
Results from the regression model calibration showed minimal differences in an out 

of sample test. In addition, a t-test on the slope and the intercept of the regression 

revealed that they were not significantly different from 1 and 0 respectively, at the 

0.05 level at any lead time. Hence, this form of regression model does not even offer 

significant correction in-sample.  

 
5.4.4.3 Regression model with seasonally varying parameters 

Suspecting a seasonal dependence of bias, the regression coefficients were 

represented by sinusoids (as set out in eqns. 5.7a and b) with a period of 365 days.  

 

 
Figure 5.13: Comparison of Gain achieved by the raw forecast  
and by regression calibration with seasonally varying parameters  
out of sample. Training period: January 2003-September 2004.  
Test period: October 2004–March 2005. 
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This gives some improvement in-sample. However, nearly no improvement of skill is 

found out of sample at leads up to 6 days, and skill is degraded at leads 7 and beyond. 

Two potential explanations offer themselves: Firstly, forecast biases at Prague are 

more highly variable than at Heathrow, and thus any underlying seasonal cycle will 

most likely be obscured by noise in this relatively short time series available to train 

the model. Secondly, the seasonal structure also appears to be more complex than at 

Heathrow. A second order harmonic could be used to provide a better fit, considering 

the two annual peaks and the two annual troughs observed in fig. 5.10. However, the 

danger of over fitting the model is substantial in the absence of longer past forecast 

errors.  

 

5.4.5 Multi-model deterministic forecast 

The aim of the multi model approach is to exploit uncorrelated errors of two 

forecasts. The visual patterns of 60-day averaged standardised anomalies of forecast 

errors in fig. 5.10 and correlation coefficients between the errors of the two models 

ranging between 0.70 and 0.88 over all lead times, suggest that forecast errors at 

Prague are to some extent related and most probably due to atmospheric states in 

which both models tend to have similar problems. However, the error patterns of EPS 

and MRF at Prague show less similarity3 and have lower correlation coefficients than 

London Heathrow (r ~ 0.80 - 0.92). Therefore, skill and value may be added by 

combining the forecasts. A more poignant justification for the concept of combining 

the two forecasts is found when analysing and comparing the timing of large error 

events of the EPS and MRF.  In fig. 5.15 the timing of the ten largest magnitude 

negative and positive errors of the EPS and the MRF at lead 5 are shown. 

 

 

 

 

 

 
                                                                          
3 For this purpose, fig.5.2 and fig.5.10 can be compared. Standardised anomalies lend themselves 
useful for an initial analysis of the association of error patterns of the two forecasts, since combining 
two perfectly correlated forecasts would not improve skill. However, since these time series are 60-day 
averages, the effect of one system’s error compensating for the other’s on particular days is not clearly 
visible.  
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a 

 
b 

 
Figure 5.15: Observed temperatures and timing of the ten largest negative  
(blue lines) and positive (red lines) errors of the EPS (a) and MRF (b) at  
a lead time of 5 days for the season 2003-2004.    

 
This reveals that most of the large magnitude errors occurred in the prediction of 

transitions to extreme temperature peaks and troughs – high temperature peaks were 

predicted too cool, and cold temperature troughs too warm. However, whilst some of 

the top ten errors occur at the same time in both systems (indicating common 

weaknesses), most of the large magnitude errors of the EPS and MRF do not coincide. 

High magnitude negative errors of the EPS appear to be clustered around the end of 

January and beginning of February, and large positive errors in October and 

November. In the case of the MRF, errors are spread more homogenously over the 

season. This indicates that the overall information content can be increased by 
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combining the two forecasts. Both the approach of taking the mean of the two 

forecasts as well as regression calibration (eqn. 5.8) were tested for this purpose. 

Results for Gain are shown in fig. 5.17. 

 

 
Figure 5.17: Comparison of Gain achieved by raw EPS and MRF forecasts 
as well as multi-model methods using the mean of both models and regression  
calibration out of sample. Training period: October  2003 – March 2004.  
Test period: October 2004-March 2005   

 
The out-of sample test revealed that the multi-model regression calibration increases 

skill vis-à-vis the EPS up to lead 7, by up to 0.2 mil m3, especially between leads 3 

and 6. However, this is not statistically significant at the 0.05 level. Beyond lead 7, 

though, multi-model regression calibration decreases skill. This points towards an 

unstable statistical relationship at long lead times, which was also detected above in 

the comparison of ACC results of the two heating seasons (figs. 5.5a and b). At leads 

4 to 8, the two-model average also increases skill. This suggests that although both 

forecast systems tend to exhibit similar bias patterns dependent on synoptic 

conditions, some skill can be extracted from combining the forecasts. Once more, 

though, the short archive of past forecast errors means that care must be taken when 

using forecasts corrected by models with coefficients estimated from a relatively short 

time series. 
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Chapter 6: Probabilistic forecast information 
 

As McSharry et al. (2005) note in the context of electricity demand 

forecasting, prediction intervals or probability densities could provide crucial 

information about uncertainties inherent in the forecast. In the case of gas demand 

forecasts, extremes of temperatures could be very damaging, if the gas company was 

not prepared for the event. However, if forecast correctly, extreme temperatures could 

also represent a commercial opportunity. Extremely low temperatures would trigger a 

surge in demand, making it challenging to ensure an adequate supply of gas to 

customers, whilst trying to avoid having to pay high prices on the spot market to make 

up for any shortages in the gas company’s own reserves, for example. Extremely 

warm temperatures lead to low demand and thus lower revenues. However, if 

predicted early, surplus gas supplies could be traded off in advance, minimizing the 

loss. This requires accurate and reliable demand forecasts, especially warnings of 

potential extremes. As shown in chapter 5, the ensemble mean does not convey 

forecast uncertainty, which becomes an increasingly important issue with increasing 

lead time. Hence, a probabilistic demand forecast should be used. In end-to-end 

demand forecasting, producing a probabilistic demand forecast requires a temperature 

forecast from which probabilistic information can be extracted. 

A recent survey of weather forecast users revealed that only a small minority 

of them use probabilistic forecasts (Mailier, 2005). In earlier work, Jewson (2004b) 

seems to suggest that the paucity of applications of probabilistic forecasts is mainly 

the fault of forecast vendors, either because very few of them produce such forecasts 

or because they do not calibrate these forecasts correctly. Furthermore, he points out 

that the terms probabilistic forecast and ensemble forecast should not be confused. A 

probabilistic forecast states probabilities of occurrence, whilst an ensemble forecast 

consists of several members. Probabilistic forecasts can be produced both from single 

integrations using past error statistics or from ensembles, using statistical methods.  

As described by Jewson et al. (2005), the most basic form of a probabilistic 

forecast is to fit a Gaussian distribution around the best estimate (e.g. the ensemble 

mean) with a standard deviation obtained as a by-product from the error distribution 

from a calibration regression of the best estimate, such as eqn.5.6. This means that the 

probability density function (PDF) will always have the same shape for a given lead 

time, with only its location altered depending on the best estimate forecast for a 
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specific day. Hence, only the flow-independent uncertainty is considered. However, 

forecast uncertainty can vary greatly depending on atmospheric state, as illustrated in 

chapter 2. 

It is widely believed that the ensemble spread contains useful quantifiable 

information about flow-dependent uncertainty in the forecast, since the spread is 

related to the atmospheric state (Jewson and Ziehmann, 2004). However, vigorous 

debate surrounds the issue of how information contained in the ensemble spread, 

should be used. Jewson (2004b) found that incorporating the raw ensemble spread as 

a measure of uncertainty led to worse probability interval estimates for London 

Heathrow, compared to using past error statistics (the goodness of fit of the 

distribution was assessed in terms of the log-likelihood; Fisher, 1912). This is 

believed to be due to the ensemble spread usually underestimating forecast 

uncertainty (also noted by Taylor and Buizza, 2004). In addition, the limited 

resolution due to the finite ensemble size can be problematic if the user is particularly 

interested in the tails of the distribution. 

 Hence, the ensemble spread needs to be recalibrated and for some applications 

transformed into a continuous PDF.  A possible method of recalibrating the ensemble 

was developed by Norton (unpublished work). The absolute forecast errors of the 

ensemble mean at a certain lead time are related to the variance of the ensemble 

spread and a constant term at a certain lead time by way of linear regression. 

Assuming a normal distribution of forecast errors, the recalibrated variance is then 

used to derive the standard deviation for a continuous forecast PDF, or used to scale 

individual ensemble members. The latter option has the advantage of preserving 

ensemble members, which is necessary in the case of end-to-end forecasts if 

calibration is performed before inputting temperature forecasts into a response 

function. Ensemble members can be scaled by multiplying their departure from the 

ensemble mean by the ratio of corrected to uncorrected forecast standard deviation.  

A similar method relating the forecast errors of the ensemble mean to the 

standard deviation of the ensemble members, which does not use the climatological 

standard deviation as a normalising factor, is employed by Jewson (2004b) and is 

termed ‘spread regression’ (eqn.6.1). The actual standard deviations (estimated from 

the absolute errors of the ensemble mean from the observations on individual days) 

are regressed on the standard deviations of the ensemble members on the 

corresponding days: 
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isσ γ δ= +)
        (6.1) 

where 
σ)   is the estimated standard deviation for the target day, 
γ  is the mean level of forecast uncertainty, 

is  is the standard deviation of the ensemble members on day i, 
δ  is a coefficient. 
 

Such a regression model optimally blends the mean forecast uncertainty,γ , and the 

flow-dependent uncertainty, is . If is  is not significantly different from 0, then the 

ensemble spread does not contain useful information for estimating σ . 

In his analysis using EPS forecasts for London Heathrow for the time period 

of one year, Jewson (2004b) found that the mean of the uncertainty is best predicted 

by increasing the ensemble spread, whilst the variability of the uncertainty is best 

predicted by decreasing the amplitude of the variability of the ensemble spread. 

Results of the calibration methods were assessed by comparing their log-likelihood 

scores. The calibrated variability of the uncertainty was found to be relatively small 

(5% to 20% of the mean level), suggesting that the ensemble spread does not contain 

much useful information. Jewson (2004b) postulates that singular vector systems, 

such as ECWMF, would be expected to overestimate the amplitude of the variability 

in the uncertainty.  Furthermore, he found that using flexible kernel density models 

showed no improvement over an ordinary linear regression model which assumes 

Gaussian error distributions. This suggests that any non-normality potentially present 

in the ensemble does not contain useful information. Therefore it appears to be 

justified to assume a normal distribution of errors of temperature forecasts. 

In analogy to the bias correction of the ensemble mean (chapter 5), Jewson 

(2004b) accounts for the effects of a seasonal cycle on the relationship of the 

ensemble spread to forecast uncertainty by letting γ and δ in eqn. 6.1 vary seasonally 

in the form 

 

0 sin coss i c iγ γ γ φ γ φ= + +       (6.2a) 

0 sin coss i c iδ δ δ φ δ φ= + +       (6.2b) 

 

As in the case of calibrating the ensemble mean, Jewson (2004b) found this to offer 

noticeable improvement of forecast uncertainty estimates for London Heathrow.  
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In order to assess whether the estimate of the forecast uncertainty could be 

improved, Jewson (2004c) also investigated different potential relationships of the 

ensemble spread to forecast uncertainty in addition to that based on the standard 

deviation (eqn.6.1): 

variance-based:    2222
isδγσ +=)    (6.3a) 

inverse standard deviation-based: 2

1
is

δγ
σ

+=)    (6.3b) 

inverse variance-based:  2

2
2

2

1
is

δγ
σ

+=)    (6.3c) 

 

Though visible differences in the calibrated spread were observed, no major 

differences in log-likelihood skill scores was noted, suggesting a low information 

content of the ensemble spread. However, Jewson (2004c) acknowledges that longer 

time series of forecasts may lead to progress on this matter. Furthermore, these 

different estimations of forecast uncertainty may prove to be beneficial at other 

geographic locations, e.g. Prague. 

In a further study of probabilistic forecast calibration, Taylor and Buizza 

(2004) analysed forecasts of constituent quantiles of the temperature PDF derived 

from ECMWF temperature ensemble predictions for London Heathrow. They 

compared bias correction methods by determining how well the percentage of 

forecasts which fall into a specific prediction interval matched the value of the 

prediction interval. Quantiles of the distribution were debiased using several versions 

of quantile regression. To address the problem of updates in the numerical model, 

Time Varying Parameters (TVPs) were used, which increased regression parameters 

if temperatures in the current period exceeded the estimated quantiles, and conversely. 

Although the study involved categorical predictions, as opposed to predicting 

continuous variables, Taylor and Buizza’s (2004) results indicate, contrary to Jewson 

(2004c), that the ensemble spread does contain quantifiable information related to 

uncertainty, and that there therefore exists a strong potential for using ensemble 

predictions in temperature density forecasting. Therefore it can be justified to further 

explore the possibility of extracting quantifiable probabilistic information form the 

ensemble spread. In addition, the use of time-varying parameters should be 

considered.  
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Chapter 7: Economic value of weather forecasts 
 

As Jolliffe and Stephenson (2003) note, weather forecasts have become 

increasingly complex - more variables can be predicted, and more sophisticated 

techniques are employed (e.g. ensemble forecasting). However, users mostly require 

very specific information, summarised in an accessible and practical format. Whilst 

science aims to develop a better understanding of nature, business wants to use 

forecasts to increase efficiency and profitability. First and foremost, it is important to 

make a distinction between skill and value of a forecast. Skill is a measure of the 

increase in accuracy in predicting a variable (either in a deterministic or probabilistic 

sense) achieved by using the forecast, compared to a baseline. Value, or rather Value 

of Information (VOI), is the economic utility the forecast user gains, if the user acts 

on the forecast, as opposed to not acting on a forecast or using a different forecast 

(Wilks, 1997). 

Not only do different users require different forecast information, but the 

economic value the same information can provide to one user can be strikingly 

dissimilar to the value it can provide to another. Richardson (2003) notes that the 

value of a forecast depends both on the forecast itself as well as the weather 

sensitivity of its user. This places a premium on knowing the end user’s requirements 

and decision-making framework, and requires cooperation between end users and 

forecast providers (Palmer, 2002). 

A number of studies have aimed to quantify the value of weather forecasts to 

business. These assessments have mostly attempted to generalize the concept of value 

and group users simply by Cost/Loss Ratios (e.g. Zhu et al., 2002; Palmer, 2002). Zhu 

et al. (2002) employ cost-loss analysis in the context of a binary decision framework – 

i.e. a forecast of an event occurring or not and the user’s decision based on the 

forecast of whether to take mitigating action or not. An event is defined either as a 

catastrophic event or the exceedence of a certain threshold (e.g. daily mean 

temperature exceeding 30°C), which is of significance to the user. In the case of a 

deterministic forecast, the forecast would either be ‘threshold will be exceeded’ or 

‘threshold will not be exceeded’ and the decision of the user, assuming he or she acts 

on the information, would be to mitigate or not, respectively.  
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In the context of a probabilistic forecast, however, the user has to define a 

minimum forecast probability threshold of the event occurring. If this probability is 

exceeded in the forecast, the user will take mitigating action. Zhu et al. (2002) 

postulate that this probability level is equivalent to the so-called Cost/Lost Ratio, i.e. 

the ratio of the cost of protection to the loss that can be protected. The higher the 

Cost/Loss Ratio (i.e. the higher the cost of mitigating with respect to potential losses), 

the higher the probability threshold required. The value of the forecast is determined 

by the resulting net profit or loss vis-à-vis a baseline (e.g. an existing forecast or 

climatology) over many forecasts, assuming the user always acts on the forecast.  

This approach assumes that all forecast users can be categorised in terms of a 

cost-loss ratio. Whilst this may hold true in some cases, it does not in all. In many 

applications, it is a continuous variable or quantity which has to be forecast, rather 

than a binary event. As Smith et al. (2001) note, this means moving away from 

questions such as ‘will the event occur or not’, to questions along the lines of ‘how 

much is expected’. In energy demand forecasting, for example, a utility company 

wants to know the optimal amount of energy demand to plan for, not simply whether 

energy will be consumed or not. Furthermore, in this case, a predicted weather 

variable such as temperature is not the final variable of interest to the user. Rather, 

meteorological variables are used as one of several predictors in the end-user’s model, 

which forecasts the actual quantity of interest, e.g. the price of or demand for a 

commodity. Like in weather derivative pricing, gas demand forecasting involves 

assessing an entire continuous probability distribution, not binary events or 

categorical forecasts. Hence, most of the meteorological probabilistic skill scores, 

such as the Brier Score (Brier, 1950) which are designed for categorical events, are 

not relevant.  

 

7.1 Economic utility theory 
Johnson and Holt (1997) offer a more satisfactory approach to this problem. 

They assert that meteorological information should be viewed as a factor (in most 

cases one of several) which reduces uncertainty in a decision-making process. In 

order to include meteorological information in the decision process a user-specific 

decision-analytic model needs to be developed. This model should be based on 

subjective probabilities with the assumption that economic agents can assign a unique 
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economic utility to each pair of decisions and possible outcomes. Wilks (1997) notes 

that decision-analytic models divide the problem into four basic components: 

 

1. the possible actions available to the decision maker, 

2. the possible future unknown events that may occur, 

3. the probabilities associated with these events, and 

4. the specific known consequences of each possible action-event pair. 

 

Taking a Bayesian approach, the user’s subjective probability distribution can be 

modified by information, e.g. that contained in a weather forecast. If the user is risk-

neutral, he will choose the action that maximizes the expected economic utility. In the 

case of a non-linear utility function this decision may not be the same as the decision 

that would be taken based on the most likely outcome.  

This process represents a prescriptive approach to decision-making, since it 

specifies the best action to be taken in the face of particular circumstances. A 

descriptive approach, by contrast, is an analysis in which weather information is used 

as a reference point for a subjective decision. A further distinction between decision 

frameworks is whether the decision problem is static or dynamic. A static decision 

problem involves an isolated decision, which is not affected by or does not affect 

other decisions based on a forecast, whilst a dynamic decision problem represents 

actions dependent on each other. 

Examples of using probabilistic end-to-end response-variable forecasts in 

conjunction with von Neumann and Morgenstern’s utility theory are given in studies 

by Smith et al. (2001) in relation to energy demand forecasting for several locations 

world wide and Roulston et al (2003) for wind energy production in the UK. PDFs of 

response variable forecasts were applied to the user’s utility function to determine the 

decision that is associated with the maximum expected economic utility. In both 

cases, output from ECMWF’s EPS was used as forecast data. Through this method, 

uncertainty indicated by the probabilistic forecast as well as the financial utility to the 

end user in relation to the response variable are incorporated into the decision-making 

process. Smith et al. (2001) showed the inclusion of probabilistic forecast information 

to be especially beneficial for users with tight profit margins or heavy penalties 

associated with asymmetric or non-linear utility functions. Similar findings made by 

Palmer (2002) in relation to the cost/loss model suggest that users with a low cost/loss 
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ratio could face potentially ruinous losses if only considering the best-estimate, rather 

than the entire PDF.   

According to Smith et al.’s (2001) findings, the skill of different methods of 

estimating the PDF (e.g. use of raw ensemble spread, calibrated ensemble spread, or 

adding the historical error distribution to the ensemble mean) varied with 

geographical location. However, the best estimate deterministic forecast on its own 

performed poorly at all locations. In concluding, Smith et al. (2001) noted that the 

actual value of a forecast to an end user depends not only on the quality of the 

forecast, but on the response variable model and the user’s utility function. Whilst the 

value of the forecast cannot be generalized for all users, the utility maximising 

approach can be used as a framework of assessing value for a specific user. 
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7.2 Application to a gas demand decision-making scenario 
This current study draws on and extends Smith et al.’s (2001) conceptual 

framework as a basis for assessing economic value of temperature forecasts generated 

by EPS and MRF model output in relation to a specific decision-making process of 

the gas company as follows:  

The Gas Company (GC) is responsible for the wholesale of gas to Regional 

Distribution Companies (RDCs), which it supplies through a pipeline system operated 

by the Transmission System Operator (TSO). Each day every RDC must nominate to 

the GC the amount of gas it wishes to purchase for the next days. In turn, each day the 

GC must nominate to the TSO how much gas it wishes to transport through the 

pipeline system. If the RDC’s actual demand on the day nominated for deviates by 

more than the nomination tolerance allowance (NtRDC), the RDC must pay penalties to 

the GC (see fig.7.1 for a graphical example), which are calculated as follows: 

 

PRDC = Max(0,C * (|Y – XRDC| - NtRDC)) ,   (7.1) 

 
where 
C is the unit price of deviations, 
Y is the actual demand,  
XRDC is the nomination of the RDC, 
NtRDC is the nomination tolerance given by 

NtRDC = (0.0151* XRDC + 0.0248*(K – XRDC))  , 

where 
K is the RDC’s contractual maximum daily offtake of gas.  
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Figure 7.1: Penalties paid by the RDC to the GC as a function of actual  
demand, given a specific nomination of the RDC (in this case 31.6mil m3).  
Amounts are positive since they represent positive cashflow from the  
viewpoint of the GC. 

 

Equally, if the GC’s actual amount of gas transported on the day nominated for 

deviates by more than the nomination tolerance allowance (NtGC), the GC must pay 

penalties to the TSO (see fig.7.2 for a graphical example), which are calculated as 

follows: 

 PGC = -[Max(0, C * (|Y – XGC| - NtGC))] ,  (7.2) 

 
where 
C is the unit price of deviations, 
Y is the actual demand,  
XGC is the nomination of the GC, 
NtGC is the nomination tolerance given by 

NtGC = (0.0151* XGC + 0.0248*(K – XGC))  , 

where 
K is the GC’s contractual maximum daily delivery allowance of gas to the RDC 

via the Transmission System to the RDC.  
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Figure 7.2: Penalties paid by the GC to the TSO as a function of actual demand,  
given a specific nomination of the GC (in this case 29.8mil m3). Amounts are  
negative since they represent negative cashflow from the viewpoint of the GC. 

 

Hence, the penalty payments of both RDC and GC, given a certain actual demand, 

vary depending on their respective nominations. Economic utility to the GC is 

represented by the net profit or loss to the GC. Summing the two penalty functions 

yields the economic utility function U(xgc,xrdc,y) to the GC for nominating an amount 

XGC, given a specific nomination of the RDC (XRDC) and an actual demand of Y (eqn. 

7.3 and figure 7.3). (This assumes that the GC is risk-neutral). 

 

 ),(),(),,( yxPyxPyxxU gcGCrdcRDCrdcgc −=     (7.3) 

 

 
Figure 7.3: Economic Utility to the GC of nominating 29.8mil m3, given  
the RDC nominates 31.6mil m3, as a function of actual demand. 
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The example of figure 7.3 reveals that the economic utility function is 

asymmetric. This is difficult to visualize due to the overall magnitude of penalties. 

However, the magnitude of the cap (upper limit) of the depicted function is around 

20000 currency units greater than the magnitude of the floor (lower limit). This 

asymmetry is due to the variability of NtGC and NtRDC, which are functions of XGC and 

XRDC respectively. Thus, if the probabilities of all possible outcomes of actual demand 

were symmetrically distributed around the RDC’s nomination (XRDC), it would make 

economic sense for the GC to nominate lower than the RDC, even if the RDC’s 

nomination were the best estimate of actual consumption. However, this does not 

suggest exactly how much lower the GC should nominate. For this purpose it may be 

beneficial to use information about the uncertainty of demand estimates. Hence, the 

attention should turn to utilizing probabilistic information contained in demand 

forecasts in order to optimise the GC’s nominations.  

PDFs of gas demand, P(y), produced from end-to-end gas demand forecasts 

(as described in chapter 6) can be applied to the utility function to estimate the 

expected economic utility for a specific nomination XGC, thereby incorporating the 

uncertainty in the forecast (see fig.7.4 for a graphical example). Due to the limited 

scope of this study, forecast errors are assumed to be normally distributed (this has 

generally been found to be a valid assumption for temperature forecasts at London 

Heathrow, e.g. Jewson, 2004c) and the PDFs modelled as Gaussians. However, 

preliminary analysis of the demand error distributions in this study suggests that this 

may not necessarily be the case. Hence, further investigation is needed into exploring 

the use of other probability models. 
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Figure 7.4: The utility function to the GC of nominating 29.8mil m3, given  
the RDC nominates 31.6mil m3, multiplied by a probabilistic demand forecast  
in the form of a Gaussian with µ = 30mil m3 and σ = 6.27mil m3. Expected  
utility is given by integrating over all possible values of actual demand. 
 

The resulting function (utility function x forecast PDF) is then integrated over all 

possible demand values to obtain the expected utility for the GC’s decision to 

nominate a specific gas amount XGC (eqn. 7.4). 

 

[ ]( ) ( , , ) ( )gc gc rdc
y

E U x U x x y p y dy= ∫      (7.4) 

The GC nominates XGC so as to maximise the integral and thus the expected utility: 

 

[ ]( ) max{ [ ]( )}gc gc
xgc

E U X E U x=       (7.5) 

In fig. 7.4, the positive area under the curve is slightly larger than the negative area, if 

the GC nominates 29.8mil m3. This implies higher economic utility than nominating 

according to the best estimate given by the ensemble mean of the same demand 

forecast probability distribution, 30mil m3. The maximal expected utility based the 

probabilistic forecast in this example is given if the GC nominates 29.8mil m3. If the 

GC nominated the identical amount which the RDC nominated, both areas would be 

zero, implying a guarantee of zero losses but also no possible profit. Hence, if the 

PDF of a probabilistic demand forecast is to a sufficient degree sharper than the 

climatological PDF, whilst still being consistent with observed probabilities, its use 

would lead to improved nominations and potential profit for the GC. 
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7.2.1 Empirical testing 

Since the economic value of a forecast is determined by how much money it 

will make or save a user, a comparison of the GC’s total profits/losses achieved over 

the entire 2004-2005 heating season by nominating according to different 

deterministic and probabilistic MRF and EPS multi-model forecasts was conducted.  

However, to enable this comparison the nominations of the RDC must be 

defined first. Since it is assumed that the RDC uses some sort of temperature forecast, 

setting the RDC’s nominations to climatology would not be a stringent enough test. 

For the purpose of this study, it was therefore assumed that the RDC nominates 

according to an end-to-end demand forecast based on a single integration 

deterministic temperature forecast. This was taken to be the control integration of the 

EPS. The GC would then nominate according to the best estimate, in the case of 

deterministic forecasts, or the maximal expected utility, in the case of probabilistic 

forecasts, derived using one of the following end-to-end demand forecasts: 

EPS_Det EPS deterministic best estimate (ensemble mean), 

MRF_Det MRF deterministic best estimate (ensemble mean), 

Multi_Det Multi-model deterministic best estimate (ensemble mean), 

EPS_Hist EPS probabilistic forecast using historical errors, 

MRF_Hist MRF probabilistic forecast using historical errors, 

Multi_Hist Multi-model probabilistic forecast using historical errors, 

EPS_Ens EPS probabilistic forecast using the raw ensemble spread, 

MRF_Ens MRF probabilistic forecast using the raw ensemble spread, 

Multi_Ens Multi-model probabilistic forecast using the raw ensemble 

spreads. 

The probabilistic forecasts for this study were generated by fitting a Gaussian 

distribution around the ensemble mean. In the case of historical errors, the standard 

deviation was taken to be the standard deviation of the 2003-2004 error distribution of 

the ensemble mean demand forecast around demand observations. For PDFs based on 

the raw ensemble spread, the standard deviation of the demand forecast ensemble 

members for a particular target day was used. For the multi-model forecasts, the mean 

was taken as the mean of the EPS and MRF means, and the standard deviation as the 

mean of the standard deviations of the EPS and MRF. 
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7.2.2 Results 

The first objective was to assess the value added by all forecasts derived from 

the two ensemble system and their combination in the multi-model vis-à-vis using the 

EPS single control integration. Total net payouts at each lead time for the 2004-2005 

heating season are shown in fig. 7.5. 

 

 
Figure 7.5: Total net payouts for the GC over the 2004-2005 season at specific  
lead times using different forecasts to nominate. Red lines represent EPS  
forecasts EPS_Det (solid), EPS_Ens (dashed) and EPS_Hist (dashed-dotted).  
The blue lines represent the equivalent forecast types using MRF data, and the  
turquoise lines those of the multi-model.  
 

All forecasts based on the MRF ensemble (MRF_Det, MRF_Ens and MRF_Hist) 

exhibit large losses at short lead times, compared to the EPS control integration. 

However, losses decrease rapidly with lead time and profits are made beyond day 7. 

All forecasts based on the EPS ensemble (EPS_Det, EPS_Ens and EPS_Hist) generate 

profits at all lead times compared to the single integration, except on day 2. The 

amount of profit tends to increase with lead time, especially beyond day 7 (total 

profits for the 2004-2005 are just under 1mil currency units at lead 1 and around 

62mil currency units at lead 10). This shows that whilst the MRF ensemble forecasts 

tend to cause losses, the value of all of the EPS ensemble forecasts to the GC in the 

nomination process is superior to that of the single integration at almost all lead times. 

 The multi-model profits/losses lie in between those of the two systems on their 

own (except at lead 7) with profits/losses being closer to those of the more profitable 

forecast, the EPS. However, relative to the MRF and EPS, the profits/losses are not as 

one may expect based on either the assumption that they may be the mean of the MRF 
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and EPS, or that they would follow a similar relative pattern to the MRF and EPS as 

indicated by the Gain score in figure 5.17 (i.e. being superior to both forecasts at leads 

4 to 8). Losses are incurred up to lead 4. Thereafter, profits are made and are similar 

to those of the EPS beyond lead 6. At lead 7, multi-model profits even exceed those of 

the EPS. These results confirm the hypothesis that the economic value of a forecast, 

or the relative value of several forecasting techniques, can only be determined when 

they are integrated into a specific-end-to-end application and decision-making 

process. Although profits are for the most part below those achieved by the EPS, 

further investigation into appropriate calibration methods is necessary to determine 

whether the multi-model technique could potentially add value in this context.  

Furthermore, fig. 7.5 shows that revenues generated by the different forecasts 

(probabilistic and deterministic) produced from EPS ensembles are very similar at all 

lead times. This is also the case for all forecasts produced from MRF ensembles and 

the multi-model. This indicates that including probabilistic forecast information does 

not affect the net revenues as much as the choice of forecasting system or, in the case 

of the EPS, whether to use the ensemble mean or the control integration. A probable 

reason for the small differences between revenues achieved by probabilistic and 

deterministic forecasts is that the asymmetry of the utility function (fig. 7.3) is only 

slight, meaning that even in the event of a large spread of the probabilistic forecast 

distribution, the nomination giving the maximal expected utility based on the 

probabilistic forecast will be close to the nomination according to the ensemble mean 

best estimate. This once more highlights the user- and application-specific nature of 

forecast value. Other applications and decision-models with more asymmetrical utility 

functions may benefit more form probabilistic forecast information (e.g. as found by 

Smith et al., 2001). 

Having found that using the EPS ensemble mean adds considerable value in 

the nominations process, but that the probabilistic forecasts appear to add similar 

amounts of value on the whole, the question remains whether probabilistic 

information in the form of past errors or that contained in the ensemble spread adds 

any additional value at all. To investigate this, the value of probabilistic EPS forecasts 

vis-à-vis the EPS ensemble mean was assessed by subtracting the profits achieved by 

the latter from those achieved by the former (fig. 7.6). 
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Figure 7.6: Total net payouts gained by the GC relative to using the EPS control  
integration during the 2004-2005 season at specific lead times using EPS_Ens 
(red line) and EPS_Hist (blue line). 

 
Additional revenues achieved by the probabilistic forecast using the historical error 

distribution are very erratic over lead times. Profits are only made at leads 2-5 and 

comparatively heavy losses are suffered at longer leads. Hence, this probabilistic 

forecast produced from historical errors should not be used in its current form in the 

nomination process. On the other hand, the probabilistic information contained in the 

ensemble spread of the EPS does appear to add some limited value to optimizing 

nominations. Figure 7.6 shows a gain in profits at all lead times (except lead 8), with 

profits generally increasing with lead time. This gain in value (even if comparatively 

small) is encouraging, since it suggests that the ensemble spread may contain useful 

probabilistic information. Calibration of the spread (e.g. starting with methods 

outlined in chapter 6) or blending past error statistics and ensemble spread (e.g. 

Jewson’s, 2004b, spread regression) may improve results. In addition, non-Gaussian 

probability models should also be investigated. Naturally, longer test periods would 

be necessary to establish robust results. As mentioned in chapter 6, the issue of how to 

calibrate the ensemble spread is vigorously debated, and any assertive statements 

about the value of the spread should at this stage be made with care.  
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Chapter 8: Conclusions and future work 
 
 
The following answers can now be given to the four questions set in the introduction: 

 

Question 1: What is the deterministic skill of the ensemble mean of an end-to-end 

gas demand forecast using raw ECMWF and NCEP temperature forecasts? 

 
The ensemble mean provides a skilful deterministic estimate of gas demand. 

Results for the 2004-2005 heating season show the EPS to have a Gain over 

climatology of 3.8 mil m3 at a lead time of 1 day (~14.1% of mean daily weather-

dependent demand) and 1.8 mil m3 at a lead time of 10 days. The RMSE was 1.5 

mil m3 at a lead time of 1 day and 4.7 mil m3 at a lead time of 10 days. 

Using the raw means of both ECMWF EPS and NCEP MRF ensemble 

forecasts individually to produce deterministic end-to-end demand forecasts for 1 to 

10 days ahead considerably increases skill over climatology, persistence and a 

stochastic AR1 model. The difference in absolute errors is statistically significant at 

all lead times at the 0.05 level. The gain over persistence and the AR1 model is 

especially great at lead times of 3 to 9 days. In terms of Gain, the EPS is superior at 

all leads. The difference of absolute errors is significant at the 0.05 level at leads 1 to 

3 and 10 in 2003-2004, and at leads 1 to 3 in 2004-2005. In terms of RMSE, the MRF 

is superior at leads 4 to 8 in 2003-2004. This suggests that whilst the MRF has greater 

absolute errors, it has fewer large magnitude errors at leads 4 to 8. 

Forecast performance varies between the two seasons. RMSE of both systems 

is higher in 2003-2004 at all lead times. Gain over climatology is higher at short leads 

(around 1 to 4 days), but decreases more rapidly with increasing lead time. This is due 

to the rapid transitions between extremely warm and cold anomalies occurring during 

the first season, making temperature anomalies from climatology more difficult to 

predict than in the second season. Although rapid transitions lead to larger absolute 

forecast errors, using the MRF and EPS yields even higher skill in these situations 

than achieved by climatology or statistical models, since dynamical atmospheric 

processes can only be forecast by numerical models.  

Despite providing a skilful estimate of the most likely outcome, the ensemble 

mean mostly underestimates extreme anomalies. This is observed even at leads as 

short as 1 day, and becomes increasingly pronounced with increasing lead time. It is 
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especially evident in situations of high forecast uncertainty, when the ensemble spread 

grows rapidly and thus rapidly merges with the climatological spread. By 

consequence, the mean also rapidly merges with the climatological mean. Hence it is 

essential to consider the use of probabilistic information, in addition to the ensemble 

mean, especially if the user is sensitive to extremes.  

 

Question 2: Can the deterministic skill be improved by post-processing methods? 
 

Conventional bias correction methods of the ensemble mean add no further skill 

for predicting temperatures and gas demand at Prague, and in some cases 

degrade skill. Bias correction methods developed on one location cannot simply 

be transferred to another location without prior research, even if the same 

numerical weather prediction system is used.  

Conventional bias correction methods of the ensemble mean add no further 

skill for predicting temperatures and gas demand at Prague, and in some cases 

degrade skill. This is due to the more erratic nature of forecast bias at Prague, which is 

probably attributable to climatic differences between Prague and London Heathrow, 

the station for which most existing methods have been developed. Prague’s climate 

exhibits a stronger continental influence and a higher variance in temperatures, as 

well as being influenced by complex surrounding orography which modifies large 

scale flow modelled by the NWP systems. London Heathrow, on the other hand, has a 

lower variance in temperatures, is more maritime and not surrounded by major 

orography, and exhibits and a distinct annual cycle in its forecast bias pattern. 

All running mean bias corrections degrade the skill of the EPS at all lead 

times. This effect increases with increasing lead time and is most pronounced when 

using the shortest (15 day) averaging period for calculating the unconditional bias. In 

the case of the MRF, running mean bias correction increases skill at leads up to 3 

days, but thereafter substantially degrades skill. Again, the 15 day mean performs 

worst. This is probably due to the bias being estimated form preceding days. 

However, actual bias may vary depending on the state of the atmosphere when the 

forecast is produced and when the forecast verifies. This seems to explain why the 

degrading of skill increases with lead time, since the state of the atmosphere is more 

likely to change with increasing lead time.  
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Owing to the erratic nature of the forecast biases the simple linear regression 

model attempting to correct unconditional as well as flow-dependent bias does not 

lead to improvement in skill. Fitting first order harmonics to regression parameters in 

order to account for seasonal variations in biases results in some improvement in-

sample, but in reduced skill at lead times beyond 6 days out of sample. This again 

points towards the high variability of errors at Prague, as well as to a more complex 

seasonal structure of bias patterns. 

 

Question 3: Can the deterministic skill be improved by combining NCEP and 

ECMWF forecasts? 

 
Both simple averaging as well as optimal weighting of the two ensemble means 

by linear regression enhances deterministic skill up to a lead time of around 7 

days. 

Though similar (probably due to underlying physical causes, such as synoptic 

conditions in which both forecasts have similar problems), error patterns of the EPS 

and MRF at Prague show greater dissimilarities than at Heathrow (exemplified by 

lower correlation coefficients across all lead times ranging for 0.70 to 0.88, compared 

with 0.80 to 0.92 at Heathrow). Qualitative analysis of large error events revealed the 

ten highest magnitude positive and negative errors of the EPS mostly do not coincide 

temporally with those of the MRF. This proves the potential for exploiting 

uncorrelated forecast errors in order to enhance overall skill. Additional skill is gained 

by combining the two ensemble means by linear regression, which optimally weights 

the two forecasts, up to a lead time of around 7 days. Beyond lead 7, the model is 

over-fitted and leads to a decrease in skill. Simply taking the mean of the two 

ensemble means adds skill at leads 4 to 8.  
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Question 4: What is the economic value of using raw and post-processed 

deterministic and probabilistic forecasts in a decision-making process? 

 
Substantial value can be gained at almost all lead times when using the ensemble 

mean of the EPS as a deterministic forecast instead of the EPS single integration 

control for the user-specific application of nominating gas demand. This is 

especially the case at longer lead times, with total profits over the 2004-2005 

season ranging from just under 1 mil currency units at a lead time of 1 day to 

around 62 mil currency units at lead 10. Additional value added by probabilistic 

forecasts derived from the ensemble spread is only limited (approximately 

100000 currency units at lead 1, and 340000 currency units at lead 10).  

Using the MRF ensemble mean generates losses up to lead 7 and profits 

thereafter are smaller than those achieved by the EPS ensemble system. Incorporating 

probabilistic information from a Gaussian distribution of historical errors does not add 

value, though it is necessary for this to be further investigated, e.g. by using different 

probability models. Although the added value of probabilistic information from the 

raw ensemble spread is comparatively small, it is encouraging that it was shown to 

add some value. The limited size of this added value may be due to the decision 

model in this specific application only having a small asymmetry and hence maximal 

utility often coinciding with the deterministic best estimate. In addition, the spread 

had not even been calibrated and only a Gaussian probability model was tested. 

Hence, it is essential that further research is conducted into forecast calibration, since 

this is the only means by which maximum benefit can be extracted from the 

information inherent in the forecast. 

Using the simplest version of the multi-model forecast, the mean of the two 

demand forecasts, produced no added value vis-à-vis using the EPS ensemble on its 

own. However, judging by the added deterministic skill of multi-model forecasts 

shown in chapter 5, research into appropriate calibration may in future make it 

possible to gain some additional value with regard to gas demand nominations. 
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8.1 Future work 
Calibration of probabilistic forecasts 

The most important continuation of this project is the calibration of 

probabilities derived from the ensemble spreads of the MRF, EPS and the multi-

model method for use in the nomination decision-making framework. Only then could 

the full value residing in the EPS and MRF forecasts be fully exploited. This may 

include Bayesian methods relating bias to atmospheric state, as well as applying non-

Gaussian probability models. Relaxing the normality assumption is an equally 

important avenue to be explored in the context of probabilistic inferences derived 

from historical errors of the ensemble means, since analyses conducted in relation to 

this study have shown that forecast errors are not always normally distributed.  

 

Identifying other variables that may affect errors 

As this study suggests, bias correction is no trivial matter. Forecast error 

structures can be complex, location-specific and are to some extent related to 

atmospheric state. Hence, it is essential that synoptic flow and pressure patterns (e.g. 

the North Atlantic Oscillation), as well as upper air data are considered as potential 

predictors. These may provide important and perhaps more reliable information on 

bias structures. The greatest obstacle currently posed to this research remains the lack 

of long records of past forecasts from the model in current operational use. At the 

moment, over-fitting of statistical models due to small sample size presents a great 

danger. Nonetheless, in the absence of these data, a partial solution to dealing with the 

noise in the NCEP error pattern is to make use of re-forecasts produced by an older 

version of the NCEP model, which have just become available (Norton, pers. com). 

Key variables showing a relationship to model bias could be identified by fitting 

statistical models to this data set. Thereafter, regression coefficients could be tuned 

using the comparatively short archived data of the current NCEP model.  

 

Interpolating from numerical model grid 

In addition, more sophisticated methods of interpolation should be 

investigated. For the present study, 2m temperatures values of the four nearest 

numerical model gridpoints were linearly interpolated to Prague Ruzyne. Variable 

weighting of the gridpoints, related to flow patterns or stability conditions on a 
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particular day, i.e. by drawing on statistical relationships between a location’s 

climatological data and gridded model output using methods such as kriging and 

spatial clustering (Gutierrez et al., 2004) may provide a more representative 

interpolation.  

 

Extending research to other stations and fields 

The application considered in this study requires point-specific temperature 

forecasts, since the gas model uses HDDs at a specific station as an input. However, 

this could be expanded in future research to include a group of stations or even larger 

spatial fields. This may not only prove to be highly valuable for the gas industry (gas 

consumers are usually spread out over a larger geographical area), but also for 

developing more comprehensive theories and solutions for forecast calibration in 

general.  

 

Extending research to other decision models 

 Having confirmed that the value of a temperature forecast not only depends on 

the forecast itself, but also on its user-specific application, it should be the priority of 

applied meteorologists and forecast users alike to assess the value of forecasts such as 

those used in this study in the context of different end-to-end forecasting and 

decision-making processes. This would be especially important in the context of 

highly non-linear demand and utility functions.  
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