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ABSTRACT

Abstract

Clouds are an important constituent of the Earth’s atmospheric radiation budget and are one

of the major uncertainties in predicting future climate. In order to predict how clouds will behave

in future climate, we first have to evaluate how they are represented in numerical models in the

present day.

This thesis explores the evaluation of model cloud parameterization schemes using two sim-

ulation methods, where radar and lidar observations are predicted from model variables. Simula-

tion of ground-based radar data is used to investigate why many operational models have a deep

evaporation zone when compared to radar observations and has allowedthe rejection of many

possible causes of the deep evaporation zone. However, when comparing radiosonde and model

humidity profiles it can be seen that, in many cases, there is a sharp drop in humidity within

the evaporating layer. A simple numerical model is created that uses the Met Office model pa-

rameterization scheme to test the sensitivity of evaporation zones to atmospheric variables. Using

radiosonde temperature and humidity profiles, the evaporation model showsthat, given the correct

humidity gradient, the Met Office model could accurately represent the evaporation zone depth.

Secondly, simulation is used to make a global evaluation of the ECMWF model’s cloud

scheme. A forward model is used to predict lidar backscatter from the ICESat satellite using

ECMWF model variables. This accounts for the extinction of the lidar signal and removes any

cloud that would not be detected by the lidar. Over nine million kilometers of ICESat data are

compared to the corresponding ECMWF model output. Results show that the ECMWF ice cloud

is too frequent, tropical boundary layer clouds are poorly represented and the model has greatest

skill at high altitudes and over the land.
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CHAPTER ONE

Introduction and Motivation

1.1 The Importance of Clouds within Climate and Weather Fore-

casting Models

Clouds are important within the climate system as they interact with both solar (short wave) and

terrestrial (long wave) radiation. With recent estimates of the future increase in carbon dioxide,

climate models have predicted a rise of global mean temperature from 2 to 5 K, over the next 100

years (IPCC, 2007). The difference between a 2 K rise and a 5 K rise may result in dramatic

differences in the frequency of severe weather events, the likelihood of a thermohaline shutdown

(e.g. Manabe and Stouffer, 1999), sea level rise (e.g. Bengtssonet al., 2005) and the action

required by policymakers and politicians to tackle climate change (IPCC, 2007). It is well known

that much of the uncertainty in the global mean temperature rise is due to the frequency and

behaviour of clouds in a future climate (Arking, 1991; IPCC, 2007; Quante, 2004).

In order to understand how clouds are likely to behave in a future climate, wemust first under-

stand how they behave in the present climate. As the microphysical processes that form, evolve

and dissipate clouds occur on scales much smaller than the size of a model gridbox, parameteriza-

tion is needed for models to represent clouds. An accurate knowledge ofthe processes that form,

dissipate and modify cloud are necessary to develop accurate cloud parameterization schemes for

general circulation models (GCMs).

In addition to their importance in the climate system, clouds are also important in short-term

forecasts produced by numerical weather prediction (NWP) models, fora number of reasons. The

first is that they produce precipitation, and good forecasts of cloud position and nature are the first

step in good forecasts of precipitation location and intensity. Another reason is that low-lying

cloud tends to reduce visibility of mountains, taller buildings and trees, which can affect the flight

patterns of civilian and military aircraft, as well as military operations.

Also, clouds affect the radiation budget and hence correct representation of clouds is im-

portant to ensure accurate surface temperature forecasts; in warm conditions this will affect the
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CHAPTER 1: Introduction and Motivation

evaporation rate and soil moisture content, while in cold conditions the amount of cloud is impor-

tant for forecasting of frosts. Finally, the amount of aircraft wing icing isdependent on the water

contents, cloud phase and temperatures of clouds the aircraft fly through, so correct representation

of clouds is important in this case to ensure flight conditions for aircraft are not dangerous.

The complexity of cloud parameterizations is always increasing; however,this is no guarantee

of improved accuracy. When a new cloud parameterization scheme is in place, it is important

to evaluate the scheme’s performance by comparing properties of the modelled clouds to the

same, or similar, observed properties. Evaluation of model parameterizationschemes can lead

to improvements in a model’s parameterization of clouds. Within a GCM, this should lead to an

increased confidence in the behaviour of clouds within a future climate, reducing some of the

uncertainty in any future predictions of global climate. Better representationof clouds within

NWP models has been the focus of recent research (e.g. Wilson and Ballard, 1999; Tompkins,

2002; Jakob, 2003; Illingworthet al., 2007). Improvements within some NWP models due to

change in cloud scheme have been noted. For example, Wilson and Ballard (1999) implemented

changes in the Met Office cloud scheme and state that these changes result in drier boundary layers

and better visibility estimates, better representation of deep precipitating systemsand improved

forecasts of freezing rain and drizzle, which led to more accurate forecasts of visibility, heavy

rain events and freezing conditions that produce icy roads. In addition,Illingworth et al. (2007)

showed that improvements in the Mét́eo-France model led to better estimates of model Ice Water

Content (IWC) which should improve the way the model represents radiative transfer as well as

surface temperature forecasts.

1.2 Two Methods of Evaluating Models

As clouds can exist as high as 20 km in places, in-situ measurements from aircraft are sparse

in nature, often quite expensive and hence do not lend themselves easily tomaking long-term

observations of clouds that are useful for model evaluation, but are more suited to making mi-

crophysical measurements that can evaluate parameterization schemes. Remote sensing methods,

either from ground-based stations beneath the cloud or satellites above thecloud, tend to be used

for evaluation of model cloud climatology.

Cloud parameterization schemes in NWP models and GCMs are formulated in terms of prop-

2



CHAPTER 1: Introduction and Motivation

erties, such as the cloud water content within a model grid box and the fraction of cloud filling a

grid box. However, radar1 and lidar2 instruments do not directly measure water contents. Instead

they measure the backscattered intensity of the electromagnetic radiation returned from the cloud.

Due to the narrow beamwidth of the instrument when compared to the size of the model grid box,

a vertically pointing radar or lidar is not capable of obtaining the instantaneous cloud fraction of

the entire grid box, just an echo showing the location of cloud in the atmosphere above the instru-

ment. Hence the variables measured by radar and lidar are distinctly different to those used within

the model cloud scheme. This presents a challenge when one wishes to evaluate a model cloud

parameterization scheme. By contrast, to compare radiosonde measurementsof temperature, hu-

midity and pressure with model profiles is relatively straightforward; all three variables exist as

prognostic variables within the model and, providing the radiosonde has correct calibration, data

assimilation methods can be used to equate the model temperature profiles to thoseobtained from

sondes. However, as radar and lidar measurements are different from model prognostic variables,

one quantity must be converted to the other before any evaluation of the performance of the model

cloud parameterization scheme can take place. There are two methods of doingthis, shown in fig-

ure 1.1. The first is to convert the radar or lidar observations into model variables, or alternatively,

the model variables can be used to simulate the observations.

An example of converting observed quantities to model variables is the conversion of radar

reflectivity to an ice water content that can be compared with the model. This hasbeen attempted

using radar measurements with theoretical particle size distributions (Sassen, 1987; Sassen and

Liao, 1996) to derive the ice water content. Alternatively, radar measurements can be combined

with aircraft-measured particle size distributions and model temperature (Liu and Illingworth,

2000; Hoganet al., 2006) to obtain estimates of ice water content.

The second method is to use the model variables to predict or simulate the signalthat would

be observed by the radar or lidar. Although there have been some cloud-resolving and single-

column model simulations of radar and lidar data, (Luoet al., 2003, 2005), these have not specif-

ically been intended to evaluate the performance of an operational model; hence the simulation

of radar and lidar signals of cloud using model variables for model evaluation purposes is a fairly

novel idea. There are only two known previous examples of simulation of radar and lidar data:

1Radar is an acronym for RAdio Detection And Ranging.
2Similarly, lidar, (after Middleton and Spilhaus, 1953) stands for LIght Detection And Ranging.

3
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Simulation

Doppler Velocity)

(e.g. Empirical Formulae)
Observations to Models

(e.g. Water Content, Cloud Fraction)

(e.g. Radar Reflectivity,

Model Cloud Variables

Radar or Lidar Observations

Figure 1.1: Schematic diagram showing the two different methods that evaluate modelcloud parameterizations

using radar and lidar.

Yeh et al. (1995), who used a cloud resolving model in order to predict the observations of the

Tropical Rainfall Measuring Mission (TRMM) radar, in particular to note the attenuation of the

radar signal; and Chiriacoet al. (2006), who examined the ability of the joint Pennsylvania State

University and National Centre for Atmospheric Research Mesoscale Model (MM5) to simulate

radar and lidar cloud profiles, which were compared with measurements in France.

The simulation technique is useful to allow data assimilation to take place. Once the radar or

lidar measurements are simulated by the model, differences between the measured and simulated

data can be examined. This is the first step in data assimilation. Simulated data frommodel

analysis of the atmosphere can then be compared to radar or lidar data and the model adjusted so

that the model simulations agree with the observations.

With the launch of the CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation) satellites, which use a spaceborne radar and lidar to measure clouds, there

4



CHAPTER 1: Introduction and Motivation

has been an interest in the use of radar and lidar simulation, because of thepossibility of signal

attenuation. By using the simulation method, the signal attenuation can be predicted by the model

water contents. However, it is tricky to predict model ice or liquid water contents given a signal

that has been attenuated and hence a fairer comparison between model and radar or lidar can

result from use of a simulation method.

Examples of CloudSat simulators are currently being developed at the Met Office (Bony-

Lena, 2006) and elsewhere (Stephens, 2006; Haynes and Stephens, 2006, document in prepara-

tion), while examples of CALIPSO simulators are being trialled in France (Bony-Lena, 2006).

In addition, they can also be used to test new model parameterization schemes and it is already

planned to assimilate CloudSat data into models using the simulation (or as it is also known, for-

ward modelling) technique (Stephens, 2006). In both cases, simulation techniques prove useful

and hence development of the methodology, including this thesis, is important.

1.3 This Thesis

The purpose of this thesis is to evaluate a number of aspects of model cloud parameterization

schemes using radar and lidar. This thesis will use two examples of the simulationmethod out-

lined above to convert model variables into observations measured by active remote sensors, using

both ground-based radar and spaceborne lidar observations.

In chapter 2, we shall look at the origins of radar and lidar as a tool for cloud studies and

the important principles of radar detection of cloud hydrometeors. Issuesof sensitivity and radar

wavelength to be used will be discussed, due to their importance in detection ofcloud. The

second half of the chapter will examine how models parameterize clouds and their microphysical

processes. This is important in order to take the model variables, apply the simulation method to

convert them into observed quantities. A number of previous evaluations of model cloud schemes

using radar and lidar will be reviewed and there will be some examination into where model

evaluation and development using radar and lidar may lead in the future.

Chapter 3 focuses on the problem of evaporating ice representation withinthe operational

models. Previous studies (Forbes and Hogan, 2006) have identified thatthe evaporation of ice

beneath warm fronts takes place in a shallow layer around 500 metres deep, whereas in the Met

Office model this layer is represented as being 2–3 times the depth of radar observations. In this

5
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chapter it is shown that the deep ice evaporation problem is not unique to the Met Office model; in

fact a number of operational models from across Europe produce similarly deep evaporation depth

scales when tested. Several hypotheses are suggested for the occurrence of this phenomena and

tested accordingly using simulation techniques to predict radar reflectivity and Doppler velocity.

Doppler parameters were not available for the work of Forbes and Hogan (2006). By comparing

observed and simulated data, several of the hypotheses can be rejectedand evidence is presented

that the deep model evaporation is caused by incorrect humidity profiles within the Met Office

model.

In order to completely test the hypotheses raised in chapter 3, a simple numerical model con-

cerning the mechanics of ice evaporation is developed in chapter 4. This utilises the evaporation

parameterizations from the Met Office model upon a high resolution (5m) grid. It is first used to

test the sensitivity of the evaporation rate to fundamental atmospheric quantities of temperature,

humidity and pressure, as well as cloud ice water content. Further experiments are carried out

using radiosonde and radar data to simulate the evaporation beneath a number of ice cloud evap-

oration case studies using the model parameterization scheme. The model dataavailable from

these cases can also be used to simulate the model evaporation of ice. The validity of the Met

Office model parameterization scheme can be tested and the cause of the MetOffice model’s deep

evaporation layers will be identified.

Chapter 5 uses simulation techniques to make a fair comparison between the ICESat lidar and

the ECMWF model. Due to the near-global coverage of the ICESat satellite, the performance of

the ECMWF model can be assessed at locations where there are no ground-based radar or lidar

instruments. A sample of 15 days of data, equivalent to a distance of 9 million kilometres on the

Earth’s surface is used to derive statistics of the performance of model cloudiness with latitude

and height. Differences in model performance above land and sea surfaces can be obtained;

previously model performance statistics over the sea have been difficult toobtain due to a lack of

observations of cloud profiles in these regions. In addition, two skill scores are used to test the

validity of model forecasts across the globe.

Concluding remarks to this thesis and the possibility of future work in developing simulation

techniques for model validation and development are drawn in chapter 6.
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CHAPTER TWO

Using Radar and Lidar for Model

Evaluation

2.1 Introduction

In chapter 1, clouds were identified as one of the greatest sources of uncertainty in GCM predic-

tions of future climate. Active remote sensing (and in particular, radar and lidar) has the ability to

obtain profiles of cloud data in the direction of the beam emitted from the instrument, making it

an ideal choice for evaluating model cloud parameterization schemes.

As NWP and GCM model performance is of interest to meteorologists, their evaluation has

already been the subject of a number of studies. For cloud schemes it is difficult to make direct

measurements of cloud properties on a global scale and on a frequent basis, so remote sensing

is often used. This can be in the form of satellites measuring the outgoing long wave radiation

from cloud top, radiometers on the surface measuring the downwelling radiation from clear sky

and cloudy conditions, and a few radar and lidar stations making active remote sensing obser-

vations of the cloud. Although ground based radar and lidar stations are very useful to evaluate

model performance at a single point, they tend to be located over the land andare limited to a

few sites across the globe, most often in the Northern Hemisphere (examplesinclude the ARM

(Atmospheric Radiation Measurement) sites in America and the Cloudnet sites in Europe).

Passive instruments have been used for many years to monitor global cloudcoverage from

space in projects like ISCCP (Schiffer and Rossow, 1983). However,in the last decade or so, the

use of active instruments in space has been discussed (e.g. Atlaset al., 1995; Brownet al., 1995;

Hogan and Illingworth, 1999). At the time of writing, there have already been lidar studies from

space using LITE and ICESat (McCormicket al., 1993; Zwallyet al., 2002). An active radar has

been used in space for the tropical rainfall measuring mission (TRMM, launched 27 November

1997, Simpsonet al., 1988). CloudSat, the first active radar from space directly intended for

cloud observations (Stephenset al., 2002) was launched on 28 April 2006 along with its sister

7



CHAPTER 2: Using Radar and Lidar for Model Evaluation

satellite CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder SatelliteObservation) and both

instruments are making satisfactory measurements of clouds. These are part of the A-train of

satellites (Stephenset al., 2002; Vaughanet al., 2004). Future space based cloud observations are

planned for the future, such as EarthCARE (due for launch in 2012).

In this chapter, the principles behind radar and lidar remote sensing are examined with particu-

lar attention to their use in evaluating operational models. Previous studies in model performance

are discussed. Section 2.2 concentrates on the principles behind operational radar, including the

scattering by atmospheric particles, the sensitivity of wavelengths used andwhich wavelengths

are suitable for studying clouds. The history of radar for meteorologicalpurposes will be dis-

cussed briefly, with suitable equations given. Section 2.3 examines how lidarworks, from the

earliest studies, to some of the more recent works and the development of modern lidars for at-

mospheric measurements and how they can be used to detect cloud. Section 2.4 looks at how

clouds are represented in numerical models, including the main variables of water contents and

cloud fraction, including a discussion on whether they are better as prognostic or diagnostic vari-

ables. There will be a number of cases from existing models to explain the principles behind

representing clouds in terms of these three variables. There will be an insight into the different

cloud overlap schemes used in GCMs, providing supporting evidence forthe validity of assump-

tions made in the cloud schemes. Section 2.5 reviews the previous work published using radar

and lidar observations to evaluate the performance of weather and climate models. This includes

a review of previous work in retrieving water contents, cloud fraction andoverlap statistics from

radar and lidar measurements. In addition, the evaluation of individual forecasts is examined us-

ing skill scores; this methodology will be explained and previous examples cited. Finally, section

2.6 provides an insight into how numerical models might develop in the future, with use of radar

and model studies to improve model representation of clouds within the Earth’sclimate system.

2.2 Principles of Radar Remote Sensing

2.2.1 The Radar Equation

The radar principle involves transmitting a high powered pulse (PT ) towards a target and measur-

ing a much smaller power (PR) that is backscattered to the instrument. The meteorological form

of the radar equation, neglecting attenuation due to atmospheric gases, is given as follows (after

8



CHAPTER 2: Using Radar and Lidar for Model Evaluation

Probert-Jones, 1962):

PR(r) = Crad
PT

r2

∑

∆V

(σi), (2.1)

whereCrad is a constant that depends on the hardware of the radar equipment (such as antenna

gain and dish size),r is the mean distance of the targets with backscatter cross sectionσ from the

radar. The subscripti refers to an individual target within the unit volume∆V .

The backscatter cross-section,σ, of a spherical particle (such a cloud droplet or small rain-

drop) can be expressed using the Rayleigh approximation as follows (Battan, 1973):

σ =
π5

λ4
|K|2D6, (2.2)

whereλ is the wavelength of the electromagnetic radiation,D is the particle diameter andK is

the dielectric factor, defined as

K =
m2 − 1

m2 + 1
, (2.3)

wherem is the complex refractive index of the scatterer andm2 is the dielectric constant. Equa-

tion 2.2 can then be substituted into equation 2.1 to give the following form:

PR =
Ĉrad|K|2

r2

∑

∆V

D6. (2.4)

In determining equation 2.4 we have incorporated the constantCrad and the other constants to

form a new hardware constant̂Crad. It is also assumed that all particles within the radar beam

have the same value of|K|2. If this is not the case, the|K|2 should lie within the summation.

The values of|K|2 change for water droplets as the radar wavelength decreases from centimetres

to millimetres and are also a function of temperature. From equation 2.4 we can define the radar

reflectivity, Z. In simple terms, this is a parameter of the cloud to which the radar is sensitive.

We have incorporated the wavelength dependence in equation 2.2 intoĈrad in equation 2.4. In

defining radar reflectivity, we should like to remove this dependence on wavelength so that two

radars with the same hardware but operating at different wavelengths will give the same value of

reflectivity. Hence, radar reflectivity is determined as follows:

Z =
∑

i

NiD
6
i . (2.5)

Here,Di is the diameter of the particles per unit volume andNi is the number of particles of size

Di per unit volume. Taking a distribution of liquid water drops in a cloud, equation2.5 can be
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expressed as

Z =

∫

∞

0
N(D)D6dD, (2.6)

with N(D) × dD being the number of particles with diameter fromD to D + dD.

The Rayleigh approximation introduced in equation 2.2, is reliable for when thewavelength

of the radiation is significantly larger than the diameter of the particle. As the ratioof wavelength

to particle size decreases to the point where the particle size is of the same order of magnitude

as the radar wavelength, Mie theory (as described in Carswell and Pal, 1980; Born and Wolf,

1999) should be used. This can be done quite simply by adding the Mie-to-Rayleigh ratio (γ) into

equation 2.6:

Z =

∫

∞

0
γ(D)N(D)D6dD. (2.7)

The consequences of adding the Mie-to-Rayleigh ratio into our calculationsare to allow Rayleigh

scattering for the smallest particles, but for the backscattered power to significantly reduce as the

particles get larger and enter the Mie size region, hence the magnitude of thereflectivity decreases

compared to if the scattering was entirely within the Rayleigh regime.

Figure 2.1 shows the electrical size of a spherical particle (defined asπD/λ) versus the nor-

malised backscatter cross section (σ/(π(D/2)2)). The lines for the Rayleigh regime are super-

imposed and it can be seen that as the normalised backscatter cross sectionapproaches unity

(wavelength of the radiation is roughly the same size as the particle diameter), then the particle

curves diverge from the Rayleigh regime into the Mie regime. For larger particles, the size of

the oscillations in the curve gradually gets smaller, until the principles of geometric optics can be

applied.

From figure 2.1, it can be seen that curves behave differently for ice and liquid water particles.

In fact, the reflectivity values for liquid and ice need to be treated separately. For ice this can be

done by modifying equation 2.7 as follows:

Z =

∞
∫

0

|Kice|
2

|Kwater|2
γ(D)N(D)D6dD, (2.8)

where|Kice| is the dielectric factor for ice and|Kwater| is the dielectric factor for liquid water.

The value of|Kice|
2 is 0.197 for solid ice, but lower as the density decreases, with the ratio of

|Kice| to ice density constant. Ice density reduces with increasing particle diameter (e.g. Brown

and Francis (1995) give ice density to be0.07D−1.1, where ice density is in g cm−3 and D is in
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Figure 2.1: Backscatter cross sections for ice and water at 0◦C, with the Rayleigh approximation lines superim-

posed. The normalised backscatter cross section is defined as the backscatter cross section,σ, divided by the cross

sectional area of the particle. From Burgess and Ray (1986).

mm) and hence the dielectric factor decreases for larger particle sizes. The result is that values of

|Kice|
2 are much lower than for water and hence the values ofZ are lower in ice clouds than in

water clouds.

2.2.2 Using Radar to Study Clouds

The choice of radar wavelength for cloud studies has implications on the amount of cloud de-

tected. From equation 2.2, we can see that the backscatter cross section,(and hence the returned

power in equation 2.1) is inversely proportional to the fourth power of the radar wavelength.

Hence the shorter the wavelength, the greater the sensitivity of the radar,all else being equal. A

radar with greater sensitivity will be able to detect smaller particles, especiallythose which exist

in the thinnest ice clouds. However, the shorter the radar wavelength, themore likely the radar is

to be affected by attenuation as it passes through clouds, as we shall seeshortly.
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Although radar in meteorology is traditionally thought of as a means for detecting precipita-

tion, studies of clouds using radar have been carried out for the past 50 years. Early studies were

limited by radar technology to use centimetre wavelengths (and hence low frequency) measure-

ments of clouds (e.g. Marshall, 1953; Wexler, 1955; Wexler and Atlas, 1959).

It is well established that higher frequency radars are limited by atmospheric absorption to

just a few spectral windows. This can be shown using a millimetre-wave propagation model (e.g.

Liebe, 1985). The spectral windows result in frequencies for vertical operation of cloud radar

at roughly 35 GHz, 94 GHz, 140 GHz and 220 GHz. Following advances inradar technology,

millimetre wavelength radars were in operation by the 1980s: Hobbset al. (1985) verified the

use of 35-GHz radar (8.6 mm wavelength) for cloud experiments and the first 94-GHz (3.2 mm

wavelength) radar intended for cloud studies was constructed by Lhermitte(1987).

Despite the sensitivity improvements that occur as a result of a shorter wavelength, there

are also attenuation problems. Table 2.1 shows the one-way attenuation of theelectromagnetic

waves produced by radars at various frequencies and through various mediums encountered in the

atmosphere, over a range of atmospheric temperatures. As the wavelengthof the radar decreases,

the attenuation also increases through each medium. Although attenuation by atmospheric gases

(mostly due to oxygen and water vapour) is relatively small at low temperatures for 35-GHz, at

high temperatures and frequencies, the attenuation is significantly higher and should be corrected

for. The attenuation due to liquid water (γw) is largest for the highest frequencies. For 35-GHz

and 94-GHz, attenuation is larger for the lower temperatures. The results of ice attenuation from

table 2.1 show that in general, ice attenuation can be neglected for Rayleigh scattering.

Figure 2.2 shows the attenuation coefficients due to rain rate, assuming a temperature of 20◦C.

It can be seen that for a rain rate of 1 mm hr−1, the attenuation coefficient of a 94-GHz would

be of the order of 1 dB km−1. For 35-GHz, this value would be closer to 0.2 dB km−1. This

relationship between rainfall rate and attenuation coefficient is roughly linear for all frequencies.

Attenuation by rain is significant for 35-GHz and 94-GHz radar data, butthere is an additional

attenuation due to rain on the radome of the radar. Using a 94-GHz radar, Hoganet al. (2003a)

reported a difference of 9 dB between measurements where the radar was vertically pointing and

exposed to the rain and where the radar was sheltered at an angle of 45◦C in rain. They blame the

difference in measurements entirely on wet radomes. Given the attenuation from figure 2.2 and

the results of Hoganet al. (2003a), it is unwise to use data from millimetre wavelength radars for
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γg(saturated) γw γi

dB km−1 (dB km−1)/(g m−3) ×10−4(dB km−1)/(g m−3)

Hogan (1998) Meneghini and Kozu (1990) Meneghini and Kozu (1990)

35-GHz 94-GHz 35-GHz 94-GHz 140-GHz 35-GHz 94-GHz 140-GHz

−20◦C 0.0541 0.1128 1.77 5.41 6.60 0.28 0.37 0.42

−10◦C 0.0620 0.1785 1.36 5.15 6.82 0.38 0.49 0.54

0◦C 0.0843 0.3230 1.05 4.82 7.06 1.40 1.80 2.10

10◦C 0.1355 0.6358 0.82 4.37 7.12

20◦C 0.2455 1.3101 0.64 3.85 6.91

30◦C 0.4773 2.7544 0.52 3.32 6.45

Table 2.1: One-way attenuation of radar signals for atmospheric gases (γg), liquid water cloud (γw) and ice water

cloud (γi). Pressure is assumed to be constant at 1013 mb and Rayleigh scattering is assumed.

cloud studies during rain events.

There have been further experiments on higher frequency radar observations. In a trial for

a highly sensitive radar with small vertical resolution, Meadet al. (1989) used a 215 GHz (1.4

mm wavelength) radar for remote sensing of cloud and fog. However, atthese high frequencies,

Meadet al. (1989) noted that the results depended highly on the amount of water vapour in the

atmosphere. In addition, from table 2.1 we see that attenuation increases asfrequency increases.

Although detection of stratocumulus and fog was still possible with the Meadet al. (1989) study,

the radar beam would rapidly extinguish in thicker liquid water clouds and reflectivity values will

be variable dependent on the humidity between the radar and any clouds being sensed. However,

the high sensitivity and small beamwidth could, in theory allow good measurementsof thinner ice

clouds with smaller particles if the radar was mounted on an aircraft or a satellite. However, since

the frequency is above 100-GHz, there could be some attenuation problemsin thick ice cloud

(Brussaard and Watson, 1995).

Throughout the last twenty years, there have been many studies suggesting the possibility of

spaceborne radar (Lhermitte, 1989; Atlaset al., 1995; Brownet al., 1995). As radars from space

encounter the higher and cooler ice clouds before they reach the liquid water cloud, they are less

liable to attenuation and thus shorter wavelength radar systems can be used (Hogan and Illing-

worth, 1999). However, radar measurements from space have to be mounted on satellites in low
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Figure 2.2: Attenuation coefficient at various radar frequencies with rain rate and at a temperature of 20◦C from

the results of Lhermitte (1990). The dashed line marked “EXP. WALLACE” denotes an experiment by Wallace (1988)

for 94-GHz and the circled cross shows one 94-GHz measurement byLhermitte (1990).

earth orbits at altitudes of less than 1000 km. Higher orbits would lead to largerpulse volumes,

lower sensitivity and hence a radar on a geostationary satellite would give littleinformation on

the clouds below. As the radars are in low Earth orbits, they travel aroundthe globe, profiling

snapshots of clouds rather than making climatological profiles in one place.

To summarise, in planning a new ground-based radar system for the long-term monitoring

of clouds would depend on the number of radars to be used and the locationof the study. For a

single wavelength study, a 35-GHz or 94-GHz radar would be the most useful as they have high

sensitivity and would be able to detect the maximum amount of cloud. However,the results when

precipitation takes place would have to be looked at with great care and in most cases, discarded

from the study. If the radar was to be located in an area of the tropics where frequent heavy

rain occurs, a lower frequency radar would probably be more suitable,but this would limit the

detection of thinner ice clouds. In these locations, a 35-GHz radar would be preferable as it has

less attenuation to liquid, gas and will Rayleigh scatter more particles than a 94-GHz radar. A
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94-GHz radar will have greater attenuation and will be able to detect more ofthe small non-cloud

signals such as birds and insects. In addition, in the tropics, the water content of clouds can be

higher and hence attenuation due to liquid water could be greater for a 94-GHz radar.

For spaceborne radar studies, the situation is different. The first consideration is the physical

size of the dish; trying to launch a satellite with a radar dish larger than 2 m diameter is difficult.

Attenuation of the higher radar frequencies takes place in rain, liquid cloud and water vapour,

so from space the radar will be able to penetrate a significant depth of atmosphere. Considering

these factors together, a wavelength of at least 94-GHz should be chosen for its physical dish size

and greater sensitivity. Meneghini and Kozu (1990) noted that for a 94-GHz radar the attenna

diameter is 1.8 m, as opposed to 5 m for 35-GHz and 10 m for 15-GHz. The pulse power will be

lower for 94-GHz radar and at 300 km from the radar, the footprint would be 500 m for the 35 and

94-GHz radars and 600 m for the 15-GHz radar. Hence, the 94-GHz radar is more suitable for

spacebourne use. However, as the radar receiver has a wider field-of-view from space, multiple

scattering will take place, which may be a problem at 94-GHz (Battagliaet al., 2007).

2.3 Principles of Lidar Remote Sensing

Lidar works on the same principles as radar, but instead of using radiationat microwave wave-

lengths, it uses laser radiation and operates at ultraviolet to infrared wavelengths. The basic prin-

ciple is the same as for radar, with a transmitter emitting pulsed power towards a target, which is

sent back to the instrument’s receiver. However, due to the much shorterwavelength used, lidar

observations of cloud particles tend to use Mie and geometric optics approximations rather than

Mie and Rayleigh scattering approximations used by millimetre cloud radars.

As reported in Weitkamp (2005), the origins of lidar were from attempts to measure air density

profiles using telescopes and searchlight beams (Hulbert, 1937; Johnson et al., 1939), but rapid

development of the instrument followed the invention of the laser in the 1960s (Maiman, 1960;

McClung and Hellwarth, 1962). Since then, there has often been close collaboration between

laser and lidar, with development linked to technological innovation (Weitkamp,2005).

15



CHAPTER 2: Using Radar and Lidar for Model Evaluation

2.3.1 The Lidar Equation

As lidar tends to work on similar principles to radar, it is possible to derive the lidar equation based

on similar work for the radar equation, shown in equation 2.1, taking account of the extinction of

the signal due to particles in the atmosphere.

The lidar equation in its most common form and in the single-scattering limit is as follows

Weitkamp (2005):

PR(r, λ) = PT
Clid

r2
β(r, λ) exp

[

−2

∫ r′

0
α(r′, λ)dr′

]

, (2.9)

wherePR is the small amount of power backscattered to the instrument from the targets,PT is

the transmitted power,r is the range of the targets andλ is the lidar wavelength. The hardware of

the lidar is represented by the constantClid. The term within the exponential is the transmission

term, which relates to the extinction of the lidar signal as it passes through a medium (such as

cloud), with a depthr′ and extinction coefficientα. The termβ is the backscatter coefficient of

the particles interacting with the radiation. Following the same way that radar reflectivity can be

defined from backscattered power, the lidar attenuated backscatterβ′ can be defined, with units

of sr−1 m−1. It can be seen that this is different to radar reflectivity (Z), with different units. It

is perfectly valid to express radar reflectivity as a backscatter, but by tradition, radar scientists

have used reflectivity as most targets are in the Rayleigh regime and the valueof reflectivity is

independent of wavelength for Rayleigh scatterers. Dividingσ in equation 2.2 by unit volume

does not give attenuation in the same way attenuated backscatter does. Lidar works mostly in the

geometric optics region and historically worked independently of radar anddefined backscatter

as a wavelength-dependent quantity with little reference to radar science.

In addition, with many particles, we often wish to consider multiple scattering and can do so

by including the multiple-scattering factor,η (after Platt, 1973), within the exponent. Although

multiple scattering can be calculated numerically (Kattawar and Plass, 1971; Eloranta, 1998), it

can potentially be very computationally expensive and hence the approximation of Platt (1973) is

more frequently used. Values ofη vary from 0.5 in the wide telescope receiver field-of-view limit

to 1. With a value of 0.5, the maximum amount of multiple scattering is assumed to take place,

meaning that all the scattered photons remain within the field of view of the lidar receiver. With

anη value of 1, the photons entering the receiver have only been scattered once. Accounting for
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multiple scattering, equation 2.9 can be written in terms ofβ′ as

β′(r, λ) = β(r, λ) exp

[

−2η

∫ r′

0
α(r′, λ)dr′

]

. (2.10)

In addition to the approximation of the multiple-scattering factor, we can define the extinction-to-

backscatter ratio (sometimes called the lidar ratio) ass = α/β and express equation 2.10 in terms

of α:

β′(r, λ) =
α(r, λ)

s
exp

[

−2η

∫ r′

0
α(r′, λ)dr′

]

. (2.11)

From this expression, it can be seen that large value of the extinction coefficient results in a large

signal returned to the telescope receiver, but also an attenuation of the signal as it passes through

the medium, and a reduced sensitivity to detecting the medium further down the beam.

For most wavelengths, scattering depends on the ratio of the wavelength ofthe lidar radiation

to the size of the particles. The values ofα andβ in equation 2.11 depend on the wavelength of

the laser light. Weitkamp (2005) give the extinction coefficient,α as a function of range (r) and

wavelength (λ) as follows:

α(r, λ) =
∑

j

Nj(r)σj,ext(λ), (2.12)

whereNj are the number of particles of extinction cross sectionσj,ext per unit volume.

2.3.2 Using Lidar to Study Clouds

For cloud detection, the most common lidar type used is elastic-backscatter lidar.Where the par-

ticle radius is much smaller than the lidar wavelength (such as for lidar scattering of the smallest

aerosol particles or molecular gases), Rayleigh scattering occurs and the sensitivity to extinction

and scattering is inversely proportional to the fourth power of the wavelength. However, for most

of the larger particles found in clouds, there is little wavelength dependenceon backscatter as the

scattering is in the geometric optics region (where the wavelength of the lidar is much smaller

than the particle diameter), although the refractive index may be wavelength dependent.

However, in equation 2.11, the value of the lidar ratio,s is variable and depends on the

medium the lidar signal is passing through. For liquid water, values ofs vary with drop size

and wavelength. There is also a dependence on the dielectric constant, but this changes very

little with the temperature within liquid water clouds and as cloud droplets are spherical, s can be

assumed to vary with drop size and wavelength alone, as in O’Connoret al. (2005).
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Using a variety of droplet size distributions, Pinnicket al. (1983) finds for liquid water

between 14.2 and 19.9 sr, dependent on wavelength. However, a later study by O’Connoret al.

(2005) using a gamma shaped drop distribution found thats is almost constant between drop sizes

of 10 and 50µm, despite changing the shape of the gamma distribution. O’Connoret al. (2004)

calculates for a 905 nm lidar and liquid water drops to be18.8 ± 0.8 sr. They also note that this

result varies little for shorter wavelengths of 532 nm, wheres is 18.6 ± 1 sr and 355 nm, where

s is 18.9 ± 0.4 sr. For ice, the value ofs is highly variable, as changes in temperature may result

in changes in ice particle habits and sometimes aggregates can form. At any given temperature,

there may be a range of ice particle habits that occur.

Hence, Plattet al. (1987) gaves to be approximately 50 sr in tropical cirrus clouds between

−40 and−80 ◦C, and proposed a link between the lidar ratio and temperature. In later studies,

data from the Atmospheric Radiation Measurement (ARM) Pilot Radiation Observation Experi-

ment (PROBE) were used (Plattet al., 1998), with results showings ranging from 28.6 to 44.9

sr, with higher values ofs at colder temperatures. Data from the Lidar In-Space Technology Ex-

periment (LITE) were used (Plattet al., 1999) to provide similar calculations ofs, which ranged

between 12 and 21 sr dependent on temperature. Although these values may seem much smaller

than those used for the PROBE experiment, it should be noted that LITE hasa much larger re-

ceiver field-of-view and thus a smaller value of the multiple scattering factor.

Once this multiple scattering factor variation is taken into account, it is sometimes found

(Plattet al., 1999) that the values ofs are of similar sizes. Chenet al. (2002) examineds values

in ice clouds at different heights and temperatures and found thats varies from 20.4 sr at 15–16

km altitudes (−70 to−75 ◦C) to 36.7 sr at 12–13 km (−48 to−58 ◦C), with an average lidar ratio

of 29±12 sr.

Although the variability ofs can sometimes be explained by different instruments having

different fields of view and different values of the multiple scattering factor, η, a more likely

explanation is due to the temperature dependence ofs. Whereas individual cloud droplets are

roughly spherical and thus can be shown to have the same lidar ratio over alarge range of sizes,

this is not true for ice. Ice crystals can have a variety of habits (plates, dendrites, columns and so

forth) and can experience aggregation. Hence the optical properties of ice can differ very rapidly

within the cloud and producing very different lidar ratios. The temperaturedependence we see in

the studies of Plattet al.(1998, 1999) and Chenet al.(2002) are likely to be due to different lidar
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ratios for the predominant crystal habit at these different temperatures.

The choice of wavelength used by lidar depends also on the laser and its properties (Weitkamp,

2005). Early studies (Maiman, 1960; McClung and Hellwarth, 1962) used ruby lidars (694nm).

More recently, Neodymium gases combined with yttrium aluminium garnet crystalline lattices

(Nd:YAG) has been one type of lidars manufactured for modern studies (Weitkamp, 2005), with a

wavelength of 1064 nm (near infra-red). Using nonlinear crystals, thisfrequency can be doubled

to 532nm and tripled to 355nm, which are more sensitive to the smaller particles and can detect

molecular backscatter. Reduction of molecular backscatter can then be used for detecting optical

depth through a medium. Using other gases, lidars can be developed to workat almost any

wavelength from 250 nm to 11µm.

2.4 Model Representation of Clouds

Representation of cloud within general circulation models (GCMs) and in climatemodels has

always been important for radiative transfer calculations and surfacetemperature calculations.

In operational models, clouds are also important for visibility, aircraft icingand forecasting of

precipitation, to name but a few reasons. In this section, current methods of parameterizing cloud

will be examined.

Although early GCMs were developed within the 1950s and 1960s (Randall,2000), at this

stage clouds were not specifically represented in weather forecast models. In some studies, cli-

matological zonal values were used, which tended to ignore longitude and timevariations of the

cloud amounts (e.g. Manabeet al., 1965; Smagorinskyet al., 1965; Holloway and Manabe, 1971).

During the 1970s the need for more physically based cloud schemes was recognised. By the mid

1970s the National Center for Atmospheric Research (NCAR), in the USA had a scheme where

the cloud amount at each grid box was diagnosed empirically from relative humidity (Washing-

ton, 1974). Although these schemes remained within models for some years (e.g. Slingo, 1980,

1987), since the 1990s most models have a prognostic cloud water content(sometimes separated

into different phases of liquid, ice and mixed phase). In addition, some parameterizations treat

cloud fraction as a prognostic variable. This section examines cloud schemes for liquid water

content (section 2.4.1), ice water content (section 2.4.2) and cloud fraction (section 2.4.3). Also

of importance to radiation calculations is the amount of cloud the radiation passes through. How-
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ever, the only information carried within the model is the value of cloud fraction. If a vertical

column of model grid boxes is not completely clear and not completely cloudy, some assump-

tions must be made as to how different layers of cloud are overlapped withinthe model. This is

discussed in section 2.4.4.

2.4.1 Liquid Water Content

The first step in developing a prognostic cloud scheme involves deriving an equation for the rate

of change of liquid cloud water mixing ratio (ql). The simplest schemes make no distinction

between liquid water mixing ratio and cloud ice mixing ratio (qi) at this stage, so thatql actually

incorporates both phases. The rate of change ofql depends on various source and sink terms as

follows (following, Smith, 1990):

dql

dt
=

(

dql

dt

)

ADV

+

(

dql

dt

)

DIFF

+

(

dql

dt

)

TM

+

(

dql

dt

)

ST

+

(

dql

dt

)

P

+

(

dql

dt

)

CV

. (2.13)

In equation 2.13, the subscripts of each term are as follows:ADV refers to advection;DIFF

refers to horizontal diffusion;TM refers to vertical turbulent mixing from the boundary layer;

ST refers to stratiform cloud formation (due to condensation) or dissipation (due to evaporation);

P refers to the loss by formation of precipitation andCV refers to the source of cloud water by

detrainment from cumulus convection. The advection term will be positive if there is a net flow of

cloud into the grid box from neighbouring cloudy grid boxes. The diffusion term will act to move

cloud water from where there is a large amount to where there is little. This caneither be positive

or negative, depending on whether the grid box has more or less cloud water than its neighbours.

The turbulent mixing term can either mix in dry air into the clouds from a less humid boundary

layer, or in the case of a warm front, where the cloud base gradually descends with time, moist

air can be mixed in from a humid boundary layer. The stratiform cloud term can have either sign,

depending on whether the air is rising, cooling and condensing, or whether it is sinking and the

cloud is evaporating. The precipitation term is always negative; cloud water is never gained by

rain production. The detrainment from cumulus convection is always positive; there is never a

sink of cloud water by this process.

The principle of having a cloud water content represented by a prognostic variable was first

developed by Sundqvist (1978), who used only the terms for advection,diffusion, stratiform cloud

formation/dissipation and precipitation formation. The basis for the cloud schemes used for the
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last 15 years in the Met Office unified model is Smith (1990), which uses equation 2.13, ignoring

only the convection term, as in his model version, the convection scheme was not coupled to the

cloud water content scheme. The Smith (1990) scheme carried a single watercontent, making

the distinction of liquid or ice phase only for the precipitation and not for cloud, which was

assumed to have just one water content. The distinction of precipitation phasewas based on a

linear function of temperature as shown in equation 2.14, withαCP being the fraction of the total

water content of the grid box which is liquid. The variablesTice andT0 are the temperatures at

which all the precipitation is assumed to be solid and all liquid, respectfully. In the Smith (1990)

scheme the value ofTice is 264.16 K and the value ofT0 is 273.16 K.

αCP = 0 T ≤ Tice

αCP = T−T0

T0−Tice
+ 1 Tice < T < T0

αCP = 1 T ≥ T0 (2.14)

In a similar manner to the Smith (1990) scheme, the ECMWF model (Tiedtke, 1993),still uses

just one variable for cloud liquid water, with the phase (based on earlier work by Matveev, 1984)

being a function of temperature as shown in equation 2.15, with the value ofTice for this model

being 250.16 K andT0 being the same as in Smith (1990).

αCP = 0 T ≤ Tice

αCP =
(

T−Tice

T0−Tice

)2
Tice < T < T0

αCP = 1 T ≥ T0 (2.15)

Figure 2.3 shows the change in phase (αCP ) with temperature for the two different schemes. It

can be seen that for the Matveev (1984) scheme that there is a tendency for the model to maintain a

water phase at lower temperatures than the Smith scheme. Cloud phase schemes such as Matveev

(1984) and Smith (1990) have been evaluated in a number of aircraft andground-based studies.

Boweret al.(1996) found that there was generally a sharp change in phase between zero and−10

◦C over both maritime and continental clouds; they also found that the then-current Met Office

parameterization of phase was biased by about 3◦C so that more ice clouds were occurring at

higher temperatures. This work is verified by Fieldet al. (2004), who also noted the sharp drop

in phase by−10 ◦C in the majority of flights made over Chilbolton. Finally, Hoganet al.(2003b)

found using flights from data over Chilbolton, that both the Met Office and ECMWF models
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Figure 2.3: Phase function for the Smith (1990) and Matveev (1984) schemes. A phase value of 1 implies that all

of the cloud phase is liquid.

overestimated the frequency of clouds including liquid water, especially at temperatures between

0 and−10 ◦C. Below−25 ◦C, the models tended to underestimate the liquid water fractions.

Work by Boweret al. (1996) suggested that these results were reasonable for the mid-latitudes;

most cloud contained a spread of phase from 0 to 1 at 0◦C and by−25◦C, all cloud phases

recorded were beneath 0.1. However, similar experiments over New Mexico showed a spread of

clouds withα of 0.75 or above between temperatures of 0 and−20 ◦C. Close to−10◦C, most

observations showed a phase of 0.8 or higher, which is quite different from the Smith (1990)

parameterization in figure 2.3. The Smith (1990) scheme has since been replaced with a scheme

by Wilson and Ballard (1999) which considers cloud in both the liquid and ice phases as separate

prognostic variables; this methodology will be studied in the next section.
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Figure 2.4: Diagram showing the different phases and cloud phase change processes in the Met Office Unified

Model (from Wilson and Ballard, 1999)

2.4.2 Ice Water Content

So far we have only studied models with a single cloud water content variable.However, different

cloud phases produce different radiative effects and hence to make improvements to cloud radia-

tive transfer, the separation of cloud water content into phases is important. Wilson and Ballard

(1999) extended the scheme of Smith (1990) to allow each grid box of the MetOffice model to

represent water in different phases of vapour (q), ice water content (qi) and liquid water cloud (ql)

as shown in figure 2.4. The arrows between the grid boxes show the various different microphysi-

cal processes that are parameterized within the model. It should be noted that due to implications

of model run time to produce a forecast, all ice is classified as one variable;there is no distinction

between hail, snow, cloud ice or graupel.

The separation of cloud water into liquid and ice quantities has a number of advantages for

a NWP such as the Met Office Unified model. Wilson and Ballard (1999) note that their method

of splitting water content into ice and liquid prognostic variables has many advantages over di-

agnosing phase from temperature, as in Smith (1990). In particular, thereare better predictions
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of freezing rain and drizzle than the Smith (1990) scheme and that visibility estimates are much

better due to drier boundary layers resulting from correct parameterization of rain evaporation.

These are just two aspects which will be of direct benefit to forecasters. Although some of the

small-scale effects such as visibility and localised precipitation are not as important in climate

models, which concentrate on a much larger picture, the production of ice cloud and the differ-

ences between radiative transfer through liquid and ice clouds is significant enough to justify a

separation of liquid and water clouds in most GCMs, which has been done in some cases (for

example Fowleret al., 1996 and Ghanet al., 1997), which were designed specifically as GCMs,

without being developed as part of a suite of models with different global coverages, like the Met

Office Unified Model.

There is little non-radar evaluation of model ice water content; Stephenset al. (2002) shows

some of the results of vertically integrated cloud water from different GCMs; over the polar

regions where this is most likely to be ice the measurements of integrated cloud water vary as

much as a factor of ten. This issue can be aided by the use of radar; this willbe discussed further

in section 2.5.2.

2.4.3 Cloud Fraction

Although at present most climate models and operational forecast models have a prognostic water

content in at least one phase, the majority use a diagnostic cloud fraction, with just a few models

having a prognostic cloud fraction. Initially, all models used a prognostic liquid water content but

a diagnostic cloud fraction. For example, in Smith (1990) the cloud fraction (CF ) was diagnosed

from relative humidity (RH), defining a critical relative humidity (RHcrit), at which cloud begins

to form. The value ofRHcrit is 85% for all but the two model layers closest to the Earth’s surface,

whereRHcrit is 92.5%. This scheme can be expressed diagrammatically, as shown in figure2.5.

The distribution of total specific humidity (qt) in each model grid box is assumed to be a triangular

pdf, with the mean humidity corresponding to the peak of the distribution. The triangular function

can move left or right on the axis, dependent on the grid box total specificwater content. When

the humidity exceeds (RHcrit), the right hand side of the triangle crosses theqsat line and some

of the water content is converted to liquid cloud water (ql) or ice cloud (qi); the cloud fraction is

then simply the integral of the probability distribution ofqt that is greater than (qsat), denoted by

the blue triangle labelled ‘CF’ in figure 2.5. Figure 2.6 shows the Smith (1990) cloud fraction as
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Figure 2.5: The method of Smith (1990) for determining cloud fraction from humidity measurements. A typical

triangular distribution of humidity is shown, with the blue area representing thecloud fraction.

a function of humidity. Cloud fraction increases as the humidity exceeds its critical value, with

half the grid box filled with cloud when the relative humidity is 100%. The grid boxis completely

cloudy once the grid box mean relative humidity reaches 115%. This process allows for sub-grid

scale variability within the grid box; if the grid box mean relative humidity is 100%, itdoes not

automatically mean that all the grid box is cloudy and by setting cloud fraction to be1 at 115%

mean relative humidity is more realistic as it does not allow the grid box to be completely cloudy

until it is supersaturated.

Wood and Field (2000) compared the Smith (1990) parameterization to aircraft measurements

of cloud fraction from the First ISCCP Regional Experiment (FIRE), theAtlantic Stratocumu-

lus Transition Experiment (ASTEX), and the European Clouds and Radiation Experiment (EU-

CREX). They tested the parameterization in low (0.0 < CF < 0.3), medium (0.3 < CF ≤ 0.7),

and high (0.7 < CF ≤ 1.0) occurrences. The root-mean squared error for low cloud fraction
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ranged from 9–14%, but was as high as 30% for the other categories. The Smith (1990) method

was used to diagnose cloud fraction within the Met Office model until a prognostic cloud fraction

was introduced (Bushellet al., 2003). Wilson and Ballard (1999) used the Smith principles to

diagnose both liquid cloud fraction and ice cloud fraction, assuming two distributions for cloud

ice and cloud water.

Initial attempts to produce a prognostic cloud fraction were pioneered by Tiedtke (1993), who

introduced a scheme for the ECMWF model. The basic equation for the rate ofchange of cloud

fraction is similar to equation 2.13:

dCF
dt

=

(

dCF
dt

)

ADV

+

(

dCF
dt

)

DIFF

+

(

dCF
dt

)

TM

+

(

dCF
dt

)

ST

+

(

dCF
dt

)

EV

+

(

dCF
dt

)

CV

. (2.16)

However, comparing the two equations we see that the precipitation generation term in equation

2.13 is replaced by a general evaporation term (subscriptEV ) in equation 2.16, which has to

be negative by definition. It should also be noted that the stratiform term only includes cloud

formation and not dissipation. Similar equations were produced by Gregoryet al. (2002) and

Bushell et al. (2003); the latter describes the prognostic cloud fraction currently usedwithin

the Met Office Unified Model. As noted by Bushellet al. (2003), sub-grid scale variations of

cloud fraction are important for radiation and surface temperature calculations and the use of a

prognostic cloud fraction improves the radiation calculations within their model, providing the

correct overlap assumptions are used. Overlap aspects will be discussed in the next section;

however, the debate about whether a prognostic cloud fraction is needed in a model still continues.

While a model liquid water content is directly related to physical processes ofevaporation and

humidity, cloud fraction calculations are more complex and subjective. It is difficult to evaluate

model cloud fraction using passive instruments and observers alone; however radar and lidar are

useful tools for this purpose. A review of work in this area will be made in section 2.5.3.

2.4.4 Cloud Overlaps

In addition to the model cloud variables (such as liquid water content and cloud fraction), each

model has to make assumptions about how clouds are overlapped between vertical grid boxes.

The way clouds are overlapped is important for calculations of radiative transfer, cloud albedo

and optical depth.
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Figure 2.6: The method of Smith (1990) for determining cloud fraction from humidity measurements. Note that

once the humidity passes the critical value of 85% that cloud begins to form and the grid box is fully cloudy at relative

humidity of 115%.

The three most common model overlap assumptions are shown in figure 2.7. Inthe case of the

maximum-random overlap (after Geleyn and Hollingsworth, 1979 and Morcrette and Fourquart,

1986), the clouds are overlapped so that neighbouring cloud in the vertical is overlapped to the

maximum extent. However, where there is a completely clear grid box between two different

cloud layers, random overlap takes place. In the case of the maximum overlap assumption, the

clouds are arranged so that there is the maximum amount of overlap regardless of any clear layers

and in the third type, random overlap occurs throughout the column.

Currently, most GCMs and NWP models (including the Met Office Unified Model and the

ECMWF model) assume a maximum-random overlap between layers as it is easy toimplement

and the results agree with some observational studies (for example, Tian and Curry, 1989). It

would seem sensible at first to have layers separated by clear sky randomly overlapped, as they
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Figure 2.7: The three main types of overlaps used in GCMs, taken from Hogan and Illingworth (2000). The dashed

line shows what the total cloud cover in the column would be when viewed from above.

may have been produced by different atmospheric conditions and to havevertically-continuous

layers overlapped to their maximum extent as they may well have been produced by similar

conditions such as frontal systems or deep convection.

The effects of different overlaps have been examined by several studies. Jakob and Klein

(1999) used a sub-grid-scale precipitation model to examine how ECMWF cloud overlap changes

affected the microphysics within the model. They found that the cloud overlapassumption is

important for total column precipitation. By changing the overlap from maximum-random to ran-

dom overlap within the sub-grid model, they found that the stratiform precipitation rate decreases

across the whole globe. Morcrette and Jakob (2000) looked at the changes in the ECMWF model

overlap assumption would bring on cloud and radiation. They found that changing model overlap

assumptions in the ITCZ varied the outgoing long wave radiation by as much as 40 W m−2. In

addition, there were large changes in simulated global cloud cover. For therandom overlap, cloud

cover was as high as 71.4%, but it decreased to 60.9% when a maximum overlap was assumed.

For the maximum-random overlap, a value in between these two extremes, of 63.9% is recorded.

Currently there is very little observational data available to evaluate overlap statistics in mod-

els, but radar can again be used for this purpose. This is will be examinedin section 2.5.5.
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2.5 Comparisons Between Radar/Lidar and Models

Although in some cases cloud parameterizations have been evaluated using cloud resolving mod-

els (e.g. Xu and Krueger, 1991), it is normal to use some form of observations to assess model

performance. It is particularly useful to have observations of the threevariables used in the mod-

els: cloud fraction, liquid and ice water contents. However, it is very difficult to measure directly

cloud fraction or water content of a cloud. The majority of experiments previously conducted

have used measurements from aircraft, plus satellite or ground-based remote sensing and cloud

variables have been derived from measurements made from these instruments.

For the past ten years or so, advances in radar and lidar technology have allowed a number

of new systems to start operating, such as active remote sensing from space, Doppler cloud radar

systems and dual-wavelength radar. In addition, a number of methods havebeen developed to

retrieve model variables of liquid water content, ice water content and cloudfraction directly

from radar and lidar measurements of clouds. These methods will be examined in subsections

2.5.1–2.5.3. Further to the retrieval of individual model cloud variables, skill scores denoting

the performance of individual forecasts of cloud location have also been developed. This will be

covered in section 2.5.6.

2.5.1 Radar and Lidar Evaluation of Liquid Water Content

Measurements of liquid water content from radar reflectivity have been suggested for some time.

The earliest work was by Atlas (1954), who suggested a power law relationship that related radar

reflectivity and liquid water content:Z = 0.048LWC2. Since this study, several different forms

of this power law relationship have been suggested (for example Sauvegeot and Omar, 1987;

Baediet al., 1999). However, Fox and Illingworth (1997a,b) show that drizzle droplets dominate

the reflectivity of a stratocumulus cloud, and can increase the radar reflectivity by between 10

and 20 dBZ, although drizzle makes little change to the liquid water content of thecloud. Since

drizzle is nearly always present, this effect can cause these empirical relationships to fail.

As there has been some uncertainty in which technique to use and problems withdrizzle,

recently more physical approaches for estimating liquid water content havebeen developed. Boers

et al.(2000) used a variety of remote sensing instruments to determine liquid water content. They

first determined the cloud thickness using radar and lidar measurements, followed by estimating

29



CHAPTER 2: Using Radar and Lidar for Model Evaluation

the liquid water path from microwave radiometer data. By assuming the liquid watercontent

varied linearly with height, it was then possible to determine liquid water content at any height

within the cloud.

An alternative method for determining liquid water content has been suggested by Krasnov

and Russchenberg (2005), which uses radar-lidar synergy to determine liquid water content of

clouds. This uses the ratio of radar reflectivity to lidar extinction coefficient in order to classify

every cloud range cell in the vertical radar/lidar profile as either without drizzle, with light drizzle

or with heavy drizzle. They categorise a number ofZ-LWC relations from previous studies

(For example Atlas, 1954; Sauvegeot and Omar, 1987; Fox and Illingworth, 1997b; Baediet al.,

1999) and give power law relations for cloud with no drizzle, light or heavy drizzle. Although

this technique appears to give results in some conditions, there are still outstanding issues of how

accurate radiometer measurements are during precipitation events, and there will be problems in

the thicker clouds where the lidar signal is extinguished.

Although both techniques for liquid water retrieval are used within the Cloudnet programme,

the method of Boerset al. (2000) is the most physically-based relationship. Although it may

be argued that the assumption that LWC increases linearly with height from cloud base may be

false, liquid water clouds are frequently thin (Illingworthet al., 2007) and so this retrieval method

is more realistic than using empirical formulae that are likely to break down given any form of

drizzle precipitating from the cloud.

Illingworth et al.(2007) use data from three Cloudnet sites to make comparisons with 7 mod-

els (ECMWF; Met Office mesoscale and global models; Mét́eo France; Royal Netherlands Mete-

orological institute (KNMI)’s regional atmosphere climate model (RACMO); Swedish Meteoro-

logical and Hydrological Institute (SMHI) Rossby Centre Regional Atmospheric Model (RCA);

German weather service (DWD) Lokal Modell (LM)). The results from the Cloudnet data are

shown in figure 2.8. It can be observed that the 2 Met Office models and theECMWF model

come the closest to the spread of observed liquid water content below 2 km. There are some

problems with quite a number of the other models, such as the Mét́eo France model having dif-

ficulty representing a spread of liquid water contents; this is probably due toits diagnostic liquid

water content scheme, where most of the other models use a prognostic variable for liquid water

content. Above 2 km, the liquid water content measurements of all models have alarger spread,

due to phase changes in the models. Illingworthet al. (2007) present observations for the year
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Figure 2.8: (a) Mean liquid water content profiles from the 7 Cloudnet models and radar observations, for the whole

of 2004. The error bars on the observations are due to radiometer andpossibly distribution of LWC throughout the

cloud. (b) Histograms showing the probability of LWC for clouds between 0and 3 km altitude. Both figures are for all

liquid clouds observed over the 3 Cloudnet sites at Chilbolton in Hampshire,Cabauw in the Netherlands and Palaiseau

in France. During winter, the dominant cloud types will be frontal stratocumulus, while in Summer, the higher liquid

water content values are more likely to be due to convective cumulus and cumulonimbus. From Illingworthet al.

(2007).

2004 with no seasonal variation; it would be interesting to see how model representation changes

between summer and winter seasons with the change in the height of the freezing level. They also

find that the ECMWF model overestimates the occurrence of liquid water clouds, but underesti-

mate the water content when cloud is present.

2.5.2 Radar and Lidar Evaluation of Ice Water Content

In similar fashion to the work on liquid water content, power law relations were initially suggested

for ice water content measurements from radar (e.g. Sassen, 1987; Sassen and Liao, 1996), but

Matrosov (1997) questions these relations. By comparing relations from aircraft data from previ-

ous experiments (Liao and Sassen, 1994; Atlaset al., 1995; Brownet al., 1995), Matrosov (1997)

finds that for a particular value of reflectivity there was a spread of reported IWC up to as much

as one order of magnitude. However, Liu and Illingworth (2000) show that this difference is

mostly due to differences in the radar frequencies used in the different campaigns and differences

in how the density of ice is represented. After examining EUCREX (European Cloud Radiation

Experiment) and CEPEX (Central Equatorial Pacific Ocean Experiment) data sets for particle
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size distributions, Liu and Illingworth (2000) suggested that measurements of mean particle size

or temperature could be used to constrain the IWC spread and give a number of relations linking

ice water content to reflectivity for different temperatures. Hoganet al. (2006) took their work

one stage further and derived the following relations for IWC at different radar frequencies using

EUCREX aircraft data of the form

log10 IWC = âZT + b̂Z + ĉT + d̂, (2.17)

where â, b̂, ĉ and d̂ are coefficients which vary with the frequency of the radar and the units

used. Using 39 hours of scanning 3-GHz radar data, Hoganet al. (2001) compare the mean ice

water content versus mean temperature for 3-GHz radar data, and the Met Office model. They

find that the mean relationships of the model and the radar between−10 and−30 ◦C are close,

with a standard error at most of 25%. At higher temperatures, these lines diverge, possibly due

to aggregation. At lower temperatures, the model underestimates theIWC; at −45 ◦C, this is

around a factor of two. However, a close fit between−10 and−30 ◦C is promising for the Met

Office model, as the majority of radiatively thick ice clouds do occur at these temperatures and

from studying Cloudnet data, it can be seen that in fact the majority of ice clouds in the mid

latitudes occur in approximately this temperature range.

In addition to the work of Liu and Illingworth (2000) and Hoganet al. (2006), other methods

have been suggested for deriving IWC from radar and lidar measurements. Donovan and van

Lammeren (2000) have developed a technique where they obtain an effective radius from the ratio

of radar reflectivity to attenuation-corrected lidar backscatter and use this to obtain particle size

and hence ice water content. The main drawbacks with this work is that the signal from ground-

based lidars is often completely extinguished through low-altitude liquid water clouds, although

this technique may have more merit with the combined CloudSat and CALIPSO datafrom space.

Assumptions that relate the effective radius derived from the radar andlidar measurements to the

true effective radius are made on the basis of ice particle habit. Uncertainties in determining the

habit may lead to errors in the ice water content measurements.

An alternative to the Donovan and van Lammeren (2000) technique is to use dual wavelength

radar. Hoganet al. (2000) used this technique to calculate particle size and hence improved

IWC from the ratio of the two reflectivity values (dual wavelength ratio), assuming a gamma

distribution of ice particles. However, there is limited data available at two wavelengths, although

this technique shows potential for the future.
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Finally, methods have been developed using Doppler velocity and reflectivity to obtain ice

water contents. Matrosovet al. (1994, 1995) use radiometers, radar reflectivity and Doppler

velocity, and Delanöe et al. (2007) use just radar reflectivity and Doppler velocity, and assume

a particle size distribution with relations on how parameterized fall speeds vary with diameter.

Delanöe et al. (2007) uses Doppler velocity to gain the mass of the particle from an assumed

fall speed, and then uses reflectivity to get the intercept parameter of theparticle spectrum. This

method is useful as it only requires Doppler radar measurements, but is subject to the assumptions

made on the particle fall speed. In addition, the particle terminal velocity is not directly measured

by the radar; the measured velocity includes components of the air velocity, which can introduce

errors into the method around the turbulent cloud base. Although not explicitly stated by Delanöe

et al. (2007), using a clear air radar, the air velocities can be determined and particle terminal fall

speed extracted.

The Cloudnet programme (Illingworthet al., 2007) has used the techniques of Donovan and

van Lammeren (2000), Hoganet al.(2006) and Delanöeet al.(2007) to evaluate IWC in the seven

operational models. Results of this analysis are shown in figure 2.9. It canbe seen that Met Office

models and ECMWF model make the best representation of the mean profile of IWC and that the

RCA model appears to have too large an ice water content throughout the profile, with the pdf

of IWC shown in figure 2.9 (b) shows a large probability of ice water contents between 0.01 and

0.1 g m−3. The German weather service’s model has the closest representation ofthe pdf, but is

very poor at representing the mean ice water content, as it underestimates the ice water content

by 1 order of magnitude below 6 km, and overestimates it by roughly half an order of magnitude

above 6 km.

2.5.3 Radar and Lidar Evaluation of Model Cloud Fraction and Cloud Occurrence

Having examined radar evaluation of model water contents, we now turn to look at how radar

and lidar can be used to evaluate model cloud fraction. Although earlier work has been done

on cloud boundaries and vertical extent using radar and lidar (for example Palet al., 1992; Uttal

et al., 1995), the first radar and lidar study for model comparison was conducted by Maceet al.

(1998). In their work, cloud occurrence in the ECMWF model was compared to measurements of

cloud occurrence from a 35-GHz radar operating at the Atmospheric Radiation Program (ARM),

Southern Great Plains (SGP) site. A lidar ceilometer was used to determine the location of the
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Figure 2.9: As for figure 2.8, but for ice water content. The profiles shown includedotted lines which are the model

results before filtering to remove cloud that the radar would not detect. The histograms in (b) are between 3 and 7 km

altitude. From Illingworthet al.(2007)

cloud base. Using a month of data, Maceet al. (1998) found that the model underpredicted cloud

occurrence between 1 and 9 km, but overpredicted the cloud occurrence beneath 1 km and above

9 km.

Similar work by Beesleyet al.(2000) used synergy with a 35-GHz radar and a lidar ceilometer

for cloud base detection located over the Arctic. They compared hourly profiles of cloud fraction

in the ECMWF model over a 24 day period in November 1997 with the same periodof radar

observations, and showed similar results to Maceet al. (1998), given Mace used a frequency of

occurrence and Beesley hourly cloud fraction. Beesleyet al. (2000) found that the model under-

estimates cloud from 1–5 km and overestimates it above 5 km. Due to the colder temperatures

over the polar regions, the ice cloud will exist at lower altitudes in both the radar and the model.

Hence the overestimate at the Artic at 5 km is probably due to the same problem with too much

ice cloud above 9 km reported by Maceet al. (1998).

Hoganet al.(2001) continued the work of Maceet al.(1998) and Beesleyet al.(2000) by us-

ing 35-GHz and 94-GHz radars at Chilbolton in Hampshire. Instead of comparing cloud fraction

or frequency of occurrence, Hoganet al. (2001) examined three variables: mean cloud fraction,

frequency of occurrence and amount when present. Cloud fraction was determined by assuming

a model grid with one hour time resolution and the model vertical grid resolution and cloud frac-

tion was determined by the number of pixels1 seen by the radar in this grid box. Frequency of

1One pixel in data from the Chilbolton 35-GHz and 94-GHz radar data is 60 m high by 30 seconds in time.
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occurrence is simply the frequency that some cloud (above a cloud fraction threshold), is observed

above Chilbolton in each hourly profile, and at each model vertical grid box. A cloud fraction

threshold of 0.05 was selected so that grid boxes with cloud fraction greater than this amount

were defined as having cloud. Amount when present is the cloud fractiondetected when cloud

fraction in a grid box is above the threshold. Multiplying frequency of occurrence and amount

when present together results in mean cloud fraction. Hoganet al. (2001) also attempt to be fair

to the model by removing modelled cloud that has too low an ice water content to bedetected

by the radar and where, in some mid-level cases, it was difficult to distinguish between ice cloud

and precipitating snow. To ensure a fair comparison, the snow-flux between vertical grid boxes

is used to increase the ECMWF model cloud fraction. Hoganet al. (2001) find that even after

these considerations have been made, the model overestimates the cloud fraction above 7 km by a

factor of 2. They note that the modelled cloud tends to occur in the lowest kilometre as much as 3

hours before any cloud features are observed in reality. This is similar to Maceet al. (1998) who

note that deep cloud events are often predicted too early, and take too longto dissipate. It should

also be noted that the Mace study took place at a lower latitude than the Hogan study. This means

that the ice clouds within the model and observations existed at a higher altitude. It is likely that

the problems expressed by Maceet al. (1998), Beesleyet al. (2000) and Hoganet al. (2001) are

similar in nature; the ECMWF model has difficulty in correctly representing ice clouds; but the

altitude difference is likely to be due purely to the latitude difference between the three data sets.

Illingworth et al. (2007) perform cloud fraction analyses following Hoganet al. (2001) on the

various models that take part in the Cloudnet project. The results from this work are shown in

figure 2.10, where they are presented as profiles (with and without filtering to remove cloud that

would not be detected by the radar) and as a pdf of cloud fraction. The results for the ECMWF

model are similar to those of Hoganet al.(2001), with the model having difficulty in representing

cloud above 7 km.

From the pdf in figure 2.10, it can be seen that the Met Office model has difficulty in repre-

senting the cloudiest grid boxes (those with cloud fraction values from 0.8 to1). The Met Office

model has some problems representing the mean cloud fraction from 0–6 km, where both the

global and mesoscale models underestimate cloud fraction by around 5%. Above 6 km, the Met

Office models tend to overestimate cloud fraction by 2–3%, which is in line with mostof the other

models. The RCA and RACMO models have problems in representing the cloud atthe top of the
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Figure 2.10: Cloud fraction from radar observations and 7 operational models, after Illingworth et al.(2007). As

in figure 2.9, each model profile has a dotted line, which represents the cloud fraction before filtering to remove any

cloud which would not be detected by the radar.

boundary layer; at 1.5 km, they overestimate cloud fraction between 5 and 10%. Probably the

best performer is the German weather service (DWD) model, which makes a good approximation

to the cloud fraction pdf and mean cloud fraction profile.

Although ground-based instruments are useful for climatological studies of the behaviour and

performance of clouds within models at a single point, coverage over the whole model domain

is useful. Spaceborne remote sensing has been proposed for a long time (e.g. Atlaset al., 1995;

Hogan and Illingworth, 1999). The Lidar In-space Technology Experiment (LITE), described

by McCormicket al. (1993) offered the scientific community the ability to test the potential of

spaceborne lidars. The lidar instrument flew on the space shuttle “Discovery” during September

1996. Milleret al. (1999) compared the lidar data to the ECMWF model and used the same skill

scores suggested by Maceet al.(1998) for their ground-based study. Milleret al.(1999) find that

the model is good at getting the cloud position correct. They give few statisticson cloud fraction,

but give a percentage relating to how often cloud is detected within the model (28.9% in total) and

the observations (28.4% in total) with no latitude or height variation. This does not give much

information into how good the climatology of the model is in terms of cloud fraction.

In 2003, another spacebourne lidar mission, ICESat (Ice, Cloud and Land-Elevation Satellite)

was launched (Zwallyet al., 2002). This is a platform from space, upon which a lidar instrument

called the Geoscience Laser Altimeter System (GLAS) is mounted. Although its primary aims

were to measure the height of the ice sheets in the polar regions, the lasers are also sensitive
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enough to enable global observations of clouds. Already, data from ICESat has been used to

evaluate cloud models. Palmet al.(2005) advanced the work of Milleret al.(1999) using ICESat

data. In a short experiment, they average the ICESat data on to the model grid in a horizontal

direction, yet interpolate the model cloud fraction on to the ICESat vertical grid. They find that

over a few orbits that the model represents cloud fraction to within 3% below 10 km for a 6 hour

forecast. Between 10 and 12 km, the model underestimates cloud fraction byas much as 10%

and between 12 and 17 km, the model has a 10% overestimate in cloud fraction.For the 48 hour

forecast, the overestimate is as large as 30%, and between 3 and 10 km the forecast overestimates

the cloud fraction by 5%. However, like Milleret al. (1999), they make no attempt to correct for

the lidar attenuation, but Palmet al. (2005) note that total extinction of the laser only occurs in

about 10% of cases.

2.5.4 Radar and Lidar Simulation

In sections 2.5.1–2.5.2, the methods of evaluating models all involved taking radar and lidar data

and transforming it to a model cloud variable. As discussed in chapter 1, it ispossible to go the

other way and simulate radar or lidar data from the model variables, althoughonly a few previous

examples of simulation of clouds exist within the literature. Chiriacoet al. (2006) were able to

use the MM5 model (5th generation Pennsylvania State University-NCAR mesoscale model) to

simulate observations made by radar and lidar at the SIRTA (Site Instrumentalde Recherche par

Téléd́etection Atmosph́erique) observatory in France. The principle lies in using the microphys-

ical assumptions made in the model along with the model variables to predict the radar and lidar

data. An example of this is shown in figure 2.11. It can be seen that the MM5 model produces

ice cloud about 3 hours too early than in the radar observations and the simulated reflectivity is

too low, although the cloud is at approximately the correct height. The simulatedlidar profile

shows ice cloud at the right altitudes, but the model is unable to represent the two layers of cloud

present. Both simulated radar and lidar signals seem very uniform in nature, with little time vari-

ation. However, Chiriacoet al.(2006) find that in the majority of cases, the MM5 model is able to

simulate ice clouds in the mid-latitudes, but in 35% of the cases studied, the ice clouds within the

model persist for too long, due to too much solid water and not enough liquid water, regardless of

the parameterization scheme used.
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Figure 2.11: Simulation of radar and lidar data by the MM5 model on 17 October 2003, taken from Chiriacoet al.

(2006). (a) Simulated lidar backscatter profile; (b) Measured lidar backscatter profile; (c) Simulated and measured

backscatter profiles for 0900 UTC; (d) Simulated radar reflectivity with time; (e) Measured radar reflectivity; (f):

Measured and simulated profiles for 0900 UTC. The time scales in (a), (b), (d) & (e) are in UTC.

2.5.5 Overlap Evaluation

Radar data has been used to test the validity of overlap assumptions. Hoganand Illingworth

(2000) developed a method to express the overlap of different model layers numerically, with
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values of an overlap parameter of zero for random overlap and one for maximum overlap. This

was tested on a small amount of data from Chilbolton. Later work by Mace andBenson-Troth

(2002) used a much larger data set from 4 ARM sites ranging from the tropics to Alaska, and over

a much longer time period (collectively 105 months of data). Results from both papers report that

the use of random overlaps for vertically non-continuous cloud (that withclear sky in between

layers) is a good assumption. However, the use of maximum overlap for continuous layers is only

realistic when the layer separation is small. Hogan and Illingworth (2000) show that as model

level separation increases, the validity of the overlap assumption decreases from a maximum

overlap at 0 separation to near-random overlap at 4 km. They proposean exponential relationship

with an e-folding distance of 1.6 km to allow the overlap parameter to decay with increasing

level separation, so gradually more cloud is randomly overlapped as grid spacing increases. Mace

and Benson-Troth (2002) note that the cloudy layers do not easily lend themselves to a simple

maximum or random overlap assumption and that for layers much greater than1km separation,

random overlap would be a better assumption.

2.5.6 Skill Scores

In addition to the climatological performance of the model, the quality of individual forecasts can

be assessed using skill scores. There are many such scores around, some of which are detailed in

Wilks (1995). The principle for radar evaluation consists of first transferring the radar and model

data on to a common grid, as per the Cloudnet programme described in sections2.5.1–2.5.2.

Then each point in the radar data matrix is transformed into a binary score, with a cloud fraction

threshold used to define whether a grid box is clear or whether it is cloudy.If the cloud fraction

in the box exceeds the threshold, its binary score is set to one, otherwise the score is zero. By

comparing the two data scores, each grid box can be classed as a hit, a miss,a false alarm or a

correct rejection following table 2.2.

Maceet al. (1998) were the first to use skill scores to evaluate model cloudiness using radar

and lidar measurements. They used skill scores of hit rate (HR), probability of cloud detection

(POD), threat score (TS) and false alarm rate (FAR) to judge model (after Wilks, 1995):

HR =
(A + D)

(A + B + C + D)
(2.18)

POD =
(A)

(A + C)
(2.19)
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Radar/Lidar grid point full Radar/Lidar grid point empty

(score 1) (score 0)

Model grid point full Hit False Alarm

(score 1) (A) (B)

Model grid point empty Miss Correct Rejection

(score 0) (C) (D)

Table 2.2: Definition of skill score parameters, the letters denote the symbols used to represent these variables in

the skill score equations. For an accurate comparison, the two sets of data must be on the same grid (For example,

Maceet al.(1998) used the model vertical grid and 30 minute time resolution).

TS =
(A)

(A + B + C)
(2.20)

FAR =
(B)

(A + B)
. (2.21)

Maceet al. (1998) presented results from these skill scores without any height dependence

and with a cloud fraction threshold of zero (that is any cloud amount within a grid box counts as

cloud present) over a 3–month period (the same as in described in section 2.5.3) and discovered

that in all scores the model performs better than a persistence forecast and climatology, both

generated from radar observations. The model would be giving a perfect forecast ifHR, POD,

TS were equal to unity, whileFAR was equal to zero.

The hit rate displays the ratio of correct forecasts to the total number of forecasts and for the

model is 0.82; however, this does not reflect the amount of non-occurrence of cloud, which is

easier to forecast than cloud occurrence. The model outperforms the climatology and persistence

forecasts in probability of detection with values of 0.68, as compared to 0.37 for persistence and

0.23 for climatology. However, this may be biased if the model is consistently forecasting cloud

occurrence all the time, so false alarm rate is used by Maceet al. (1998) to assess the proportion

of times the modelled cloud does not have a signal in the radar measurements. Here, a lower score

is better and Maceet al. (1998) find that the model has a mean value of 0.45, while climatology

is 0.77 and persistence 0.61.The threat score, which removes non-occurrence is thought of as the

probability of correctness of a cloud forecast. This has values of 0.44 for the model, nearly double

the persistence value and more than 3 times the climatological value.

As part of their analysis into the performance of the ECMWF model using LITE, Miller et al.
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(1999) used the same skill scores as Maceet al. (1998). In addition, they examined the same

scores by allowing the model to be ‘correct’ in the case of it having cloud± 1 grid box in the

horizontal or± 1 and± 2 grid boxes in the vertical. Their analysis was carried out over night

time profiles of LITE only to avoid solar contamination and over 15 orbits of data. Assuming it is

night time 50% of each orbit, this equates to about 300,000 km of data. They found the hit rate to

be 0.86, rising to 0.92 when the extra grid boxes were included; the threat score was 0.56 rising

to 0.80; probability of detection 0.62 rising to 0.90 and false alarm rate of 0.16 falling to 0.12

with the inclusion of the extra grid boxes. These indicate that the model is verygood at getting

cloud in roughly the correct places, although it is far from perfect. Thestatistics presented are,

in each case a few percent better than the Maceet al. (1998) results, except for the probability

of detection, which is much lower. However, Milleret al. (1999) make no correction for lidar

extinction in deriving these scores, hence the model may have accurately forecast low clouds that

could not have been detected by the lidar, but this will not be obvious fromthe skill scores which

assume where there is no lidar signal then no cloud exists.

Instead of using skill scores previously developed, Palmet al. (2005) introduce their own

skill score (which I have denoted Palm Skill Score (PSS)) to evaluate the ECMWF model using

ICESat data as follows:

PSS =
(A − C)

(A + B + C + D)
. (2.22)

By definition, this skill score can go negative, should the number of hits be less than the number

of misses and its range is from−1 (all data are misses) to1 (all data are hits). It should be noted

that if the model constantly forecasts no cloud (all data are misses and correct rejections), it has

a negative skill score. Palmet al. (2005) also increase the cloud fraction threshold to 50%, only

counting cloud within a grid box that is more than half full in the lidar measurements and where

model cloud fraction is greater than 0.5. The results using this score for half an ICESat orbit

(about 20,000 km of data) are 0.800 for the 6 hour forecast and 0.742for the 48 hour forecast;

a degradation of the forecast skill as would be expected. Due to the different nature of the score

and the 50% cloud fraction constraint, it is difficult to compare their results withother ECMWF

model evaluations. The 50% score may be a little unfair on the model should forexample, an

ICESat grid box be 51% full and the model only have a cloud fraction of 49%, this would be

counted as a miss for the model but would be a hit in the scores of Maceet al. (1998) and Miller

et al. (1999). Palmet al. (2005) note that further work on the ECMWF model is required to fully
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test its performance and that their study is only an introduction into using measurements from the

ICESat satellite to validate models.

Illingworth et al. (2007) examine the scores used by Maceet al. (1998), but conclude that the

hit rate and false alarm rate used by Mace are not independent of the frequency of occurrence of

the event. Illingworthet al. (2007) suggest that a random forecast should have a skill score of

zero and instead use an equitable threat score (ETS) as follows:

ETS =
(A − E)

(A + B + C − E)
(2.23)

where E is the number of hits given by chance, defined as

E =
(A + B)(A + C)

(A + B + C + D)
.

Illingworth et al. (2007) note that the equitable threat score produces the value of 1 for a

perfect forecast and zero for a random forecast and note that it varies only weakly with cloud

fraction threshold. Using a cloud fraction threshold of 0.05, they evaluatethe score for all the

Cloudnet models (detailed in section 2.5.3), as well as a persistence forecast generated by the

same method of Maceet al. (1998). They note that the forecast skill decreases in summer as the

cloud systems become more convective and stochastic. Model skill scoresrange from 0.1 to 0.4

and all remain above the climatology. Due to its low sensitivity to cloud fraction threshold and

low scores for random forecasts, theETS is a better method for cloud fraction detection than the

scores used by Maceet al. (1998), Milleret al. (1999) and Palmet al. (2005).

2.6 Future Remote Sensing of Clouds and Model Comparisons

The future holds a number of possible developments in the field of clouds andhow they are

represented in GCMs and NWP models. As clouds are one of the largest uncertainties in future

climate, one of the most important things would be to constrain how clouds interact with radiation

and give better estimates of the short wave and long wave radiative forcing of clouds. This can

be done with more observational campaigns and particularly with satellites. TheCloudSat and

CALIPSO missions (Stephenset al., 2002) are the first step in establishing global long-term

profiles of clouds from space. Combined radar and lidar measurements can be used to constrain

ice particle spectrum size (as in Intrieriet al., 1993), and ice water content (as in Donovan and
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van Lammeren, 2001). Eventually these are planned to be carried on the same platform as part

of the EarthCARE mission. Dual Wavelength Ratio (Hoganet al., 2000) would be useful in

estimating particle size and constraining ice water content and it would be hoped that one day

dual wavelength radars could be operated from space.

Simulation of radar and lidar data has been discussed and many ideas brought forward (Bony-

Lena, 2006; Stephens, 2006). In the presence of thick liquid clouds, attenuation of lidar signals

and some radar signals occur. In this case, simulation can allow a fairer comparison of modelled

cloud to be produced. In the case of lidar operating at visible wavelengths, simulation is partic-

ularly useful as it shows how model clouds would affect incoming solar radiation. Simulation is

very useful in providing a model equivalent of the measured radar or lidar signal, which allows

data assimilation of the measured signals to take place.

In parameterization the sub-grid scale representation of clouds is becomingmore important.

Already there has been some work into expressing cloud vapour and fraction as a pdf over the grid

box (e.g. Tompkins, 2002, 2006) and the treatment of cloud on a sub-gridscale is important for

radiation. Improvements to the maximum-random overlap scheme seem possible given the results

of Hogan and Illingworth (2000) and Mace and Benson-Troth (2002),allowing cloud layers with

grid spacing closer together to have maximum overlap, but layers that are further apart to be

semi-randomly overlapped, dependent on the grid spacing.

From the poorer performance of the diagnostic Mét́eo France model in representing liquid

water content (Illingworthet al., 2007), the need for prognostic liquid water content is important

for correct cloud representation. Splitting of cloud into different phases produces good results in

the Met Office models and should continue, although work is required to makethe distribution

of water contents closer to the observed pdf without compensating with a lossof mean cloud

fraction.

43



CHAPTER THREE

Doppler Radar Evaluation of

Evaporating Ice in Operational Models

3.1 Introduction

The representation of ice clouds in operational weather and climate models is not only crucial to

radiative transfer (e.g. Stephenset al., 1990; Senior and Mitchell, 1993; Lohmann and Roeck-

ner, 1995), but can have several implications for both the dynamics and the thermodynamics of

the model. Clough and Franks (1991) suggested that the dynamics of operational models can

be altered significantly by the evaporation of ice beneath warm frontal surfaces. Using simple

numerical models, studies such as Clough and Franks (1991), Harris (1977) and Hall and Prup-

pacher (1976) suggested that due to the low bulk density and fall velocity the evaporation should,

in theory, take place in a shallow layer. This rapid cooling (on the order of 1K hour−1) in a shal-

low layer leads to alteration of the thermal structure of warm fronts, affecting thermal advection

and hence the dynamics of the front. Forbes (2002) and Forbes and Hogan (2006) examined this

problem using Chilbolton 94-GHz radar observations of approaching warm fronts. They found

that in the radar observations, ice crystals evaporated at the bottom of thefrontal surface in a

layer that was 500 m deep on average, with no evaporation layer greaterthan a depth of 1 km.

When they examined the corresponding Met Office Unified Model data, they observed that this

“evaporation zone” was 2 to 3 times the depth shown in the observations. Themis-representation

of this layer means that the model does not accurately represent the cooling around the base of the

ice clouds and they then showed that this can lead to the front developing incorrectly within the

model. This can eventually lead to the incorrect position of the front and its associated rainbands.

Forbes (2002) re-ran several experiments using the Met Office modeland suggested several

candidates that may cause the poor representation of this layer in the model. These are as follows:

• The model vertical grid resolution may be too low at cirrus altitudes, and so does not allow

for a sharp decrease in prognostic variables such as ice water content.The current Met
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Office operational model has a vertical grid spacing between 500 and 700m in the mid-

troposphere and so it is not possible to resolve depth scales less than this at ice cloud

altitudes.

• The relative humidity in the model may be too great beneath the evaporating ice cloud. This

incorrect representation of the humidity gradient in the model would lead to anice particle

evaporation rate that is much too low, and hence the particles falling further before they

completely evaporate.

• The model’s ice particle terminal fall speed may be much too high or the numerics inthe

model much too diffusive. A higher fall speed will lead to the ice crystals falling further

before they have evaporated. This may also be due to numerical problems with the ice

sedimentation term.

• The model’s parameterized ice evaporation rate may be much too low, due to other micro-

physical assumptions, leading to greater evaporation depth scales.

In addition to these reasons, the effect of turbulence on the evaporationzone has not been exam-

ined. The Met Office model only contains turbulence within the boundary layer. However, at the

base of thick ice cloud, the air can be very turbulent (Harris, 1977; Bouniol et al., 2003). As the

ice crystals evaporate from the base of the ice cloud into drier air, there is some significant cool-

ing that occurs, which can trigger convective instability and lead to turbulence. This turbulence

will increase the amount of entrainment of clear, dry air that could increase the evaporation rate

of the crystals. As this effect is not represented in the model, the model may underestimate the

parameterized evaporation rate and overestimate the depth of the evaporation zone. Therefore one

additional candidate for the increased evaporation zone depth can be added to the list:

• The model does not account for the increased evaporation rate caused by vigorous turbu-

lence generated by the ice crystals evaporating from the ice cloud into the dry air beneath.

Forbes (2002) performed a sensitivity study by modelling a front in one dimension (height).

Part of this experiment involved decreasing the model vertical grid spacing to test whether the

model vertical grid resolution was adequate. Starting with a model with an increased vertical

resolution of 70 layers, he re-ran the model and then gradually decreased the number of levels

down to the operational level of 38. The results from various resolutionscould then be compared.
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He noted that there was only a 30% increase in the depth of the evaporation zone. Therefore,

some process in the microphysics of evaporating ice is not being accountedfor in the model.

Forbes also compared the humidity profiles in the model with those obtained fromradiosonde

launches from the nearby Larkhill radiosonde station. His studies showed that on average, the

relative humidity in the model appeared to be too high just below the frontal surface. He noted

that this would have a large impact on the evaporation depth scales, but could not say categorically

whether the increased evaporation zone depth was due entirely to this factor or whether another

factor in the microphysics was also important.

Since the study, the 94-GHz radar at Chilbolton has been updated to measure the vertical

Doppler velocity parameters as well as standard radar reflectivity (Z). These extra parameters

include the Doppler fall velocity, which can be used to examine the fall velocityof the evaporating

ice crystals and the standard deviation of mean Doppler velocity, from whichthe turbulent kinetic

energy dissipation rate can be inferred, using the method of Bouniolet al. (2003). Thus, other

candidates for the deeper model evaporation depth scale, such as incorrect parameterized fall

velocity and levels of turbulence can be examined in order to try and find the reason why the

evaporation of ice beneath ice clouds is poorly represented in the Met Office model. This extra

information has also been of value in studies of ice clouds and in particular theboundary between

the ice cloud and clear, dry air beneath.

In addition to the work covered by Forbes (2002), the existence of a 94-GHz radar and model

data can be used to develop our knowledge of ice cloud. Several cloud products have now become

available as part of the Cloudnet project. This enables an examination of various properties of ice

clouds, such as the variance in ice water content and the change in turbulent kinetic energy through

the ice clouds. Not only can this data further our knowledge of ice clouds,but it can be used to

study how operational models other than the Met Office represent the evaporation zone, and find

out if the problems discussed are limited only to the Met Office model or are common between

all models.

In this chapter, the various candidates for the increased evaporation zone depth in the model

are examined. Section 3.1.1 contains details about the structure of a warm front. Section 3.2

discusses the basic principles and equations used in the Met Office parameterization scheme.

Section 3.3 is an introduction to the radar and model data and their capabilities, while section

3.4 describes the method that was used to compare the two different sets of data. In section 3.5,
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the ice crystal fall velocity and its representation in the Met Office model is studied. In section

3.6, the role of turbulence on evaporation zone depth is examined, to see if this is the reason for

the increased evaporation zone depth in the Met Office model. In section 3.7the role that density

plays within the model, is looked at by re-running the model parameterization scheme with several

different density functions. In section 3.8 the representation of humidity in the model is studied,

in order to see if the model can correctly represent the sharp drop in relative humidity that occurs

beneath the evaporating ice cloud. The model’s evaporation rate is also critically analysed— how

does it react to a sharp change in humidity over one grid box? Section 3.9 presents results of the

depth of the evaporation zone for other models— do other European operational models all suffer

from an artificially increased evaporation zone depth? A summary of the results from all sections

is provided in section 3.10.

3.1.1 Structure of a Warm Front

Warm fronts occur as part of mid-latitude cyclones, and both have been studied extensively for

many years (e.g. Wexler and Atlas, 1958; Harris, 1977; Browning and Monk, 1982; Browning,

1983; Browninget al., 1995; Cloughet al., 2000). The flow of cold, dry air beneath the warm

frontal surface has been illustrated many times (e.g. Browning and Monk, 1982; Browning, 1985).

Figure 3.1 shows a conceptual model of a mid-latitude cyclone from Browning and Monk (1982).

Plot (a) shows the plan view of the cyclone and the location of the major flows of moist and

dry air through the cyclone can be seen, including the warm conveyor belt, which flows along

the cold front and then down the surface of the warm front. The location of the warm and cold

fronts, as well as the upper cold front are shown. Looking at the cross-sections in plots (b) and

(c), the warm conveyor belt can be seen rising along the slope of the warm front, and is shown by

the highest values of wet bulb potential temperature (θw). There is a sharp change inθw across

the frontal surface and dry, cold air can be seen to flow from ahead ofthe warm front towards

the frontal surface. Using radiosonde measurements, Tayloret al. (1983) show that the warm

front is indeed a very sharp boundary between cold, dry air beneath the front and warm, moist

air above the frontal surface. Browning (1985) show that precipitationoccurs across most of the

warm front. At warmer temperatures, this precipitation will be liquid, but at higher altitudes, the

air will be much cooler. This is the level at which ice will fall and sublimate into the dry layer

beneath. This sublimation of ice beneath approaching warm fronts has been studied many times
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Figure 3.1: (a): Plan view of a conceptual mid-latitude cyclone showing the location of the warm and cold fronts,

upper level cold front and low wet bulb potential temperature (θw) air passing through the cold front. (b) Cross section

through the fronts, showing the inflow of dry air ahead of the warm front.(c) Cross section of wet bulb potential

temperature, with high values ofθw corresponding to moist air. From Browning and Monk (1982).

before (e.g. Harris, 1977; Clough and Franks, 1991). Clough and Franks (1991) hypothesise that

the evaporation will take place in a shallow layer. They envisage that as the frontal surface is a

boundary between dry air and moist air, there will be rapid ice sublimation, and this will lead to

air descending beneath the front. This process is illustrated in figure 3.2. From this “Clough and

Franks” mechanism shown in figure 3.2, localised circulations within the vicinityof the front have
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Figure 3.2: Schematic figure showing the slantwise ascent and descent mechanism suggested by Clough and Franks

(1991). Dashed contours show relative humidity with respect to ice. From Cloughet al.(2000).

been suggested to occur. This has been supported by observational evidence (Clough and Franks,

1991; Thorpe and Clough, 1991). In addition, Bouniolet al. (2003) show that the boundaries of

clouds can be very turbulent, which is possibly caused by sharp cooling of the air as ice particles

evaporate. They derive a method for measuring the turbulent kinetic energy dissipation rate within

clouds, which shall be used later in this chapter.

3.2 Model Parameterization Scheme

In order to see how well the Met Office model is representing the ice evaporation zone, the as-

sumptions made in the ice parameterization scheme will be used (whether they areright or wrong)

to simulate radar reflectivity (Z) and Doppler velocity (VDop) from model ice water content. If

the model parameterization scheme is wrong, and this is the cause of the deeper evaporation zone

in the model, then this will show in the analysis.

The ice parameterization scheme used in the Met Office Unified Model is detailed in full in

Wilson and Ballard (1999). The model carries IWC as a prognostic variable, using an exponential

ice particle distribution as follows:

N(D) = N0e
−0.122T e−ΛD = N(T )e−ΛD, (3.1)
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whereN(D), the number concentration is a function ofD, the particle diameter,T in ◦C and

Λ = 3.67
D0

, whereD0 is the equivolumetric median diameter. The model assumes thatN0 = 2×106

m−4 and the mass of an ice particle is parameterized as

m(D) = aDb, (3.2)

wherea = 0.069 kg m−2 andb = 2.0. All particles in the model are assumed to be spheres. Ice

particles can have a variety of habits, which generally depend on air temperature. However, for

evaporation studies which take place at the base of the cloud, there is evidence (Field and Heyms-

field, 2003; Westbrooket al., 2007b) that in this region, the dominant particle type are aggregates.

Hence, a spherical particle approximation can be seen to be reasonable.Using equation 3.2, the

density of the crystals in the model can be defined as

ρi = 0.13D−1 (3.3)

whereρi is the crystal density in kg m−3 andD is in m. This equation is very similar in form

to that proposed by Brown and Francis (1995):ρi = 0.07D−1.1, but there is a factor of two

difference in the resulting density. In this simulation, ice density is capped at the density of solid

ice, which prevents the formation of superdense ice. Section 3.7 examines the effects of the

depth of the evaporation zone and the quantitiesZ andVDop by changing the density function in

equation 3.3. The model parameterization for the mass of ice is also given as afunction ofD.

Thus, ice water content (IWC) can be expressed as

IWC =

∞
∫

0

N(D)m(D)dD. (3.4)

The information obtained from equations 3.1 & 3.3 can be used to simulate the radar reflec-

tivity, (Z), using equation 2.8, and Doppler Velocity of the crystals, (VDop), as follows:

Z =

∞
∫

0

|Kice|
2

0.93
γ(D)N(D)D6dD, (3.5)

VDop =

∞
∫

0

|Kice|
2N(D)γ(D)vc(D)D6dD

∞
∫

0

|K|2N(D)γ(D)D6dD

. (3.6)

The termγ in equations 3.5 & 3.6 represents the Mie to Rayleigh ratio and is a function of diam-

eter, with values ranging from 0 to 1. For small ice crystals (D ≤ 0.1mm), Rayleigh scattering is
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assumed, but the value ofγ drops sharply from 1 to 0 as diameter increases, oscillating just above

zero for diameters of 2 mm or larger. Despite the values ofZ andVDop being much smaller for

these larger diameters when compared to Rayleigh scattering, there may still besome important

contribution via theD6 term in both equations.|Kice|
2 is the dielectric factor of the ice particle,

which is proportional to its density squared. The value of 0.93 is the dielectricfactor for liquid

water.

The termvc(D) in equation 3.6 refers to the fall-speed of an ice particle of diameter D,

parameterized as

vc(D, ρa) = αDβ

(

ρ0

ρa

)0.4

(3.7)

whereα = 25.2 m0.473s−1 andβ = 0.527. Since the air density is not always constant at 1 kg

m−3, the correction used in Wilson and Ballard (1999) is incorporated into 3.7. The air density

calculated from the model’s pressure and temperature fields isρa, while ρ0 is a density of 1 kg

m−3. The form of equation 3.7 originates from Locatelli and Hobbs (1974), who found it to be

a reasonable approximation for a variety of different single particle habits. In a study modelling

precipitation in frontal rainbands, Cox (1988) tookα to be 16.8 m0.473s−1 andβ to be 0.527 for

ice particles as when integrated over the whole particle spectrum the relation agreed with fall-

speeds for ice observed by Heymsfield (1977). Also, the fall velocity used within the model tends

to be a favourite tuning parameter. By varying the values ofα, and in some casesβ, the lifetime

of the model cloud can be controlled. The values ofα and in equation 3.7 was increased from

the Cox (1988) value to allow the lifetime of clouds in corresponding climate modelsimulations

to be roughly correct and as the velocities produced at different temperatures agreed better with

observed values after the air density correction was applied (R. M. Forbes, Personal Communica-

tion). The method used to calculateZ andVDop from IWC is straightforward. At each grid box,

the model value of IWC is calculated from the ice water mixing ratio (qi) according to

IWC =
pqi

RT
, (3.8)

wherep is the pressure,R is the gas constant for dry air andT is the temperature. The variation

in Z andVDop with IWC and temperature for Rayleigh scattering is shown in figure 3.3 while

the variation of these quantities assuming Mie scattering at 94-GHz is shown in figure 3.4. Using

values ofD from 0 to 20 mm, which represent the full spectrum of ice crystals observed in

nature, equations 3.4, 3.5 and 3.6 are used to calculate values of IWC,Z andVDop for values of

51



CHAPTER 3: Doppler Radar Evaluation of Evaporating Ice in OperationalModels

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−60

−50

−40

−30

−20

−10

0

10

20

30

Z
h 

(d
B

Z
)

IWC(gm−3)

0°C

−10°C

−20°C

−30°C

−40°C

−50°C

−60°C

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
 (

m
s−

1 )

IWC(gm−3)

0°C

−10°C

−20°C

−30°C

−40°C

−50°C

−60°C

Figure 3.3: Variation ofZ (left) andVDop (right) with IWC and temperature for Rayleigh scattering at 94 GHz with

D0 ranging from 0 to 5mm. Ice water content increases withD0, so that a given temperature, the lowest IWC values

correspond to the smallest values ofD0. In these figures, Rayleigh scattering is assumed by setting the value ofγ to 1

in equations 3.5 and 3.6.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

−60

−50

−40

−30

−20

−10

0

10

20

30

Z
h 

(d
B

Z
)

IWC(gm−3)

0°C

−10°C

−20°C

−30°C

−40°C

−50°C

−60°C

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
 (

m
s−

1 )

IWC(gm−3)

0°C

−10°C

−20°C

−30°C

−40°C

−50°C

−60°C

Figure 3.4: Variation ofZ (left) andVDop (right) with IWC and temperature for Mie scattering at 94-GHz with

D0 ranging from 0 to 5mm. As in figure 3.3, the lowest values of IWC correspond to the smallest values ofD0. Mie

scattering has been simulated by reducing the value ofγ from 1 towards zero, dependent on particle diameter.

D0 between 0 and 5mm, and for a temperature of 0◦C. There is some modification to bothZ and

VDop when Mie scattering is assumed, and in particular it is worthwhile noting that Mie scattering

actually reduces the velocity by as much as 50% at a given temperature. Mie scattering affects

the calculation ofZ at higher temperatures. Analytical solutions are available to relateZ to IWC

for Rayleigh scattering;Z is roughly proportional to IWC5/3 andVDop is roughly proportional to

Λ0.527, but when Mie scattering is included , only numerical solutions are possible.
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Figure 3.5: Plots of the model parameterization results of IWC versusZ (left) & VDop (right) for a temperature of

0◦C.

As the wavelength of the 94-GHz radar is roughly 3 mm andD0 ranges from 0 to 5 mm, the

assumption used for Rayleigh scattering that the wavelength is much bigger than the mean particle

size is no longer valid. Hence all calculations ofZ andVDop from now on include Mie scattering.

In order to calculateZ andVDop from the model without needing 2D interpolation, the values

of IWC for a given temperature that have been obtained from model data are then scaled to the

equivalent value of IWC at 0◦C (IWCT=0) by dividing by a scaling factor,s (= exp(−0.122T )),

whereT is in ◦C. The plots of IWC versusZ and IWC versusVDop for 0◦C are shown in figure 3.5.

The obtained value of IWCT=0 for each grid box can then be converted into a value ofZT=0 and

a value ofVDop using 1D interpolation and assuming Mie scattering. Since the radar reflectivity

factor is temperature dependent, the value ofZT=0 must be converted to a value ofZ by s. Since

equation 3.6 has theN(D) terms on both the top and bottom of the equation, it is independent

of temperature and hence theVDop value does not need to be scaled by the temperature factor.

Thus, values ofZ andVDop are obtained and can be compared with the radar measurements as

described in section 3.4.
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3.3 Description of the Radar and Model Data

3.3.1 94-GHz Radar Data

The instrument used for this study is the vertically-pointing 94-GHz radar atthe Chilbolton Ob-

servatory in Hampshire. Since July 2001, it has been able to measure Doppler parameters in

addition to the standard radar reflectivity (Z). It operated continuously (apart from short periods

of occasional maintenance) between January 2003 and March 2004, and thus provides a long data

set of the presence and microphysical properties of ice cloud; the data for this chapter is taken

from this period. The three parameters used in this study are:

• Radar Reflectivity (Z)

This parameter is the intensity of the echo returned to the radar after backscatter from the

ice particles. It is defined as in equation 3.5. High values of reflectivity (values ofZ greater

than 5 dBZ in this example) occur in rain, or melting ice, while typical ice cloud onlyhas

reflectivity values of around−10 dBZ in the example shown in figure 3.6; it should be

noted that these values vary between cases. It is possible to obtain estimatesof IWC from

Z and temperature, using analytical formulae as suggested by Liu and Illingworth (2000)

and taken further by Hoganet al. (2006); this is the reverse of the model parameterization

scheme, which takes IWC and simulatesZ as described in section 3.2. Figure 3.6 shows the

image ofZ taken through an approaching warm front on 23 January 2004. The descending

cloud base associated with the warm front can be seen, and the rain associated with this

front is shown from 17.00 UTC onwards. The highest reflectivity values between 1100

and 1700 UTC indicate the position of the ice particles which are evaporating into dry air

beneath.

• Doppler Velocity (VDop)

This is a measure of the reflectivity-weighted vertical velocity of the crystalsas they fall

from the cloud. However, the Doppler fall velocity measured by the radar(VDop) is a sum

of the vertical air velocity and the actual ice particles’ terminal velocity. This means that

in the presence of strong updraughts or downdraughts, such as in the turbulent evaporation

zone, there is an error on the measured terminal velocity due to movement of air. Figure

3.6 shows the Doppler velocity of the 23 January 2004 case. This shows that the particles
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have low velocities within the ice cloud, but the fluctuation of the velocity increases in the

evaporation zone. The heavy rain from 17:00 UTC onwards has the highest fall velocity.

As well as showing the velocities of the falling ice crystals,VDop can be used to distinguish

rain from falling ice and thus any data with very high fall velocities and high reflectivity

values can be rejected as rain.

• Standard Deviation of Mean Doppler Velocity (σv̄).

This is an indication of the turbulence of the air. It is the 30-second standard deviation of

1 second mean Doppler velocities. As the pulse repetition frequency of the radar is 6520

Hz, in each second 6520 samples are used to calculate the mean Doppler velocity and then

30 samples of mean Doppler velocity are used to calculate the standard deviation of mean

Doppler velocity at the 30-second radar time resolution. The values ofσv̄can be converted

into a turbulent kinetic energy dissipation rate (ǫ) by the method of Bouniolet al. (2003).

This method consists of taking measurements ofσv̄, and large-scale horizontal model wind

to work out the intensity and size of the eddies being sampled, which then in turncan

be related to the turbulent kinetic energy (TKE) dissipation rate (ǫ), using a Kolmogorov

spectrum. Figure 3.6 shows a plot ofσv̄ for the 23 January 2004 case. The red colours

show the very turbulent air within the evaporation zone, while the blue colours within the

ice cloud show that the eddies of a particular size have less energy and thus less velocity

variance associated with them. Hence there is less dissipation of TKE. This data can be

used to test the theory that the mis-representation of turbulence in the Met Office Unified

Model is the cause of the deeper evaporation zone within the model. This will be discussed

in section 3.6, where the relationship between the depth of the evaporation zone andǫ will

be examined. Although there are alternative methods of deriving turbulence from Doppler

spectral width (Chapman and Browning, 2001; Kolliaset al., 2001), another parameter

available from the 94-GHz Chilbolton cloud radar, the results obtained fromthis method

may be biased due to the contribution from the spread of terminal velocities in theparticle

size distribution. Hence the method of Bouniolet al. (2003) is used in the study.
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Figure 3.6: Radar Parameters on 23 January 2004. Top is radar reflectivity, middle is Doppler Velocity and bottom

is standard deviation of mean Doppler velocity. A very comprehensive database of warm fronts and other cloud

occurrences is available as quicklooks on the Cloudnet website. Go to http://www.cloud-net.org/ for more details.

Also available are the corresponding model data and selected products,such as ice and liquid water contents, particle

size and turbulent kinetic energy dissipation rate
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3.3.2 Met Office Model Data

The model used in this study is the Met Office Unified Model at mesoscale resolution (approxi-

mately 12 km). The model time series is generated by taking hourly vertical profiles of the grid

boxes that lie above Chilbolton, from 6–11 hour forecasts. These hourly snapshots give values

of model wind, temperature, relative humidity and ice water content (IWC). The microphysical

cloud parameterizations used in Wilson and Ballard (1999), which have been discussed in detail

in section 3.2, are used to obtain radar reflectivity (Z) and Doppler velocityVDop from the Met

Office data, so that they can be compared with the radar data.

3.3.3 Selection of Data

The data are selected from a variety of cases of evaporating ice taken over a one-year period from

January to March 2004. Each day was examined by eye and the following criteria were used to

select cases used in this study:

• Ice cloud thickness and duration

Cases were divided into individual hours of data, and for an hour to beretained for analysis,

it had to show ice cloud with ice evaporating into the layer below. The duration of the ice

clouds had to be at least 2 hours and the cloud had to be at least 2 km thick.Any period

with no ice cloud, or ice cloud that was less than 2 km thick or did not last for more than 2

hours were rejected from the study.

• Absence of Rain

Any hours that contained any rain amongst the ice data were rejected, even if there was ice

present above the falling rain. This is because the radar signal is significantly attenuated

by the falling rain (see figure 2.2 and associated discussion in chapter 2) and any ice data

above the rainfall were usually of poor quality and not reliable enough to analyse. Also, in

the cases where there is rain reaching the ground, as from 17.00 UTC in the example shown

in figure 3.6, there will be no evaporation of ice into dry air.

• Ice data only

The temperature in each ice water content profile should remain below 0◦C so that the

measurements from the radar are indeed ice and not liquid water cloud. Mixed phase cloud
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is also rejected using data from the Chilbolton 905-nm lidar ceilometer to locate thepres-

ence of liquid water in the radar data. This shows as strong lines of attenuatedbackscatter

superimposed within the ice cloud. Any data suspected to contain supercooled water was

removed.

3.3.4 Definition of an Evaporation Zone

The depth of the evaporation zone is defined by the same method as Forbes (2002). The evapora-

tion zone is said to be the region between the maximum IWC and the height below where the IWC

had decreased to 10% of this maximum (i.e. 90% of the ice had evaporated from the profile). In

each profile, the ice should completely evaporate just below the bottom of the evaporation zone,

and profiles where there is liquid water cloud (where the temperature rises above 0◦C before the

bottom of the evaporation zone is reached) were rejected.

3.4 Methodology

To compare radar data, (which has a 30 second time resolution and 60 m vertical resolution), with

model data, (which has a one hour time resolution and a vertical resolution that varies from 500

m to 750 m in the mid-troposphere), would be rather difficult due to the large difference between

the two grids. To overcome this problem, it is necessary to perform some sort of averaging that

allows a justified and fair comparison between the data obtained from the radar and the model.

However, performing long temporal averages through sloping ice cloud causes problems. An

average at constant height will average clear air ahead of the approaching front, and as the cloud

base descends, the average will include the cloud base and evaporationzone as well as the mid-

cloud regions and possibly even clear air above the descending cloud. This means that the end

result is somewhat biased, tending to overestimate the depth of the evaporation zone. Since this is

the quantity of interest, it is important that correct measurements of this are made. To solve this

problem, adjustment of each radar and model profile takes place after the averaging of the radar

data on to the hourly model grid has taken place. The process is describedin detail below:

1. The radar data are averaged to a one-hour resolution, consisting of 120 radar profiles of 30

seconds duration. The vertical grid resolution remains the same. This horizontal averaging
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removes some of the effects of updraughts and downdraughts on the vertical velocity within

the cloud.

2. The model data are linearly interpolated on to the radar height grid. This sets the model

data and radar data to the same vertical resolution which allows a fair comparison.

3. The profiles of both radar and model are adjusted vertically to accountfor the slope in

approaching warm fronts. This is done by finding the height of the maximum reflectivity

value in each hourly radar or model profile and shifting it up or down, so that the maximum

value occurs at an adjusted altitude (zadj) of zero.

The entire process is shown in figure 3.7. As well as adjusting the reflectivity (Z), all the other

measured and derived quantities such as Doppler fall velocity, turbulentkinetic energy dissipation

rate, ice water content, and model crystal fall velocity are averaged and adjusted. However,

each profile is adjusted using the maximum reflectivity only, and not each individual quantity

maximum. So for example, theVDop measurement that lies atzadj of zero in each profile is not

the maximum value ofVDop in that profile. Instead, it is the value ofVDop that is at the same

altitude as the maximum value ofZ in that profile.

Once this procedure is complete, it is possible to time-average the entire data set and produce

a profile of the mean radar reflectivity and fall velocities versus height relative to the peak inZ.

3.5 Profiles of Radar Reflectivity and Fall Velocity

As mentioned in section 3.4, a comparison can be made between the radar and model reflectivity

(Z). Also, a similar comparison can be made between the Doppler fall velocity (VDop) obtained

from radar measurements with theZ-weighted fall velocity obtained from the model parameteri-

zation. Looking at the profile of radar and model reflectivity over the 89 hour period (figure 3.8),

it can be seen that the values ofZ from the model are about 30% (3 dBZ) too large on average.

This could be a result of wrong values of ice water content in the model or could be due to an

incorrect parameterization within the model. The larger density function notedearlier could be

the cause; this shall be examined later in section 3.7.

The key result that is shown in figure 3.8 is that the model crystal fall velocity is 30% lower

than the Doppler fall velocity (VDop) measured by the radar. This could be due to an incorrect
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Figure 3.7: Transformation of radar and model reflectivity (Z) data from 4 March 2004 to allow fair comparison.

Radar data are shown in the left column, model data on the right. The raw data is on the top row. The centre row shows

the result of averaging the radar data to a 1 hour resolution, while the model data was interpolated over a radar height

grid. The bottom row shows the result of the adjusting of both data sets. Each profile is set with maximumZ at zadj

of zero.

model parameterization, but in order to see if this is the case, we need to eliminatethe effects of

updraughts and downdraughts that are present in the data. This is discussed in section 3.5.1.

3.5.1 Preferential Sampling of Updraughts and Downdraughts withinthe Radar Data

When making a comparison between radar and model Doppler velocity, it is important to note the

effects of vertical wind on the radar data. The Doppler fall velocity measured by the radar can be

broken down into two components:

VDop = va + vt. (3.9)
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Figure 3.8: Profiles ofZ (left) andVDop (right) averaged over 89 hours. The red and green lines on the Doppler

fall velocity plot give an estimate of the error on the radar fall velocity dueto preferential sampling of updraughts and

downdraughts throughout the cloud, discussed in section 3.5.1.

The components are due to the vertical air velocity (va), and the Z-weighted mean ice particle

terminal fall velocity (vt). The air velocity within ice cloud can vary from a few cm s−1 to 2 m

s−1. A typical ice particle terminal fall velocity is on the order of 1 m s−1. Although initially it

may appear that updraughts and downdraughts present a large errorin the data, it is possible to

study an area of the ice cloud where the air vertical velocity is small, or wherethe updraughts and

downdraughts will average out over a long period of time so the mean vertical velocity is small.

This last statement is true for the middle of the cloud. The radarVDop data has been averaged

over one-hour periods. By doing this, it is assumed that in the middle of the cloud, the vertical

air velocity is entirely due to the ascent rate of the air in the warm front, which istypically of the

order of a few cm s−1 (Browning, 1983), so that̄va << v̄t.

In the future, it may be possible to obtain measurements ofva directly by using a clear air
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radar, pointing at zenith. Although such a radar exists at the Chilbolton observatory, it is only used

on an event basis and therefore no data of this type was available during the year-long 94-GHz

radar data set used in this study.

Figure 3.9 shows Doppler velocity measurements of an ice cloud on 23 January 2004. In the

evaporation zone there are areas of high downdraughts and one or twoupdraughts. Fingers of

strong downdraughts can be observed extending below the base of the ice cloud. In between these

downdraughts, there are dry, clear areas, with no radar echo. Sincethe 94-GHz radar can only

detect velocities of particles and not of clear air, this area shows up as being empty and free of

updraught. By taking a horizontal average through this area means that only the downdraughts

which are visible to the radar will be included in the average and so an average will tend to

overestimate the ice particle fall velocity in this area. In the middle of the cloud, there are no

clear pockets and so the updraughts and downdraughts will average out over time. To see where

the data are reliable, in addition to showing an average of just the cloudy region, any clear areas

within the cloud were filled with Doppler velocities of +2 m s−1 and−2 m s−1 before each set

of data is averaged. The results are the red and green lines in figure 3.8.Where these two lines

agree exactly with the radar velocity curve, the data are reliable and wherethere are biasing areas

of clear sky, the red and green lines diverge from the mean radar velocity. Data from the areas

where the red and green lines agree is defined as the mid-cloud region. This exists as a result

of the condition set in section 3.3.3 that the ice cloud must be at least 2 km thick.Section 3.5.2

examines the differences between the model parameterized fall velocities and radar fall velocities

in the middle of the cloud and within the evaporation zone.

3.5.2 Using Velocity Measurements in the Middle of the Cloud to Test theAccuracy of the

Model Parameterization

In order to test the accuracy of the Met Office parameterization scheme, model and radar Doppler

velocities have been compared for grid boxes (1 hour in time versus 60 m vertical) within the

middle of the ice cloud and within the evaporation zone. In order to see how well the model pa-

rameterization performs with different particle sizes, the velocity values have been plotted against

the reflectivity values. Due to the large amount of data, the fall velocities have been binned into

1-dBZ bins, with the mean, standard deviation and range of the data shown.Figure 3.10 shows

the results for the middle of the cloud, and the results for the evaporation zone. By examining
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Figure 3.9: The structure of Doppler velocity (VDop) in a ice cloud, observed on 23 January 2004. Around the base

of the ice cloud and in the evaporation zone, there are large vertical velocities. In the middle of the cloud, the vertical

velocity of the particles is much less, due to the absence of strong updraughts or downdraughts. The Doppler velocity

in these areas is very close to the terminal fall speed of the ice particles, and so data from the mid cloud region can be

used to test the performance of the model’s ice crystal fall velocity parameterization. Where there is clear sky close to

the edge of the ice cloud, any averaging will be biased.

the plot for the middle of the cloud, it can be seen that for low values ofZ (small particles), the

model accurately predicts the observed values ofVDop . AboveZ values of−15 dBZ, the model

crystal fall velocities are up to 50% less than those observed by the radar. Thus, the difference

in radar and model fall velocity abovezadj of zero in figure 3.8 appears to be entirely due to the

model poorly representing the larger particles.

Looking at figure 3.10b, which shows the comparison between model and radar fall velocities

in the evaporation zone, it can be seen that the radar fall velocities are always much greater than

the model values. This is due to the preferential sampling of downdraughts when averaging radar

data to a one hour horizontal resolution.
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Figure 3.10: Hourly averaged Z and V plots for (a) the middle of the cloud and (b) the evaporation zone. The data

are binned into 1 dBZ bins, with the model data in red and the radar data in blue. The mean Doppler velocity in each

bin is shown with a cross, the standard deviation about the mean in each bin isshown by the edge of each box. The

whiskers show the range of the data.

From the comparison made for the middle of the cloud, it appeared that the model parameteri-

zation was making a reasonable job of representing the radar Doppler fallvelocity. If one assumes

it behaves in the same way within the evaporation zone before the effects ofthe vertical air veloc-

ity were included, then it would appear that the model does not have the ice particles falling out

too fast. In fact, as can be seen in figures 3.8 & 3.10 the model parameterization generally has

the ice particles falling out too slowly. Forbes (2002) suggested that the evaporation zone depth

would scale linearly with ice particle fall velocity— so to have an evaporation zone in the model

with a depth of 2 to 3 times that in the radar data, a model ice particle fall velocity of2–3 times

the radar fall velocity would be required. Even with a strong downdraught present in the radar

data shown on the right hand plot in figure 3.10, there is no way that a velocity of 2–3 times the

radar fall velocity could occur. It is very unlikely that large-scale updraughts and downdraughts

in ice cloud would be larger than 20 cm s−1, so the model parameterized particle fall velocity can

be ruled out as the reason for the deep evaporation zone within the model. In fact, if the model’s

parameterized fall velocity were increased to match the radar measurements,this would increase

the depth of the evaporation zone and make the model’s error even bigger.So one can conclude

that some other factor than fall velocity is causing the error in the depth of theevaporation zone.
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Figure 3.11: Hourly-averaged evaporation zone depth scales against maximum hourly-averaged turbulent kinetic

energy dissipation rate, (ǫ), in each profile for the model and radar data. The model evaporationzone depth is 2–3

times the depth of the radar in the majority of cases, but there is no clear relation between evaporation zone depth and

turbulence. Red crosses show the radar points and blue circles show themodel points.

3.6 Examining the Effects of Turbulence

In section 3.1 it was hypothesised that the deeper evaporation zone depthin the model is due to the

model not accounting for the increased evaporation rate caused by vigorous turbulence generated

by the ice particles evaporating from the ice cloud into the dry air beneath. Since the model does

not account for any turbulence above the boundary layer, this may be the cause of the deeper

evaporation zone in the model.

Turbulent kinetic energy (TKE) dissipation rate (ǫ) have been estimated from radar observa-

tions of standard deviation of mean Doppler velocity (σv̄), according to the method described in
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Bouniol et al. (2003). The maximum value ofǫ in each profile has been plotted against the depth

of the evaporation zone for both radar and model data. If the mis-representation of turbulence

is the cause of the deeper evaporation zone in the model, then we should seea decrease in the

radar evaporation zone depth asǫ increases, but no change in the model evaporation zone depth

with ǫ. Figure 3.11 shows the plot of maximumǫ in each hourly averaged profile against evap-

oration zone depth for the 89 hours of study. In the vast majority of the cases shown in figure

3.11, the model evaporation zone depth is much greater than the radar, andin most cases, it is

2–3 times this depth. However, there is no change in radar evaporation zone depth as turbulence

increases, which means that the amount of turbulence released does notaffect the evaporation

depth scales of the ice. Thus, it can be concluded that the absence of turbulence in the model

cloud parameterization scheme is not the cause of the deeper evaporation zone within the model.

3.7 The Effect of Ice Particle Density

In section 3.1 it was also hypothesised that the model’s deeper evaporationzone could be due

to the model parameterization scheme having an incorrect density function, which would af-

fect the parameterized fall velocity and thus increase the evaporation zone depth. Currently

the function used is given in equation 3.3. This differs slightly from the Brown and Francis

(1995)ρi = 0.07D−1.1 and is completely different from the relationship Franciset al. (1998)

ρi = 0.175D−0.66
a . The differences in the relationships occur due to whether the diameter,D is

defined by maximum dimension (Brown and Francis, 1995) or by area (Da, Franciset al., 1998).

In both cases the mass of ice is the same. It is not clear from Wilson and Ballard (1999) whether

the Met Office density function given in equation 3.3 is defined by maximum dimension or area.

In order to test whether incorrect parameterized ice particle density is the cause of the deeper

evaporation zone in the model, a sensitivity test on the data set was performed. The current

parameterization, given in equation 3.3 was altered as follows. First, the value of the 0.13 constant

was doubled and halved to form two new relationships:

ρi = 0.26D−1, (3.10)

ρi = 0.065D−1. (3.11)

Equation 3.11 is very similar to the Brown and Francis (1995) relationship andthus is of use when
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comparing the results of the current model parameterization to that which would be achieved us-

ing the Brown and Francis (1995) relationship. Finally, the Franciset al. (1998) relationship was

inserted into the parameterization as another check to see how valid the current model parameter-

ization was. The results of performing these tests are shown in section 3.7.1.

3.7.1 The Effects of Changing the Density Relationship

The results for all four tests described in section 3.7 are shown in figure 3.12. Equation 3.4

relates ice water content to particle mass, and therefore density. To completely test whether

the evaporation zone depth would be affected by changes in density, we would need to re-run

the model and allow the density to affect the ice water content. However, the results do show

how changing the particle density alters the parameterized fall velocity and themodel reflectivity

values. As these tests have not re-run the model, there was no detectable change in evaporation

zone depth in any of the tests.

Looking back at figure 3.8, which shows the run with the original model density (ρi =

0.13D−1), it can be seen that the reflectivity values predicted with the model parameterizations

are too high by about 3 dB. This means that the model IWC is also too large dueto the density

function being too large. When the Brown & Francis density function is usedor the density func-

tion in the model is halved, as shown in the top right and bottom left plots of figure 3.12, the

model and radar reflectivity values agree in the 3 km above the evaporation zone. Doubling the

density function in the model makes the reflectivity 6 dB too large above the evaporation zone.

Using the Franciset al.(1998) relationship makes the reflectivity 4 dB too large above the evapo-

ration zone. This means that the density function in the Met Office model is too large, and should

be closer to half the value. Since the Brown & Francis relationship agrees better than the Francis

et al., one can conclude that the diameter,D, in the model is most likely defined by maximum

dimension, not by area. There is good evidence (Hoganet al., 2006) for the Brown & Francis

relationship and since radar and model reflectivity agree very well whenthis relationship is used

this would suggest that the inputs used to simulate reflectivity are roughly correct. Hence, it can

be suggested that the agreement between radar and model reflectivity above the evaporation zone

gives evidence that the ice water mixing ratio is well represented in the model inthese regions.

Looking now at fall velocity, it can be seen that altering the density in the model parameteri-

zation has little effect on the profile of model Doppler velocity. It changes intotal by about 10%
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Figure 3.12: Profiles ofZ andVDop when the density in the Met Office Model is doubled (top left), halved (top

right), changed to Brown and Francis (1995) (bottom left) and changedto Franciset al.(1998) (bottom right).

between the cases shown in figure 3.8. Changing the density affects the weighting of the large

and small particles towards the contribution in Doppler velocity, and this is not significant enough

to make the parameterized Doppler velocity greater than the radar Doppler velocity. Hence the

incorrect particle density does not change the parameterized fall velocityenough for it to cause

the deep evaporation zone in the model.

3.8 Humidity and Evaporation Rate Studies

So far, several candidates for the increased depth of the evaporationzone have been examined,

including ice particle terminal fall velocity, ice particle density and the effects of turbulence. One

remaining candidate is the role of humidity. Forbes (2002) partially addressed this problem. He
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studied several sonde profiles through evaporating ice cloud, and found that the model relative

humidity was on average 7% too moist beneath the frontal surface, where the ice particles were

evaporating. He also studied several sonde profiles from Larkhill radiosonde station for the time

period corresponding to the year-long 94-GHz radar data set at Chilbolton. Forbes found that in

some of the individual sonde profiles, the relative humidity dropped sharply beneath the evapo-

ration zone, a change that was not accurately represented by the model,which still had a moist

bias beneath the evaporation zone. Having eliminated most of the other candidates from being

the likely cause of the deep evaporation zone in the model, this factor looks very likely to be

the cause. In section 3.8.1, several sonde humidity profiles are studied to try and see how the

model represents the drop in humidity beneath the evaporating ice cloud. In section 3.8.2, the

equations set out in Wilson and Ballard (1999) are used to estimate the evaporation rate beneath

the evaporating ice cloud, to see if the model’s evaporation rate calculations are correct.

3.8.1 Model Representation of Sonde Humidity Profiles

In order to see whether humidity is really the cause of the deeper evaporation zone within the

model, profiles from the Larkhill radiosonde were compared with the model profiles of relative

humidity. The Larkhill radiosonde station is 25 km to the west of Chilbolton and isthe closest

radiosonde station to the radar that was available at the time of study. However, as Larkhill is not

an operational radiosonde station, there were only a limited number of sondeprofiles available at

the same time as there was evaporating ice cloud present. One case that illustrates the argument

for how the model represents the humidity profile occurred on 4 March 2004. Figure 3.13 shows

the radar reflectivity profile for this case study. During the day, a thick icecloud developed,

which did not descend to the ground, nor was it part of a system that laterproduced precipitation

at Chilbolton. However, a sonde was launched from Larkhill at 13 UTC that was analysed. The

results of this analysis are shown in figure 3.14. Similar sonde ascents through warm fronts were

produced by Tayloret al. (1983) and Forbes (2002) and showed that humidity tends to increase

sharply around the cloud base.

Two points can immediately be raised from figure 3.14. The first is that there isa substantial

decrease in IWC predicted by the radar reflectivity values. The peak value of the model’s IWC is

a full order of magnitude less than the radar’s peak IWC. The model doesnot have high enough

values ofZ beneath 5 km, caused by the values of IWC being much too low. Thus the modelhas
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Figure 3.13: Radar reflectivity data from 4 March 2004. A thick ice cloud was detected over Chilbolton for most

of the day, starting at around 07 UTC and remaining very thick until 16 UTC. The cloud then remained until 24 UTC

but was substantially thinner than before.

not accurately represented this particular ice cloud.

The second point that can be seen is that the model does not accurately represent the gradient

of relative humidity beneath the evaporating ice cloud. The model’s peak relative humidity value

starts at 6 km, and it does not decrease to 20% relative humidity until an altitudeof 3 km. The

sonde profile shows the relative humidity actually decreasing from 100% to 20% in a layer about

200 m deep, and at an altitude of 4 km, which agrees with the position of the cloud base from the

radar measurements and the findings of Clough and Franks (1991). Thisappears to be the cause

of the deeper evaporation zone in the model on this particular day.

In this case, the model has not correctly represented the IWC and thus thehigh Z values

at the base of the ice cloud. Its humidity profile suggests that the evaporationshould start a lot

further up at 6 km, and the model evaporation zone extends from 6 km down to 3.5 km. This
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Figure 3.14: Analysed data from radar, model and 13Z UTC Larkhill radiosonde on4 March 2004. Radar ice

water content was estimated using equation 14 of Hoganet al.(2006). All humidity values shown are with respect to

ice. There is a sharp drop in both relative humidity and IWC at the cloud base, but the model does not represent the

maximum IWC. The gradient in humidity is much steeper in the observations than in the model.

would mean an evaporation zone depth of 2.5 km; much deeper than that shown in the sonde

relative humidity profile. But does this actually apply to all cases? In order tosee what happens

for various humidity profiles during the period of study, several sonde cases were selected, and

profiles of both model and sonde relative humidity were plotted. However, since Larkhill is not

an operational radiosonde station, sondes were only released on an event basis, and not at regular

intervals, as occurs at operational radiosonde stations. Also, in not allcases is the decrease in

humidity so clear cut as in the case in figure 3.13; in some cases there is a layerof more moist air

immediately beneath the evaporation zone. What can be seen in some profiles isthat the relative

humidity from the sonde measurements decreases in the evaporation zone asthe ice particles

evaporate into dry air, but there can be a moist area beneath this layer, associated with, say low
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cloud which causes a sharp increase in the humidity profile. Therefore it isnot always easy to

pick clear-cut cases where the humidity gradient in the sonde profile decreases, which can be

noisy when comparing it to the model gradient of humidity which is often smooth. However, it is

not too difficult to pick out the sharpest drop in humidity in each case.

In order to attempt a fair test of model humidity against sonde humidity, sonde profiles were

selected that occurred during the year long period. These profiles were taken when evaporating

ice cloud coincided with an ascent from the Larkhill radiosonde station. Several of the sonde

profiles were very noisy and it was quite difficult to compare these to the model profiles of relative

humidity. Thus many of the sonde profiles were rejected for one of several criteria:

• There was no corresponding ice cloud in the model, and therefore there was no IWC or RH

profile from which to calculate an evaporation rate.

• The sonde profile had only a few points and these points did not give a reliable estimate of

humidity or humidity gradient.

• The sonde profile showed some layers of moist air close to the base of the evaporation zone

and therefore relative humidity actually increased beneath the evaporationzone.

It is, however, worth noting that relative humidity is reasonable when measured from radiosondes.

Ferrareet al. (1995) noted a systematic dry bias in Vaisala radiosonde measurements whencom-

pared to Raman lidar, of the order of 3–5%. Heymsfield and Miloshevich (1995) found that the

observed humidity from radiosondes was sub-saturated when simultaneous crystal measurements

showed pristine crystals growing in ice-supersaturated measurements, hence suggesting that the

radiosonde humidity had a dry-bias. Miloshevichet al. (2004) also noted the lags of radiosonde

humidity sensors. For the Vaisala radiosondes, this lag varies from a couple of seconds at−10◦C

to twenty seconds at−35◦C, which is the range of temperatures ice was found to evaporate in

this study. Despite these biases, relative humidity can be measured to within 5% and the humidity

gradient derived from sondes is fairly accurate.

After the above criteria had been applied to the sonde profiles, twelve profiles were left. These

profiles are shown in figure 3.15.

In almost all of these profiles, it can be seen that the model does not make avery good

representation of the humidity gradient beneath the ice cloud. The model tends to diagnose a
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Figure 3.15: Profiles of saturation ratio with respect to ice (Si) taken from twelve sondes from the Larkhill ra-

diosonde station (plotted in red) and the corresponding model relative humidity profile (plotted in blue). The black

line indicates of the top of the observed evaporation zone, defined by taking the maximum value of the radar-derived

ice water content.

smoothed version of the sonde humidity profile, and it takes an increased depth for the humidity

to drop to its first minimum value beneath the top of the evaporation zone. The most likely

explanation is that the numerics of the model are diffusive, so sharp gradients in humidity cannot

be maintained within the evaporation zone. However, it is also important to checkthe validity

of the model’s evaporation rate. This is tested in section 3.8.2, and the correlation between the

humidity gradient through the evaporation zone and the evaporation zone depth is shown in figure

3.16. It can be seen that the sonde-and-radar derived evaporationzone depth decreases with

increasing relative humidity gradient and that the model data appears to be following the same

curve as the radar data. So it would appear that the two sets of measurements obey the same laws

of physics. However, the model has smaller humidity gradients, and deeperevaporation zones as a

result. This provides quite conclusive evidence that an incorrect humiditygradient is the cause of

the deeper evaporation zone in the model. The next section compares radar and model humidity

to see if the incorrect representation of the humidity gradient changes the model’s evaporation
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Figure 3.16: Plots of the depth of the evaporation zone versus the humidity gradient foreach of the sonde/radar

and model profiles shown in figure 3.15.

rate.

3.8.2 Comparison Between Radar and Model Evaporation Rates

In section 3.8.1, evidence was examined that suggested the model’s deeperevaporation zone was

due to the model incorrectly representing a sharp drop in humidity within the evaporation zone.

This section compares the radar and model evaporation rates, to see if theyvary, and examines the

evaporation rate equation used by the model, to see how it depends on humidityand whether the

incorrect humidity gradient suggested in section 3.8.1 would significantly change the evaporation

rate.

The formula used by the Met Office model to calculate evaporation or deposition of ice is
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given by Wilson and Ballard (1999) as:

dm

dt
=

4πC(Si − 1)F
(

Ls

RT − 1
)

Ls

kaT + RT
Xesatice

. (3.12)

Here, dm
dt is the rate of change of the mass of the particle due to the supersaturation with respect

to ice (Si − 1). The gas constant for water vapour, R is 461.5 J kg−1 K−1, ka is the thermal

conductivity of air at temperatureT , X is the diffusivity of water vapour in air at temperatureT

and a given air pressure. The capacitance term is represented byC and since all ice particles in the

model are assumed to be spheres,C is equal toD
2 , while esatice is the saturated vapour pressure

over ice andLs is the latent heat of sublimation of ice. The factorF is a ventilation coefficient,

given by Pruppacher and Klett (1978) for spheres to beF = 0.65 + 0.44Sc1/3Re1/2, whereSc

is the Schmidt number, equal to 0.6 andRe is the Reynolds number, equal tov(D)ρD/µ, where

v(D) is the fall speed of the ice particle andµ is the dynamic viscosity of the air. This equation

is similar to the forms of Pruppacher and Klett (1978) and Mason (1971) and is based on well-

established cloud physics, so the increased depth in the evaporation zoneshould not be caused by

an incorrect parameterization of the evaporation rate. However, the values of the variables used

in equation 3.12 may still be wrong and hence cause the deep evaporation zone.

To see if the model evaporation rate is correct, it is necessary to compare radar and model

evaporation rates. This can be done by studying each hourly average profile of VDop and IWC

in both the radar data and model output. The flux density in kg m−2 s−1 at the top and bottom

of the evaporation zone can be estimated by multiplying the radar IWC at the top or bottom of

the evaporation zone by the mean radarVDop at the same point. The same procedure can then

be followed for the data obtained from the model output. The difference in flux between the top

and bottom of the evaporation zone can then be divided by the depth of the evaporation zone to

give an estimate of layer-mean evaporation rate. The differences in radar and model evaporation

rate for the 89-hour period of study are shown in figure 3.17. It shouldbe noted that the model

velocity used isVDop which is Z-weighted. Ideally, we should use the IWC-weighted velocity.

However, the two do not differ significantly so use ofVDop is justified.

Figure 3.17 shows that the model’s layer-mean evaporation rate is only one third of that de-

rived from the radar data. Since the equation used by the Met Office model is based on well-

established cloud physics, it is unlikely that the parameterization is wrong by such a large amount.

Hence, the lower model evaporation rate must be caused by incorrect values of one or more vari-
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Figure 3.17: The correlation of the radar layer-mean evaporation rate versus the model’s parameterized layer-mean

evaporation rate calculated for the model and radar evaporation zones, calculated using the IWC flux density difference

and the evaporation zone depth. The blue line is the line y=x.

ables being inserted into equation 3.12. Looking again at this equation, we can see that although

it is a function of several factors; these can quickly be attributed to changes in four variables.

The terms on the bottom half of the equation are functions of temperature and pressure only. The

capacitance term,C is a function of particle diameter only, the supersaturation ratio(Si − 1) is

a function of relative humidity only and the ventilation coefficient,F varies with temperature,

pressure and particle diameter. Hence the entire equation is a weak functionof temperature and

pressure, but strongly dependent on particle diameter and relative humidity. This suggests that

the either the relative humidity in the equation is wrong, or the parameterized particle diameter is

wrong. If the particle diameter, given in equation 3.1 was wrong, then the model would produce

incorrect values of reflectivity, IWC andVDop which would have been identified in sections 3.5
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and 3.7. The evidence from section 3.8.1 suggests the humidity gradient is wrong by up to a factor

of three and this increases the model’s evaporation zone depth. This incorrect humidity gradient

would also reduce the evaporation rate to one third of its true value, which agrees with figure 3.17.

3.8.3 Summary of Humidity and Evaporation Rate Studies

The evidence shown in figures 3.14 and 3.15 show that the model’s humidity gradient is much

shallower than in the observations taken from the sondes released at Larkhill. In the observations

there is often a drop from around 100% relative humidity with respect to ice toas little as 20% in

the evaporation zone, which is typically about 500 m deep. At ice cloud altitudes, the model’s grid

resolution is between 500 and 750 m, which means that this change in relative humidity would

be represented as a step function. Due to the numerics in the model being artificially diffusive,

this sharp change in humidity cannot be maintained. The model’s incorrect humidity gradient

means that the supersaturation with respect to ice in equation 3.12, which governs the evapora-

tion rate is too high, and hence the evaporation rate is too low, causing a deeper evaporation zone

in the model output. This agrees with Forbes (2002), who noted a sharp drop in humidity around

the evaporation zone. The theory of the humidity gradient being 2–3 times shallower and hence

causing a slower evaporation rate and eventually an evaporation depth of2–3 times that seen in

the observations would agree with the results presented by Forbes (2002) and Forbes and Hogan

(2006). However, when Forbes (2002) increased the model grid resolution, there was only 10%

observed change in the evaporation zone depth. This is most likely due to thefact the grid resolu-

tion was still not enough within the model to achieve an accurate representation of the humidity

gradient within the evaporation zone.

3.9 Other Operational Models

In addition to studying the Met Office model, it is interesting to see if other operational models

have an increased evaporation zone depth. If one or more of the other operational models do

not suffer from this problem, then there is something in these models that couldbe adapted and

used in the Met Office model. If the models all suffered from this common condition, then

it may be an intrinsic numerical problem which could be difficult to resolve. Aspart of the

Cloudnet project, corresponding ECMWF, Mét́eo-France and RACMO (Regional Atmosphere
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Climate Model, produced by KNMI) model output was available for Chilbolton at the time of this

study, and in sections 3.9.1, 3.9.2 and 3.9.3 each of the individual models will be studied in turn.

In each study, the Met Office model parameterization scheme has been used. This is because the

equations used to relateZ andVDop to IWC are unlikely to change significantly despite changes

in the cloud scheme between models. However, in section 3.7 it was hypothesised that the density

function used in the Met Office model, given in equation 3.3 may be too large and the Brown

and Francis (1995) density function was thought to be more realistic. In order to account for this,

each model has been tested using the Brown and Francis (1995) density function and the density

function used in the Met Office model, shown in equation 3.3 and taken from Wilson and Ballard

(1999).

3.9.1 Comparison with the ECMWF Model

The ECMWF model uses a prognostic cloud scheme based on Tiedtke (1993). This means that

cloud liquid content (either vapour or ice) and cloud fraction are carriedas prognostic variables.

Evaporation is parameterized as a simple change in saturation water vapour pressure with time,

which can be related to a change in the ice water content of the model. The modelhas 60 levels

in the vertical compared to the Met Office’s 38, which translates to the ECMWFmodel having a

vertical grid resolution of 529 m at 5 km, which is less than the Met Office’s grid resolution of

615 m. However, when Forbes (2002) increased the number of levels in the Met Office model,

he found out that there was only a 20% decrease in the depth of the Met Office evaporation zone.

Will the ECMWF model show the same result? The results for the model with the MetOffice

parameterization scheme and density function are shown in figure 3.18.

The results show that the ECMWF model does indeed have a much deeper evaporation zone

than in the radar observations. The results are comparable to the Met Office model shown in figure

3.8. The mean depth of the evaporation zone is defined as before, using the model profile of IWC.

In the ECMWF model, this depth is on average, 1334m which is 2.10 times the observations.

Looking at the profiles ofZ andVDop, the results are similar to those from the Met Office model.

The ECMWF does underestimate the fall velocity of the ice particles, but this result is probably

less reliable as the parameterization for particle velocity is not necessarily thesame in both the

Met Office and the ECMWF models. TheZ profile obtained via the ECMWF output is very close

to the observations, less than 1 dBZ in the region above the evaporation zone. This means that the
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Figure 3.18: Z andVDop profiles (left) for the ECMWF model values using the Met Office model parameterization

scheme (left) and the Brown & Francis density function (right). The data used is the same as that used to study the Met

Office model earlier in the chapter.

ECMWF does a better job of representing the IWC in the cloud above the evaporation zone, but

performs just as poorly as the Met Office model in the representation of theevaporation layer.

When comparing the results shown in figure 3.18 it can be seen that there is littledifference in

the profiles ofZ andVDop . When the Met Office density function is included, the model slightly

overestimates theZ values above the evaporation zone. If the Brown & Francis density function

is included, then the model slightly underestimates theZ values. Since there is little difference

between the two profiles ofZ, it can be concluded that the ECMWF model gets accurate mean

Z values and therefore predicts mean IWC very well. The depths of the evaporation zone do not

change when the density function changes, the same result as for the MetOffice model and what

was expected after analysing the Met Office data.

3.9.2 Comparison with the Météo-France Model

The Mét́eo-France model differs from the Met Office and ECMWF models as it uses a diagnostic,

rather than a prognostic cloud scheme. This means that it uses the model’s relative humidity

to diagnose the cloud amount and ice water content in the model. How does this differ in the

representation of the evaporation zone?

At 41 levels, the Ḿet́eo-France model has slightly higher resolution in the vertical than the

Met Office model. The grid resolution at 5 km is 502 m, over 100 m smaller than the Met Office’s
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615 m. The results for using the Met Office density function and Brown andFrancis (1995)

density function are shown in figure 3.19.

The Mét́eo-France model has difficulty getting close to the correct values ofZ above the

evaporation zone. At the closest point the difference is 5 dBZ. This means that the model is

underestimating the IWC by quite a significant amount. The evaporation zone depth is also poorly

represented. The mean depth of the evaporation zone is 912 m, which is 1.44times that of the

radar observations. If we were to judge the model on evaporation depth alone, this would appear

to be a much better result than the ECMWF and Met Office models. This is probably due to

the model’s ability to diagnose lower values of IWC using the lower humidity values, but it

still will have difficulty in representing the sharp humidity gradient, leading to a slightly deeper

evaporation zone than normal. However, despite the evaporation depth being lower than the other

models, the representation ofZ and hence IWC is quite low, the worst result from all of the

models studied in this chapter. This is most likely due to the use of a diagnostic, rather than

prognostic scheme.

The profile ofVDop is similar to the Met Office and ECMWF models, on average 30% lower

than the radar observations. However, once again this result is subjectto differences in particle

fall velocity between the parameterizations.

Inclusion of the Brown and Francis density function causes the model to underestimate the

mean value ofZ and therefore the values of IWC by 8 dBZ, an even larger amount than before.

The depths of the evaporation zone are unchanged and theVDop are unchanged. This means that

although the Ḿet́eo-France model makes the best model representation of evaporation zone depth,

it has serious problems in getting the correct mean values of IWC.

3.9.3 Comparison with the RACMO Model

The RACMO (Regional Atmosphere Climate Model) is produced by KNMI, the Dutch meteoro-

logical service. The model has 40 levels in the vertical and a resolution of 532 m at 5 km, very

similar to the ECMWF model, with the same cloud scheme used (Illingworthet al., 2007). The

results for this model are shown in figure 3.20.

When using the Met Office model density function, the RACMO model represents the peak

value ofZ at the top of the evaporation zone to within less than 1 dBZ. However, the evaporation
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Figure 3.19: Z andVDop profiles for the Ḿet́eo-France model values using the Met Office model parameterization

scheme (left) and the Brown & Francis density function (right). The data used is the same as that used to study the Met

Office model earlier in the chapter.
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Figure 3.20: Z andVDop profiles (left) for the RACMO model, using the Met Office model parameterization

scheme (left) and the Brown & Francis density function (right). The data isthe same as that used for the Met Office

study earlier in the chapter.

zone is not represented well andZ values in the middle of the ice cloud are about 5 dBZ lower

than in the radar observations. When the Brown & Francis density is used,theZ values decrease

even more and thus this model will underestimate the values of IWC within the ice cloud. The

profile ofVDop is similar to the other models and it is underestimated by 30%, although this result

will depend on the model crystal terminal velocity parameterization. The depthof the evaporation

zone in this model is on average 1317 m, 2.08 times the observations and very similar to the result
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from the ECMWF model. The model is able to accurately represent the mean value of the peak

IWC in the profile, but performance is not as good in the depth of the cloud,or at lower IWC.

Factors within the model cause the ice mixing ratio to fall off too rapidly with height,as this

discrepancy is observed with both Met Office and Brown and Francis (1995) density functions.

3.9.4 Summary of Results from the Other Models

From the results for each of the above models, shown in table 3.1, it can be seen that the evapora-

tion zone depth is much deeper in each model than in the radar observations,thus demonstrating

that the Met Office model’s problems are not unique. In section 3.8 the step function in humidity

was discussed and it was suggested that the model is artificially diffusive and unable to maintain

a sharp gradient in humidity, hence affecting the evaporation rate and deepening the model evap-

oration zone. Perhaps such a numerical problem is the cause of the deepevaporation zone in all

of these models.

The Mét́eo-France and RACMO models have problems representing the values ofZ, and

therefore IWC accurately in the cloud above the evaporation zone. Thusthis is something that

should be looked into further, clearly the representation of the IWC field needs to be improved.

The differences in the Ḿet́eo-France model could be due to IWC being a diagnostic variable,

while in other models (e.g. ECMWF, Met Office, RACMO) it is a prognostic variable.

3.10 Conclusions and Summary

This chapter has studied 94-GHz cloud radar measurements with the aim to seehow well the

evaporation zone beneath ice cloud is represented in the Met Office model.The depth of the

evaporation zone in the Met Office model is on average, 2.55 times that observed by IWC mea-

surements calculated using radar reflectivity and model temperature. Various candidates for the

increased depth of the evaporation zone have been considered and thefollowing conclusions can

be drawn:

• The parameterized fall velocity in the model is around 30% too low. In order toexamine the

fall velocity in the evaporation zone, the effects of the vertical air velocity need to be taken
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Model Cloud Vertical Grid Mean Standard Depth

Scheme Resolution Evaporation Deviation of Factor

at 5 km Zone Depth Evaporation

Zone Depth

Met Office Prognostic 615 m 1614 m 630 m 2.55

ECMWF Prognostic 529 m 1334 m 865 m 2.10

Mét́eo-France Diagnostic 502 m 912 m 452 m 1.44

RACMO Prognostic 532 m 1317 m 714 m 2.08

Table 3.1: Summary of evaporation zone depths, cloud schemes and grid resolution from the models. The depth

factor is the ratio of model and radar mean evaporation zone depths, soa depth factor of two would imply that the

mean model evaporation zone depth is twice the radar observations.

into consideration. There is confidence in the result above the the point where evaporation

starts, as the vertical winds will average to zero over a long time period. However, the

parameterized fall velocity still remains too small in this area and thus will tend to make

the depth of the evaporation zone less in the model than in the observations. Therefore the

parameterized fall velocity is not the cause of the erroneously high depth of the evaporation

zone in the Met Office model.

• The representation of turbulence in the model has no effect on the depth of the evaporation

zone. The depths of the evaporation zone in the model are always 2–3 timesthe observed

depth, despite significant changes in the turbulence.

• Using a wide variety of density functions suggested by recent studies, thedepth of the

evaporation zone within the Met Office model changes less than 10%. This implies that the

parameterized density of the ice particles is not increasing the parameterizedfall velocity

enough to cause a deeper evaporation zone within the model. Using the Brown and Francis

(1995) density function in the model allows the best representation of modelreflectivity and

therefore ice water content. Without re-running the model, it is not possibleto see whether

the density changes would affect the IWC and change the evaporation zone depth.

• The humidity gradient within the evaporation zone or immediately beneath the ice cloud

is much smaller in several model profiles than in radiosonde ascents from Larkhill. The

drop from moist air with 100% relative humidity to dry air with 20–30% relative humidity
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is observed to take place in a shallow layer. Studies of the layer mean evaporation rate

show that the model’s parameterized evaporation rate is about 30% of that observed by the

radar. The parameterized evaporation rate equation used in the parameterization scheme is

based on well-established cloud physics and is dependent on four fundamental variables:

temperature, humidity, particle diameter and pressure. The error in evaporation rate can

be attributed to incorrect humidity as unrealistic changes in the other parameters would be

required. The sharp drop in humidity would take place over the space of one model grid

box and would be represented as a step function, but the numerics of the model are too

diffusive and so the sharp humidity gradient cannot be maintained.

• The problems seen in the Met Office model are not unique and apply to all other models

tested from a variety of institutes and forecast centres across Europe.
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CHAPTER FOUR

A 1D Explicit Microphysics Model of

Ice Evaporation

4.1 Introduction

Several studies (Hall and Pruppacher, 1976; Harris, 1977; Cloughand Franks, 1991) have at-

tempted to theoretically calculate the survival distance of ice crystals and masses of solid ice

evaporating into dry air. However, all of these studies have produced amean depth scale of evap-

oration, rather than attempting to accurately calculate evaporation depth. Often many simplifying

assumptions, such as using a single particle, assuming constant temperature, constant pressure

and constant relative humidity are made. In the real atmosphere, things aremore complex, and

this study attempts to calculate evaporation depth as accurately as possible, using a spectrum of

particles and a profile of variable temperature, humidity and pressure, intended to represent the

real atmosphere as closely as possible.

In the previous chapter, data from the 94–GHz radar at Chilbolton was compared with output

from the Met Office model. In the model, the evaporation zone depth was found to be between

two and three times that observed in the radar data. It was found that whenradiosonde and model

humidity profiles were compared, the model humidity gradient tended to be much lower in the

evaporation zone than the sonde observations. Due to the height resolution of the model at this

altitude and problems with numerical diffusion, the model will not be able to represent this sharp

humidity gradient. Instead the humidity gradient will be much shallower, as the results from

chapter 3 have shown. If the Met Office model was able to accurately represent this gradient of

humidity, for example, with a much higher resolution grid, would it be able to correctly define the

evaporation zone observed by the radar? Forbes (2002) looked into this and in his experiments

he doubled the number of levels in the Met Office model. This would have meantthat at ice

evaporation levels, the model grid spacing would be between 250 and 375 m.His results showed

that the evaporation-zone depth would decrease by 10% in the Met Officemodel. However, taking
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a typical evaporation-zone depth to be 500 m, there would only be two model grid points in the

evaporation zone, which I believe is not nearly enough to accurately represent the model humidity

gradient.

Thus, in this chapter, I shall write the assumptions used in the Met Office model into a high

resolution 1D model, which studies Evaporation Level Physics and Numerical ice Transport (ELe-

PhANT). In particular, the same mass-size and fall speed assumptions as the Met Office model

are used, but in addition, the particle size distribution is resolved. A description of the physics

used in the ELePhANT model is given in section 4.2 and experiments to examine the sensitivity

of the evaporation depth scale are described in section 4.3. Sonde data from the Larkhill station

are inserted into the ELePhANT model in section 4.4, to see how well the model represents the

evaporation zone observed in the radar, using nearby sonde data. Animportant aspect in the study

to to ensure the model has the correct parameterization of capacitance; recent work in this field is

discussed in section 4.5. Conclusions are drawn in section 4.6 and future work in section 4.7.

4.2 Description of the Model

The evaporation rate equation is given in Wilson and Ballard (1999), following the work of Mason

(1953):
dm

dt
=

4πC(Si − 1)F
(

Ls

RT − 1
)

Ls

kaT + RT
Xesatice

, (4.1)

wherem is the mass of an individual ice particle,t is time,C is the capacitance of the particle,

which for spheres isD2 , whereD is the particle diameter,Si is the saturation ratio
(

RH
100

)

, T is the

temperature (K),R is the gas constant for water vapour (461.5 J Kg−1 K−1), Ls is the latent heat

of sublimation of ice to vapour,X is the diffusivity,esatice is the saturation vapour pressure with

respect to ice andka is the thermal conductivity of air.F is the ventilation coefficient, given for

spheres as

F = 0.65 + 0.44Sc1/3Re1/2, (4.2)

where Sc is the Schmidt number, equal to 0.6 and Re is the Reynolds numberv(D)ρD
µ , whereρ

is the air density,v(D) is the fall velocity of the crystal andµ is the dynamic viscosity of the

air. The physical meaning of the ventilation coefficient is the effect of the air rushing past the

evaporating ice particle and hence increasing the rate of evaporation (Mason, 1971; Pruppacher

and Klett, 1978). The more turbulent the air, the higher the Reynolds numberin equation 4.2
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Figure 4.1: The variation of ventilation coefficient from Wilson and Ballard (1999) with particle diameter and

temperature. The ice particles are assumed to be spherical.

and the faster the evaporation rate. Figure 4.1 shows the variation of ventilation coefficient with

diameter and temperature. As can be seen, the ventilation for the largest particles approaches 10,

hence the rate of evaporation for these largest particles is much greater.Since ice water content is

dominated by these largest particles, it is important that the ventilation coefficient is represented

accurately to ensure the correct evaporation depth occurs.

Although equation 4.1 may look complicated, the termsLs, X, esatice, ka are functions of

temperature and pressure. With the exception ofesatice, all these variables are weak functions of

temperature and pressure. The capacitance,C is a function of diameter,D andF is a function of

D, temperature and pressure. Thus, the evaporation equation could be expressed as a function of

just a few variables, as in equation 4.3.

dm

dt
= f(D, RH, T, p) (4.3)

In section 4.3, this expression shall be evaluated to see which of these four variables the evapora-

tion rate, and hence evaporation zone depth, is most sensitive to.

The mass of an ice crystal (kg) and its fall speed (m s−1) in the Met Office model is given as
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a function of its diameter in metres as follows:

m(D) = 0.069D2, (4.4)

v(D) = 25.2D0.527. (4.5)

These equations are based on Cox (1988) and Locatelli and Hobbs (1974). The values used in

equation 4.4 were selected by Cox (1988) to give a sensible variation of particle density with

size. This results in a roughly double the mass and double the density than the Brown and Francis

(1995) relationship, which was used to accurately measure ice water content in clouds. Despite

the difference, this study retained the Met Office model values to try and make the ELePhANT

model as close to the Met Office model parameterization scheme as possible. The values used in

equation 4.5 are larger than those given by Cox (1988), who usedv(D) = 16.8D0.527.

In order to obtain the distance an individual particle falls before it completelyevaporates, we

must first convert equation 4.1 to an expression for the change in diameterof a particle over time

and then use the fall speed to convert this to a fall distance (z). This can be done using equations

4.4 and 4.5 and the chain rule:

dD

dz
=

dm

dt
×

1

dm/dD
×

1

dz/dt
. (4.6)

Once this information is known, the survival distance of an individual particle can be calculated

numerically by integration. It is difficult to find an analytical solution to equation4.6 due to the

nature of the ventilation term, which cannot be integrated analytically when incorporated into

equation 4.6. The number concentration of ice particles in the Met Office model is given as

follows:

N(D) = N0e
(−0.122T )e(−ΛD), (4.7)

whereT is the temperature in degrees Celsius andΛ = 3.67
D0

, whereD0 is the equivolumetric

mean diameter andN0 is 2 ×106 m−4. This expression can be used to determine ice water

content (IWC) at the start of evaporation and at any layer in the model.

IWC =

∞
∫

0

m(D)N(D)dD, (4.8)

wherem(D) is the obtained from equation 4.4. The Met Office model resets the distributionback

to the form in equation 4.7 at every vertical step, but in this explicit model, the smallest particles
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evaporate first. As the Met Office model resets the distribution to its initial form,it automatically

adds more small particles in place of a few large ones. Since evaporation depth depends on ice

water content, which is proportional to the cube of diameter, this will mean that inthe Met Office

scheme the IWC will artificially reduce and the evaporation zone depth will decrease. However,

the Met Office model vertical resolution at ice cloud altitudes ranges from 500m to 750m, so this

resetting process will have little effect on the evaporation depth, if the correct humidity gradient

were maintained.

4.2.1 Model Constraints and Simplifications

The 1D ELePhANT model was set up with a vertical grid with a 5 m resolution and 6 km domain.

In the first experiment, a simple linear humidity gradient was used. In all cases, the humidity was

set as 100% at the top of the domain and was not allowed to fall below 20% at any point in the

profile.

In a similar nature, the temperature profile was set to be dry adiabatic with different starting

temperatures at the top of the domain. Unrealistic runs, where the temperatureincreased above

273 K and therefore the ice would melt, rather than evaporate were removedfrom the study.

The profile of pressure decreased with height using a simple exponentialdistribution with a

scale height of 8 km. As with temperature, the user is able to define the pressure at the top of the

profile. The pressure in each profile is capped at 1040 mb.

The initial value of Ice Water Content (IWC) is a function of temperature andthe particle

median diameter (D0) as expressed in equation 4.8. However, once the temperature at the top of

the profile is known, equations 4.7 and 4.8 can be inverted to obtain D0. So, the user can decide on

a particular IWC to use at the top of the profile. This is then converted to givethe corresponding

value ofD0 at that temperature, which the model then uses to set up the particle size distribution

as given in equation 4.7.
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4.3 Evaporation Depth Sensitivity to Temperature, Pressure, Hu-

midity and Initial Ice Water Content

With the model set up, a simple sensitivity study was performed to see how the evaporation depth

changed with relative humidity gradient and one of the other variables (IWC, temperature and

pressure). The model was initially run with a control experiment where the humidity gradient

was altered over a range of values from 0.001 to 0.08% m−1, but the values of the other variables

remained fixed as follows: Initial temperature−20◦C, initial pressure 850 mb, and an initialD0

of 0.5 mm (which at this temperature is equivalent to an initial IWC of 7.7× 10−3 g m−3). The

model was used to calculate a series of evaporation zone depths using these data. Then a set of

four experiments were run to test the sensitivity of the model to various parameters as follows:

1. Sensitivity to initial temperature. The ELePhANT model was run exactly as the control

run, but with the initial temperature being varied from−30◦C to−5◦C. This range spans

the profiles of temperature in the Met Office model at ice cloud altitudes aboveChilbolton.

2. Sensitivity to initial IWC. The value ofD0 was altered within the model, from 0.25 mm

to 1.5 mm. This represented a change in IWC between 9× 10−4 g m−3 and 0.21 g m−3

at this temperature, which is representative of the range of values observed over Chilbolton

during the studies made in chapter 3. No changes were made to the ice water content by

altering the number concentration of the particles, as in the ELePhANT model itis assumed

that all particles of the same size evaporate at the same rate and take the same distance to

evaporate. Therefore increasing the number of particles of any givensize would not have

any effect on the evaporation zone depth.

3. Sensitivity to initial pressure. The model was run with variations made in initial pressure,

ranging from 500 mb to 1000 mb, but with the other parameters exactly as in the control

run. The range of pressures used spanned the observed pressure levels at which evaporation

started in the radiosonde profiles.

4. Sensitivity to temperature gradient. Lastly, we ran the model with constant tempera-

ture throughout the domain to see how this would affect the evaporation depth. In this

experiment, the ELePhANT model was set as the control run, with the exception of the

temperature gradient being replaced with an isothermal layer with temperatureof −20◦C.
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Figure 4.2: Changes in evaporation zone depth with changes in initial temperature, initialD0, initial pressure and

when the linear temperature gradient in the model is replaced with an isothermal layer. The circles represent the points

taken from model data and the crosses represent the evaporation depths from the radar data and humidity gradients

from sonde measurements. Although the model was run on a domain of 6km, only realistic solutions (where the

temperature remains below zero degrees Celsius) are shown.

The results of all four experiments are shown in figure 4.2. From these plots, we can see that

the evaporation depth changes quite rapidly as humidity gradient increases, in all cases. Hence,

humidity gradient is the single most important variable that we need to consider indetermining

the evaporation depth. In section 3.8.1, it was noted that sonde profiles can be measured to an ac-

curacy of around 5%, after examining work by Ferrareet al.(1995), Heymsfield and Miloshevich

(1995) and Miloshevichet al.(2004). Hence we can conclude that the humidity gradients derived

from sondes are reasonably accurate.

91



CHAPTER 4: A 1D Explicit Microphysics Model of Ice Evaporation

However, the top left plot of figure 4.2 shows that the sensitivity to evaporation zone temper-

ature is also an important factor in determining evaporation zone depth. The temperature fields

within the model are accurate to within a couple of degrees Celsius and so this isnot likely to

be the cause of the model’s deep evaporation zone, but nonetheless, any model which wants to

accurately measure evaporation depth scales must include a temperature effect. The bottom right

plot shows the effect of including a humidity gradient, but no temperature gradient in the model.

This isothermal layer means that although the relative humidity decreases withinthe profile, the

specific humidity is much greater at each individual point in the profile. Sinceevaporation is

sensitive to specific humidity, this means that deeper evaporation zones will occur. The overall

conclusion from this study is that the variable controlling evaporation rate and evaporation depth

is specific humidity and that whenever a gradient in relative humidity is present, a gradient in tem-

perature should also be used to ensure accurate evaporation within the model. Previous studies

(Hall and Pruppacher, 1976; Harris, 1977) did not make this assumption. However, if we want to

know what is causing the deep evaporation zone within the Met Office model,we must deal with

the sensitivity to each variable individually.

The top right plot shows the effect of changing the value ofD0 on the evaporation depth, over

a sensible range of values. The results show that changing the value ofD0 has a large effect on

the ice evaporation depth and therefore it is important that the model has a particle size and ice

water content reasonably accurate, but if we examine the top right plot offigure 4.2, we can see

that to cause a doubling in evaporation zone depth, the model’sD0 would have to be double the

value seen in nature, which would mean an ice water content of about one order of magnitude

larger. If such an error were present in the mean particle size, we wouldhave seen a much larger

radar reflectivity factor when we examined this in chapter 3.

The bottom left plot shows the sensitivity to pressure variations within the model. Generally

pressure is measured quite accurately within the model and as can be seen from the plot, evapo-

ration depth is not sensitive to significant pressure changes. Changingpressure only changes the

ventilation coefficient by a small amount and this is not enough to change the evaporation depth

by more than a few metres and hence we can conclude that incorrect pressure is not a cause of a

deep evaporation zone within the model.

There may also be effects due to the particle shape and distribution used withinthe Met

Office model. However, the Met Office model follows an exponential distribution, which is used
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by many other general circulation models. The evaporation depth may also besensitive to the fall

speed parameterization. However, for the purposes of this experiment, we have not decided to

show any changes in particle size or distribution in order to try and prove that Met Office model

could accurately represent evaporation with the present scheme and a high grid resolution.

4.4 Evaporation Depth Experiments Using Radiosonde Data

Once we know that the ELePhANT model works well with the profiles of temperature, relative hu-

midity and pressure of an idealised atmosphere, the next step is to find out how well the model can

represent an accurate profile of Ice Water Content derived from the94-GHz radar at Chilbolton,

using sonde temperature, pressure and humidity data from the nearby station at Larkhill.

The ELePhANT model was initiated with data from the sonde profiles in chapter3. In each

case, the start of the evaporation was defined by examining the humidity profile from each sonde

and locating the sharpest drop in humidity closest to the height at which the radar data showed

maximum values of ice water content. In practice, it was not too difficult to picksubjectively

the sharpest drop in humidity for each case. The top of the evaporation zone was defined as the

maximum point in humidity immediately above the sharp drop in humidity. The sonde profile

from the ground to this evaporation start point was used. The ELePhANTmodel was run on

each of the 12 sonde cases in turn, along with the corresponding Met Office model data for these

cases. Figure 4.3 shows the results for the best case study, 4 March 2004, where the ELePhANT

and radar profiles agreed through most of the evaporation zone. The radar data for this case can

be seen in figure 3.13, which shows an almost constant cloud base with time and therefore the

sonde data from the 13 UTC sonde was quite likely to be representative of the radar data above

Chilbolton. The start of the evaporation, defined by the start of the fall in the observed sonde

humidity profile, does not always occur at the same height as the maximum in radar-derived ice

water content, which was used to define the start of the evaporation zone.So, in figure 4.3, the ice

water content profiles have been shifted vertically upwards by 280 m to ensure the evaporation

started at the same point in each profile and a fair comparison can be made. Not all cases agree

as well as the one presented in figure 4.3, but it shows that the ELePhANTmodel can produce an

accurate estimate of evaporation depth given a good sample of data.

Figure 4.4 shows one of the cases where the ELePhANT model doesn’t perform quite as
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Figure 4.3: Profiles of ice water content for the best result, the case of 4 March 2004 at 13 UTC.
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Figure 4.4: Case study of 14 April 2003 at 05 UTC, where the ELePhANT model doesn’t perform too well. On

the left, we see a plot of evaporation set with the ELePhANT model evaporation starting at the same point as the

maximum IWC observed by the radar. The right hand plot shows the result when the IWC profiles are adjusted so that

the evaporation starts at the same point in each profile.

well. From the plot on the right, it is obvious that the ELePhANT model has the wrong humidity

gradient and the evaporation decreases much shallower with height then expected and hence the

94



CHAPTER 4: A 1D Explicit Microphysics Model of Ice Evaporation

evaporation zone is 200m deeper in the ELePhANT model than in the observations. It appears

that the modelled evaporation follows the decrease in ice water content quite well, but that further

down the profile, the humidity gradient changes and is much steeper, hencethe evaporation is

much greater and the overall evaporation depth is decreased in reality. The ELePhANT model

takes the radiosonde data to calculate the evaporation, but if the sudden change in humidity was

not represented in the sonde data, for example if it passed through a different section of cloud as

it had drifted away from the location of the radar, then the model would incorrectly represent the

humidity gradient and the evaporation depth.

The results for all 12 sonde cases used are shown in figure 4.5. This shows that the points

generated for each of the twelve runs of the ELePhANT model with radiosonde data and each

of the twelve runs of the ELePhANT model with Met Office model data appear tolie on the

same line. When the ELePhANT model is initiated with radar and sonde data, the results predict

evaporation zone depths on the same scale as those observed by the radar. This implies that the

Met Office model is obeying the same evaporation physics as in nature, butthe inputs of humidity

into the Met Office model are wrong, causing deeper evaporation zone depths within the Met

Office model.

It should also be noted that not all points lie perfectly on the straight line in figure 4.5. There

is a random difference in both model and radar data which may be due to measurement noise.

This is particularly true for radar-derived values of ice water content, which has been observed

by Hoganet al. (2006) to have as much as a 55% error when calculated from radar and temper-

ature measurements. It should also be noted that there are slight differences in parameterization

between the ELePhANT and Met Office models. The ELePhANT model doesnot set its distribu-

tion back to the form of equation 4.7 at each time step but the Met Office model does. The grid

spacing of the ELePhANT model is much finer than the Met Office model, whichwould create

a systematic difference in the evaporation depth. The Met Office model applies a correction on

the fall speed due to variations in the air density, but the ELePhANT model does not have this

correction. This would mean that the fall speed within the ELePhANT model is too fast at lower

pressures. Also, there is the possibility of a lag in the sonde’s humidity measurements as it passes

from dry air to saturated air as discussed in Miloshevichet al. (2004). They found that at the

temperatures evaporation was observed to start at in this study, typical Vaisala radiosonde lags

in humidity are at maximum twenty seconds. Unfortunately, the sonde data did not include the
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Figure 4.5: Scatter plot of evaporation depths for the ELePhANT model using the humidity profiles generated for

each of the twelve sonde (crosses) and model (circles) cases and theactual radar or Met Office model evaporation

depth.

ascent rate, but for the Vaisala RS80 radiosonde used, the ascent rate is roughly 5 m s−1 (Milo-

shevichet al., 2004), which would lead to a vertical lag of 100 m and roughly 20% overestimate

in evaporation depth.

4.5 Issues with Modelled Capacitance

So far, all experiments with the Met Office model have assumed that the capacitance of the par-

ticle, C is correct. Currently, the models use the value of spheres (C = D/2), which has been

adopted for use in the ELePhANT model. However, this assumption should berelaxed in light of

evidence (Field and Heymsfield, 2003; Westbrooket al., 2007b) that aggregates are the dominant

particle habit in thick non-precipitating ice clouds such as those studied in chapter 3. Numerical

experiments by Westbrooket al.(2007a) have shown that for aggregates, the value of capacitance

is roughly half the value for spheres (D/4), which will lead to a reduction of the evaporation rate.

In order to test how the Met Office model would respond if the capacitancewere lowered,
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Figure 4.6: Rerun of the Case of 4 March 2004 (as in figure 4.3) with the previous work displayed and the reduced

capacitance (assuming particles are aggregates and after the work of Westbrooket al., 2007a) shown as a black dashed

line. The ventilation is assumed to be the same as for spheres.

a value ofC = D/4 was inserted into the ELePhANT model and the case study of 4 March

2004 repeated. All other factors, including the ventilation coefficient were kept constant. Figure

4.6 shows the results. It should be noted that the evaporation depth zone of the ELePhANT

model when run with the reduced capacitance increases for this case from 545 m to 805 m. From

this short experiment it should be noted that firstly the Met Office model assumption of spheres

combined with the correct humidity profile will produce an accurate evaporation depth. However,

concerns must be raised if the particles being observed at the base of evaporating ice are indeed

aggregates; the reduce capacitance would lead to an increased evaporation depth within the Met

Office model and could suggest that the model still has problems accuratelyrepresenting the

humidity profile properly. However, in this simple experiment, the ventilation coefficient has

remained the same as for spheres. An accurate value of ventilation coefficient for aggregates

has yet to be determined (Westbrook, personal communication). Should the value of ventilation

coefficient be greater for aggregates than for spheres, then the reduced capacitance evaporation

curve in figure 4.6 will move closer to the sonde-and-radar derived curve. Further work should
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be done to assess the sensitivity to different capacitances and how accurate the humidity profile is

within a number of cases of capacitance and ventilation coefficient.

4.6 Conclusions and Summary

This chapter has introduced the ELePhANT model which has tested the hypothesis made in chap-

ter 3, that the deeper evaporation zone depth in the operational models weredue to the models

incorrectly representing the sharp drop in humidity within the evaporation zone. The ELePhANT

model is a simple numerical model which has also been used to examine the sensitivity of the

evaporation zone depth to several different atmospheric variables. The following conclusions can

be drawn:

• The evaporation zone depth is most sensitive to changes in the humidity gradient. If the

humidity gradient increases from 0.02 % m−1 then the evaporation zone depth decreases

from 1 km to 500 m. Evaporation depth is also sensitive to changes in the temperature

profile. A change in temperature from−10 to −20◦C increases the evaporation depth by

200 m. Changes in the initial ice water content, made by changing the equivolumetric

mean diameter of the ice particles are also important. Doubling the value ofD0 leads to an

increase in the evaporation depth by 200 m.

• The evaporation zone depth is not sensitive to changes in pressure or changes in ice water

content made by changing particle number concentration. Changing the starting pressure

from 500 to 1000 mb changed the depth of the evaporation zone by less than100 m.

• The ELePhANT model can predict evaporation depths for both radar and model profiles of

ice water content to within 200 m of those observed by the radar. Systematic inaccuracies

occur from the differences in grid spacing between the models, the parameterization scheme

differences and that the sonde may have a lag when it passes from dry tomoist air. Random

inaccuracies may occur when the profiles of humidity may not be from the samecloud the

radar is seeing over Chilbolton, depending on the direction of the wind and the sonde drift.

Random measurement noise, particularly from radar measurements of ice water content

may create random errors in the results.

• The results from the ELePhANT model shows that if the Met Office model had the correct
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humidity gradient it could accurately represent evaporation zone depths. The evaporation

zone depth is more sensitive to humidity gradient changes than changes in any other vari-

able and hence the results from the ELePhANT model give strong evidence that the shallow

humidity gradient within the evaporation zone in the Met Office model causes the deeper

evaporation zone in this model.

4.7 Future Work

Although this chapter has shown that the Met Office model could potentially represent the correct

evaporation depth scale, given enough grid resolution to represent thehumidity profile accurately,

there is still further work that could be done in this field. Firstly, the parameterization schemes of

other models could be used to simulate evaporation and examine whether the humidity gradient

is also a factor in their deeper evaporation depths and it would be interestingto see whether the

schemes which incorporate two cloud water phases (e.g. Met Office, Wilson and Ballard, 1999)

would perform better than the schemes which diagnose cloud phase, assuming one water content

(e.g. ECMWF, Tiedtke, 1993, modified by Jakob, 1994). It would be worthwhile to see if the

diagnostic Ḿet́eo France model would represent the humidity drop accurately.

In addition, particle size should be examined with the model. Results in this chapterhave

shown that using the capacitance proposed for aggregates (Westbrook et al., 2007a) would reduce

the evaporation rate and lead to an even deeper evaporation zone within theMet Office model.

Work needs to be continued to see if this really is the case that the aggregate assumptions should

be made and if so, is there a larger problem than previously thought with the Met Office model,

or would a ventilation coefficient for aggregates cancel out this effect?

Finally, the issue of wind drift should be considered with sonde profiles: more radiosondes

should be launched and a critical distance away from Chilbolton should be set using the synoptic

situation and satellite pictures to include only sondes for evaluation of the modelsthat do not drift

too far away. This is of particular relevance to a frontal system, where thefront may only be

tens of kilometres thick, a fast moving sonde could drift into clearer air and produce misleading

results.
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CHAPTER FIVE

A Lidar Forward Model for

Comparisons Between ICESat and the

ECMWF Model

5.1 Introduction

In chapter 1, it was noted that clouds are an important component of the climate system and that

it is important for clouds to be accurately represented in both general circulation models (GCMs)

for forecasts of future climate, and operational numerical weather prediction (NWP) models for

precipitation and surface temperature forecasts. The ECMWF model is used for operational NWP

forecasts and is capable of forecasting cloud and precipitation across the globe.

There have been a number of previous studies assessing the clouds withinthe ECMWF model.

Jakob (1999) compared ECMWF reanalysis (ERA) data to data from the International Satellite

Cloud Climatology Project (ISCCP) for the period July 1983 to December 1990. The reanalysis

used the prognostic ECMWF cloud scheme (Tiedtke, 1993, modified by Jakob, 1994) and found

that the ERA data tended to have underestimates of cloud cover in the extra-tropical oceans, the

trade wind cumulus, the stratocumulus sheets off the west coast of subtropical continents and

the summertime convective cloud over Eurasia. Similarly, Karlsson (1996) compared ECMWF

model cloud cover with 2 months of advanced very high resolution radiometer(AVHRR) data

over Scandinavia, and found that the ECMWF model had an underestimate of cloud by as much

as 13%. However, these techniques are based only on passive observations and can give very

little information on the vertical distribution of cloud. As noted in chapters 1 and 2, active remote

sensing techniques are necessary to evaluate a model cloud scheme throughout the depth of the

atmosphere.

Previous active ground-based studies have also assessed the performance of clouds in the

ECMWF model. In chapter 2, we examined results from a number of radar evaluations of the
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ECMWF model (Maceet al., 1998; Beesleyet al., 2000; Hoganet al., 2001; Illingworthet al.,

2007). In general, these showed that model cloud layers were generally too deep, with the ice

cloud occurring more often than in the radar observations. Hoganet al. (2001) found there was

a tendency for the ECMWF model to produce low cloud features up to 3 hours before they were

observed. It is unknown why this effect occurs, but Hoganet al.(2001) suggested it may be due to

an incorrect represented diurnal cycle. The boundary layer within themodel was hypothesised to

change from a nocturnal, stable profile to a daytime, well-mixed stratocumulus topped boundary

layer too rapidly after sunrise. In addition, an assessment of ECMWF model cloud and surface

radiation fields by Morcrette (2002) showed that above the ARM southerngreat plains site, the

ECMWF model was able to get the position of ice and liquid water clouds roughlycorrect. Esti-

mates of the reflectivity of ice and liquid clouds showed that the ice clouds withinthe model had

roughly the correct reflectivity values, but liquid water clouds gave too low a reflectivity. How-

ever, power law relations were used to determine LWC from reflectivity factor and as shown in

chapter 2, these may be unreliable.

The use of active instruments in space was discussed in section 2.5, with introductions to

the Lidar In-space Technology Experiment (LITE; McCormicket al., 1993), and ICESat (Zwally

et al., 2002). LITE data was used by Milleret al. (1999) to evaluate the ECMWF model and

ICESat data was used in a similar ECMWF model evaluation study by Palmet al. (2005). In

this chapter, we shall use ICESat data to evaluate the cloud parameterizationscheme within the

ECMWF model. The data from ICESat have been available long enough forsome cloud studies to

already have been undertaken. In particular, the satellite lidar data can beused to observe clouds in

locations where passive instruments have difficulty making observations. Spinhirneet al. (2005)

showed that ICESat lidar measurements get around the problem of the highsurface reflectance

of ice and snow that causes a positive bias in passive retrievals of cloudfraction. Comparing

data from MODIS (MODerate resolution Imaging Spectrometer) to the ICESatlidar, they found

that ICESat lidar measurements recorded cloud fractions around 0.4 to 0.6at−87◦ latitude while

MODIS gave a cloud fraction close to 0.9. Although there may be some attenuation from thick

ice clouds at these latitudes, the ICESat measurements are likely closer to the truth as unlike

the MODIS observations, they are not contaminated by the large albedo of the polar surface.

Comparisons of cloud top height made between MODIS and SEVIRI (Spinning Enhanced Visible

and Infra-Red Imager) data and ICESat were also made by Naudet al. (2005). They found that
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MODIS and SEVIRI overestimated the cloud top heights by 300–400 m when the clouds were low

and opaque, but overestimated the cloud top height for high and thinnest clouds. For low cloud,

Naudet al. (2005) state that this is most likely to be due to contributions of water vapour above

the cloud-top contaminating the MODIS retrieval or to poorly resolved temperature inversions

in reanalysis profiles. For high clouds, it is suggested that the part of thecloud where the most

interactions with radiation take place is closer to cloud base and that this affects the cloud top

retrievals.

Palmet al. (2005), took one orbit of ICESat data and compared it to the cloud fraction from

the ECMWF model. By making direct comparisons between cloud fraction and using skill scores

from Miller et al. (1999), they deduced that the ECMWF model was capable of representing low

clouds quite well, but often produced too much high cloud, particularly evident from long (48

hour) forecasts. Model skill scores also decreased with increasing time. However, one must be

very careful when comparing observations made by lidar instruments directly to clouds as there

will be a loss of signal power (attenuation) as the beam passes through clouds, and often there

will be a total extinction of the signal in liquid water clouds. Palmet al.(2005) estimated that this

occurs around 10% of the time. However, to achieve a fair comparison between lidar and model,

a method of accounting for the attenuation of the signal must be found.

This study attempts to make a fair comparison between the ICESat lidar and the ECMWF

model. We follow a similar method to that used by Chiriacoet al. (2006), where model variables

are used to predict the lidar signal, rather than try and use the lidar observations to retrieve model

variables. This means that we account for the attenuation that occurs as the lidar passes through

thick cloud, allowing a much fairer comparison with the model.

Section 5.2 describes the methodology used to derive the lidar signal from the ECMWF model

variables. Processing of the ICESat lidar signal is necessary to removenoise and to place the data

upon the ECMWF model grid; this is described in section 5.3. Once processing is complete,

various statistical tests can be performed to judge the model’s performance across the globe.

These are described in section 5.4, with the associated results. A summary ofthe findings is

presented in section 5.5.
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5.2 Processing of Model Data

In this section we shall use a lidar forward model to predict the backscatterreceived by the ICESat

lidar, given model variables of liquid water content and ice water content. This method is able to

account for the attenuation of the ICESat signal as it passes through cloud.

Following the method of Platt (1973), and using equation 2.11, the lidar equation may be

written as follows:

β′(z) =
α(z)

s
exp



−2η

zlid
∫

z

α(z′)dz′



 , (5.1)

whereβ′(z) is the attenuated backscatter at altitudez above the Earth’s surface andzlid is the

orbit altitude of the ICESat. The extinction-to-backscatter ratio or “lidar ratio” is shown bys

and multiple-scattering is approximately represented byη. The visible extinction coefficient isα.

Collectively theα(z)/s term represents the unattenuated backscatter while the terms within the

exponential represent the attenuation of the lidar signal, sometimes referred to as the ‘transmission

term’.

The principle of the lidar forward model is to first use ECMWF model variables to predict

the value of the visible extinction coefficient,α, at each vertical grid box within the model; this

is explained below. If we can obtain an estimate of the lidar ratio,s, and the multiple-scattering

factor, η, then the attenuated backscatter can be predicted at each level of the model and then

compared to ICESat data.

5.2.1 Converting Model Variables to Extinction Coefficient

To calculate the value of the visible extinction coefficient,α from model variables at each indi-

vidual grid box, we use the following expression (after Foot, 1988):

α =
3

2

IWC

reiρi
+

3

2

LWC

relρl
, (5.2)

where IWC is the model ice water content and LWC is the model liquid water content at that

particular grid box. The calculation uses the ECMWF model’s parameterizations of the effective

radius of ice,rei, which is taken as a function of temperature following Ou and Liou (1995),

but setting the constraint thatrei can only vary between 30 and 60µm. Liquid water effective

radius,rel, follows the parameterization of Martinet al. (1994), with the concentration of cloud

condensation nuclei over the ocean held constant at 50 cm−1. Over the land, this value is again
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constant, but this time at 900 cm−1. The valuesρl andρi are the densities of liquid water and

solid ice, respectively. Once the profiles of extinction coefficient have been calculated, the lidar

forward model can be run but it is important that it takes account of the cloud overlap scheme

used within the ECMWF model. This is discussed further in section 5.2.6.

5.2.2 Calculation of the Multiple-Scattering Factor

An important factor in equation 5.1 is the inclusion of the multiple-scattering factor, η, suggested

by Platt (1973). This can vary between 0.5 and 1 depending on the altitude of the satellite, the

wavelength of the radiation and the size of the particles the radiation encounters. A multiple-

scattering factor of 1 is the single scattering limit, often appropriate for a ground-based lidar,

where all the scattered photons are lost, except for those directly backscattered to the instrument.

The value of 0.5 is the wide field-of-view limit, often more appropriate for spaceborne lidars,

where narrowly forward scattered photons remain within the telescope field-of-view.

The multiple scattering factor can be calculated accurately using a method suchas Eloranta

(1998). However, this method is too computationally expensive to run on a large amount of

ICESat data, so quicker yet accurate solutions had to be found.

Hogan (2006) developed a faster method for calculatingη than that of Eloranta, by separat-

ing the outgoing photons into distributions that have had zero, one or more than one multiple

scattering event. However, this method would still be too computationally expensive to run in

operational data, so it was decided to use Hogan (2006) to estimate suitable values ofη through

various different idealised stratocumulus cases that were similar to those present throughout the

period of study.

Equation 3 of Hoganet al. (2003b) state that for an optically thick stratocumulus layer, the

integrated backscatter (γw) is given as

γw =
1

2ηs
, (5.3)

hence given the value ofs of 18 (a typical value for liquid water droplets, see section 5.2.3) and

the integrated backscatter from the Hogan (2006) code it is possible to obtain a mean value of

the multiple-scattering factor,η. Eight different experiments were run by changing the effective

radius values and liquid water contents of the clouds, using the properties of ICESat listed in

table 5.1. In each case, the thickness of the stratocumulus cloud was adjusted so that it was at the
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minimum vertical thickness to allow it to be optically thick. A demonstration of the backscatter

generated is shown in figure 5.1. This shows that the backscatter using themultiple-scattering

limit (η = 0.5) gives similar results to the code of Hogan (2006). The same is true for the results

of all eight experiments, which are shown in table 5.2. Using the single-scattering limit (η = 1,

shown as the blue line in figure 5.1) would give incorrect values of backscatter for this profile.

Using table 5.2, the values ofη for the eight experiments were found to be0.500 for 532–

nm backscatter data. Hence the value ofη for all forward model calculations was chosen to

be 0.500. As we are at the wide field-of-view limit, this method should be adequate for this

work, but a sensitivity toη will be included in the error analysis in section 5.4. Inclusion of a

small estimated experimental error (e.g±0.02) on the measurement should not vary the results

of model backscatter more than a few percent. It should also be noted thatwith ice clouds, the

forward scattering is even more peaked and so these should be even closer to the wide field-of-

view limit. It should be noted that Platt (1973), Eloranta (1998) and Hogan (2006) only consider

narrow forward scattering and not wide angle forward scattering. Thiscan result in apparent pulse

stretching (Winker and Poole, 1995). There is no fast method to include thiswithin a forward

model at present, so this effect has not been included here. However, with currently available

codes this is the limit of what can be achieved.

5.2.3 Lidar Ratio

The other unknown variable within equation 5.1 is the value of the lidar ratio,s. This takes the

values of 18.8± 0.8 sr for liquid water (O’Connoret al., 2005) but can vary between 10 and 40

sr for ice particles (Plattet al., 1999; Chenet al., 2002). For the purposes of this experiment, we

shall be taking the value of the lidar ratio to be 20 (close to the constant for liquid water), but shall

examine the sensitivity of changing the lidar ratio between the extreme values onthe final result

incorporating in the error estimation in section 5.4.

5.2.4 Interpolation of model data on to an ICESat height grid

Due to the relatively low resolution of the model height grid, sharp transitionswould occur in

water contents, producing an unrealistic profile of the lidar backscatter. In some cases, this could

mean the attenuation of the simulated lidar signal would be too great. For example,if we had
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Property Value

Orbit Altitude 600 km

Wavelength 532 nm

Sampling Frequency 5 Hz

Latitude Range ±86◦

Repeat Orbit Cycle 8 days

Orbit Speed 7 km s−1

Footprint Size 70 m

Minimum Detectable Backscatter at 10 km1.6×10−6 sr−1 m−1

Laser Divergence Angle 75µrad

Telescope field-of-view 375µrad

Table 5.1: ICESat characteristics relevant to this study, from Zwallyet al. (2002). The minimum detectable

backscatter is the lowest value observed from molecular scattering overthe 15-day study period.

LWC Re η

(g m−3) (µm)

0.025 7.5 0.5

0.025 5.0 0.5

0.025 10.0 0.5

0.025 15.0 0.5

0.010 7.5 0.5

0.050 7.5 0.5

0.100 7.5 0.5

0.500 7.5 0.5

1.000 7.5 0.5

Table 5.2: Results of experiments to determine the value of the multiple-scattering factor, η. The control run is

shown in bold.
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Figure 5.1: An example of the process to calculate the value of the multiple-scattering factor (η) using code by

Hogan (2006). Plot (a) shows a profile of extinction coefficient (α) which shows the location of the cloud from 5.9–7

km altitude, with a liquid water content roughly equivalent to 0.05 g m−3. Plot (b) shows the attenuated backscatter

generated by the method of Hogan (2006) as a black line, with the estimation of attenuated backscatter withη set to

0.5 (maximum multiple-scattering) shown as red crosses. The blue line represents the attenuated backscatter profile if

the value ofη was set to 1 (single scattering limit).

a large ice water content in one model level, the attenuation could potentially be exaggerated

through a depth of the atmosphere of several hundred metres. To allow a smooth transition in

the lidar forward model output, a linear interpolation was used for the model variables of ice

water content and liquid water content. However, the cloud fraction was interpolated using a

nearest-neighbour interpolation method. This was because the amount of cloud is very important

to the forward model calculations. Consider a cloud with high ice water content or low liquid

water content, represented in the vertical over two model grid boxes. Thecloud fraction in the

highest grid box is 0.5 while the one immediately beneath has a cloud fraction of 1. Use of a
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linear interpolation would increase the cloud fraction on the lidar forward model grid between

the two ECMWF model grid points and hence would result in less clear sky andless radiation

unaffected by cloud in the depth of atmosphere between the two grid points. Anearest-neighbour

interpolation would be more accurate in these circumstances.

However, this higher resolution is only used to run the lidar forward model. In section 5.2.7

we shall see how the cloud fraction is recalculated on the model grid, allowinga direct comparison

between the ICESat lidar and the ECMWF model before and after running of the lidar forward

model.

5.2.5 Selecting Model Grid Points

Since the aim of using a lidar forward model is to enable a fair comparison between the ECMWF

model and ICESat, it is vital that the model and the ICESat data are on the samegrid to be com-

pared accurately. To analyse one day of ICESat data, the time and location(latitude and longitude)

of the satellite are extracted from the orbit files. The ECMWF analyses are available at 0000 UTC

and 1200 UTC, with intervening forecasts available in 3-hour intervals. The ICESat track points

are grouped into nine time groups corresponding to the closest ECMWF dataavailable. ICESat

points between 0000 UTC and 0130 UTC are associated with the 0000 UTC model analysis and

similarly, the ICESat points between 0130 UTC and 0430 UTC are associatedwith the 0300 UTC

model forecast. This process continues in three hour groups, until 2230. The points between 2230

UTC and 00 UTC are associated with the relevant 0000 UTC analysis of the following day.

Once the ICESat points have been grouped, ECMWF model grid profiles closest to the ICE-

Sat ground track containing a vertical profile of the model’s cloud fraction, relative humidity,

temperature, wind speed, ice and liquid water contents are extracted from the ECMWF model

output.

5.2.6 Cloud Overlap

An important factor in the lidar forward model calculations is the use of maximum-random over-

lap as currently implemented in the ECMWF model (Morcrette and Jakob, 2000). To achieve

maximum-random overlap, each model grid box is first divided into a set number of sub-columns

horizontally. The choice of the number of sub-columns is a trade-off between computer run time
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Figure 5.2: An example of the high-resolution backscatter simulated from model data on 30 September 2003. The

thin vertical black lines show the ECMWF model horizontal grid spacing. Where there is cloud cover of one (e.g.

latitudes−77.5◦ to −77.0◦ and altitudes 2–6 km), the model grid points totally overlap those above. Where there is

a cloud-free gap between two cloudy layers, the overlap is random, as seen at latitudes−80
◦ to −77

◦ and altitudes

above 8 km. For adjacent cloudy layers, the overlap is maximised with the layer above.

and accuracy. For these experiments, 10 sub-columns were used. Thismeans that the cloud frac-

tion in each model grid box was rounded to the nearest 10%, giving a goodbalance between

computer run-time and accuracy.

The lidar forward model follows the ECMWF model in using a maximum-random overlap

method, as shown in figure 2.7. The backscatter that results from this process is shown in figure

5.2. Although looking at this figure, there appears to be an artefact in the shape of the clouds, this

is entirely due to the nature of the overlap scheme and no attempt has been madeto try and get the

cloud structure realistic, simply to represent what would actually happen in the ECMWF model.

The cloud in each grid box is aligned so as to achieve maximum overlap with that immediately

above it, as the cloud fraction gets larger, this can mean that the cloud eventually aligns itself to

the left or the right hand side of the grid box. The values of interest are actually only the cloud
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fraction on the model grid, and not the location of individual clouds in the sub-grid displayed in

figure 5.2. If the position of the overlapped cloud were altered within the gridbox, say by moving

the cloud that is aligned on the right hand side of the grid box to the left hand side of the grid box,

without changing the maximum-random overlap assumption, there would be no effect on the final

result.

Once the details of the maximum-random overlap are known and the values of all the variables

in equation 5.1 are known, the lidar forward model can be applied to each sub-layer to calculate

backscatter using the model variables interpolated on to the ICESat height grid.

5.2.7 Cloud Fraction Resampling

In order to compare the cloud fraction from the lidar forward model with cloud fraction from ICE-

Sat, cloud fraction data are ‘resampled’. At this stage, the ECMWF lidar forward model values

are on a high-resolution grid with 10 sub-columns to each model grid box in thehorizontal and

the data lie on an ICESat height grid in the vertical. To resample the cloud fraction, a model grid

is superimposed on to the high resolution data and the percentage of points containing backscatter

data above the sensitivity threshold of ICESat (minimum detectable backscatter; see table 5.1) is

counted.

Figure 5.3 shows an example of backscatter from the lidar forward model on the ECMWF

model grid along with the raw ECMWF mean cloud fraction and the lidar forwardmodel cloud

fraction. The length of this swath is approximately 5000 km. From the lidar forward model cloud

fraction, it can be seen that the cloud fraction has reduced both above (where the cloud would be

too tenuous for the lidar to detect) and below (where attenuation would mean that there would be

no cloud observed).

5.3 Processing of Lidar Data

In addition to running the lidar forward model, processing of the ICESat lidar data must take

place to remove any return that is not cloud. The properties of the ICESatlidar as used in these

experiments are shown in table 5.1.
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Figure 5.3: Demonstration of the processing of ECMWF model data from 30th September 2003, from 0117–0137

UTC (a) Lidar forward model backscatter in sr−1 m−1 on a model grid. (b) ECMWF model cloud fraction in its raw

state. (c) The model cloud fraction after the lidar forward model has been run. The backscatter data from figure 5.2

forms part of the left hand side of plot (a).

5.3.1 Rejection of Unwanted (Non-Cloud) Signal

To clean molecular return and instrument noise from the data, the data are divided into 4 minute

sections (equivalent to 1680 km) and the mean backscatter above 15 km for this period is used to

remove the molecular noise from the lower levels for the whole of the period. It is assumed that

at this level, there is no cloud and all the signal received is molecular backscatter or instrument

noise. The mean and standard deviation of the linear backscatter at these heights are obtained.

These values are only just above the minimum detectable backscatter given intable 5.1 and is

due to molecular backscatter. The mean and standard deviation are used to set a noise threshold

for the rest of the profile. The threshold at which a signal is accepted to be a cloud signal rather
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than molecular or noise is 2 standard deviations above the mean, chosen empirically. If a higher

threshold is set, then the clouds start to be removed. With a lower threshold, obvious molecular

data still remains within the data. Although the return due to molecular scattering increases with

decreasing altitude, the threshold of 2 standard deviations is sufficient to remove the molecular

signal down to ground level. A speckle filter is then used to remove any isolatepixels that may

remain within the data.

In addition to the removal of noise outlined above, aerosol has also to be removed from the

data. Since aerosol data have similar values of backscatter as thin ice cloud, aerosol pixels would

be above the noise threshold defined for the 4 minutes period. Aerosol pixels tend to exist as

small groups of adjacent data points with backscatter high enough to allow them to exist after the

single pixels have been removed from the data.

To remove the aerosol data, the lowest 3 km of the data is divided into a series of grid boxes.

As aerosol tends to have quite low backscatter values, all points within the box with low backscat-

ter (values less than 5× 10−5 m−1 sr−1) are located and the standard deviation of these points

is calculated. Since aerosol has a low standard deviation and cloud a higher standard deviation,

the points with a very low standard deviation (less than 3× 10−6 m−1 sr−1) are assumed to be

aerosol and removed.

Naturally, the choice of aerosol removal box size is important to the aerosol removal process.

If the grid boxes are too large, a lot of low backscatter will be removed, but if the grid boxes are

too small then there will be insufficient data to provide a good sample of the variance of the low

backscatter used to remove the aerosol. Best results occurred when grid boxes of 50 by 20 pixels

were used. This gives 1000 data points in total in each grid box which is a large enough sample

for variance measurements.

Another obvious issue with the aerosol removal method is the removal of anylow-backscatter

cloud data that occurred in the same box as aerosol we were trying to remove. In some cases,

the edges of the clouds were actually removed from grid boxes containing data. However, upon

closer examination, this would only lead to the removal of a few points which would equate to

less than a 4% error in the cloud fraction calculated.

A digital elevation model was used to remove the high backscatter return fromthe ground

up to and including 75 metres above the surface. Figure 5.4 shows the processing of ICESat

lidar data to remove noise and to average on to a model grid to give mean backscatter and cloud
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fraction.

5.3.2 Averaging of ICESat Backscatter Data

To compare backscatter from the ECMWF model and backscatter from the ICESat lidar, ICESat

profiles which correspond to the same ECMWF model grid box were averaged in the horizontal

while maintaining the ICESat vertical resolution.

Figure 5.4 shows the averaging process for a selection of ICESat data over the Arctic, cor-

responding to the ECMWF values shown in figure 5.3. The ICESat data were averaged on to

the model grid, selecting and averaging ICESat track points to the nearestECMWF model grid

point. It can be seen that the data neatly averages on to the ECMWF model grid. Occasionally

observed is apparent horizontal stretching and squashing of the original data as it is transformed

on to the model horizontal grid. This phenomena is due to the grouping of ICESat track points to

individual ECMWF model grid points, which was described in section 5.2.5. Some model grid

points will be the average of many ICESat track points while some will only be theaverage of a

few. For this reason, any model grid point that corresponded to less than 5 ICESat track points

was rejected from the analysis. Cloud fraction was then calculated on the model grid by using the

same method as used for the lidar forward model cloud fraction resample, described in section

5.2.7, with the number of ICESat profiles replacing the sub-columns used in the lidar forward

model.

5.4 Results

The lidar forward model has been run on 15 days of ICESat and model data from 30 Septem-

ber 2003 to 14 October 2003 inclusive. This has generated a data set where the length of the

ICESat track is over 9 million kilometres. This is equivalent to over 14 years of continuous ob-

servations at a mid-latitude ground-based station, assuming a mean wind overthe station of 20 m

s−1. Although one of the possibilities of the data is to examine the seasonal variations in cloud

climatology, this study is restricted to a short data period only due to the computational expense

of processing the data and the availability of ICESat data at the time of processing that was of the

same release version and of good quality. Data was specifically selected from a period just after a

new laser was switched on, to avoid the problems caused by laser signal degradation.
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Figure 5.4: Demonstration of the processing of ICESat lidar data, for the same time period as the model data in fig-

ure 5.3. (a) Raw attenuated backscatter data in m−1 sr−1. (b) After processing to remove noise (molecular backscatter,

aerosol and ground layers). (c) After averaging the backscatter to amodel grid. (d) cloud fraction calculated on the

model grid, (dimensionless).

5.4.1 The Effect of the Lidar Forward Model

As we saw in figure 5.3, there was a reduction of model cloud fraction due tothe processing of the

lidar forward model. Cloud fraction is reduced at high altitudes due to the backscatter it would

produce being lower than the sensitivity of the ICESat lidar. These cloudsare sometimes referred

to as “ghost clouds” as they have ice water contents of10−5 g m−3 or less and cannot be easily

detected. Cloud fraction is also reduced at lower altitudes due to attenuation of the lidar beam as

it passes through thick cloud.

Figure 5.5 shows the effect of running the lidar forward model on the ECMWF model mean

cloud fraction over the whole globe. There is a reduction of model cloud fraction in the tropics,
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at heights above 14 km. In mid and high-latitudes and at high altitudes, the cloudfraction after

running the lidar forward model almost matches the original model cloud fraction, but there is an

obvious reduction of cloud at lower altitudes and all latitudes. At the lowest altitudes over the

poles, mean cloud fraction is reduced from around 0.3 to around 0.05. This is important for any

comparison between model and lidar that are made; comparing the ICESat-derived cloud fraction

directly with the model would be rather unfair to the model, as can be seen by comparing figures

5.5 and 5.6, the latter of which represents the cloud data obtained from the ICESat analyses in

this study.

Although figure 5.6 is an average over 15 days, it shows the general location of global mean

cloud during early October. The location of ice cloud outflow from the ITCZis shown at a height

of roughly 15 km. Thicker ice clouds are observed over both poles and extend over the mid-

latitude storm track regions, where the cloud extends down to 2 km. Boundary layer cloud is

noted over much of the globe. There is a large amount of boundary layer cloud around−60◦,

and as this corresponds to the area of the Southern Hemisphere where there is no land, this is

most likely to be marine stratocumulus. There appears to be very little cloud within the tropical

mid-troposphere. One possible explanation is that cloud in these regions is very thin, and the

attenuation of the lidar signal in the thickest ice clouds of the ITCZ has meant that the signal

sensitivity has dropped so these clouds cannot easily be detected.

5.4.2 Location of Cloud with Latitude

In order to examine the performance of the ECMWF model over several different latitude bands

and different altitudes, each hemisphere was divided into three latitude regions. In each region,

following the work of Hoganet al. (2001), the mean frequency of cloud occurrence and mean

cloud amount when present was calculated for altitudes up to 20 km. Frequency of occurrence

for a particular region, or model grid box, is defined as the fraction of timesthat cloud fraction

exceeds a threshold value of 0.05 within the model or observations. Amountwhen present is the

mean cloud fraction over the grid boxes of interest when cloud fraction exceeds 0.05. To a rough

approximation, the two variables can then be multiplied together to give the mean cloud fraction

with altitude for each of these six regions. Each region is an average of many thousands of lidar

forward model and ICESat profiles, once averaged on to a model grid.

To examine the errors on the lidar forward model, the sensitivity of the multiple-scattering
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Figure 5.5: (a) Latitude and height variation of ECMWF model cloud fraction for 15 days from 30/09/2003 0000

UTC to 14/10/2003 2359 UTC under the ICESat track. (b) Cloud fraction from the ECMWF model from the same

time period as (a) but after the lidar forward model had been run and thecloud fraction resampled.
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Figure 5.6: Mean Cloud Fraction from ICESat lidar observations from 30/09/06–14/10/06

.

factor and the lidar ratio only are allowed to vary. However, as can be seen from table 5.2, the

values of the multiple-scattering factor are around the minimum value suggestedby Platt (1973)

and a solution lower that 0.5 would be unphysical. So the multiple-scattering factor within these

experiments was allowed to vary between 0.5 and 0.6. The lidar ratio can varyfrom 10–40 as

noted earlier in section 5.2.3. Examining equation 5.1, it can be seen that a highvalue of the

multiple-scattering factor causes the most attenuation and the smallest value of the attenuated
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backscatter and vice-versa. The highest value of the lidar ratio causesthe smallest value of at-

tenuated backscatter and vice-versa. Hence to assess the errors on the lidar forward model, three

experiments were performed on one day of ECMWF model data (10 October2003, chosen as the

ICESat latitude-altitude analysis showed cloud in many different regions ofthe globe and more so

than any other day). The first experiment was run with lidar ratio of 20, and multiple-scattering

factor of 0.5 (as the lidar forward model); the second had a value of lidar ratio to be 40, and

multiple-scattering factor 0.6; the third had lidar ratio of 10, and multiple-scattering factor 0.5.

The results of this analysis are displayed in figure 5.7. The errors due to varying the multiple-

scattering factor and the lidar ratio are included in this figure. The most striking difference is the

reduction in model quantities following the processing of the lidar forward model. In the polar

regions the low-altitude cloud fraction and frequency of occurrence are substantially reduced by

the model processing. In the equatorial regions there is a reduction of mean cloud fraction and

amount when present at high altitudes, caused by very low ice water contents within the model

that would not be detected by ICESat. At these low latitudes, there is a large reduction in cloud

frequency of occurrence within the lower and mid-troposphere. This is caused by a combination

of clouds beneath the ICESat sensitivity threshold and reduction in the sensitivity of the ICESat

lidar as it is attenuated through the thick ice clouds that are associated with tropical convection in

this region of the atmosphere that occurs in some of the model data.

After processing of the lidar forward model has taken place, the results seen by comparing

figure 5.5 to figure 5.6 and examining figure 5.7 show that the ECMWF model is making a rea-

sonable job of representing the mean cloud fraction, with a few exceptions.There is a slight

underestimate of mean cloud fraction in tropical low clouds. This is most likely due to the lack

of shallow cumulus convection within the model and poor representation of theprocesses caus-

ing convection within the model. In the mid-latitudes and polar regions, the model has too large

a mean cloud fraction within the mid-troposphere and in the vicinity of the equator, the cloud

fraction for high altitude ice cloud is too great by up to 0.15. Within these same regions, the

frequency of occurrence is slightly too high, by around 5%. The modelledamount when present

is also too high for these areas. Both the mean cloud fraction and amount when present for the

cloud in these locations is too large even when the errors on the lidar forwardmodel are taken

into consideration.

The most likely explanation for too large amounts of cloud in these regions is a problem with
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Figure 5.7: Mean cloud fraction (top row), mean frequency of cloud occurrence(middle row) and mean amount

when present (bottom row) for the equatorial latitudes, subtropics and polar regions in each hemisphere. The red solid

line indicates the ICESat lidar measurements, the blue solid line shows the results of the lidar forward model and the

black dashed line shows the ECMWF model cloud fraction before processing of the lidar forward model took place.

The grey regions show the extent of the errors likely on the lidar forwardmodel (see text for error estimation method).

The latitude bands to which each column of plots are referring to is given atthe top of each column.

the ice scheme within the model. Most of the regions where the mean cloud fraction is high are

regions in which we would expect to find ice clouds. Maceet al. (1998) in the Southern great

plains, Beesleyet al. (2000) in the polar regions and Hoganet al. (2001) in the mid-latitudes all

noticed instances where the ECMWF model had too much ice cloud. The resultshere show that

there is is often too much ice present within the higher altitudes. This is most clearly seen by the

higher amount when present in the mid-latitudes above 7 km.

Although the ECMWF frequency of occurrence and amount when present are accurate to
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within 0.05 for most of the lower troposphere beneath 5 km, around the equator the amount when

present is often slightly underestimated by the model. This could be due to one of two reasons,

either the model underestimates the amount of low cloud around the equator orthat the large

amount of ice cloud is attenuating the lidar forward model backscatter sufficiently that some of

the lowest clouds are not detected by the lidar forward model. Although in these regions the re-

trievals have low error in the frequency of occurrence, the results mustbe interpreted with caution

for these regions of the globe. For any region where the lidar forward model is overestimating the

amount of cloud we can be confident that the ECMWF model has a genuine overestimate. How-

ever, where the lidar forward model underestimates cloud, we cannot beentirely certain, unless

there is little cloud detected above it, and therefore the effects of the attenuation are small. In the

majority of cases the model is overestimating cloud, so we can be confident ofthis result.

5.4.3 Land and Sea Comparisons

In order to test how the performance of the model varies over land and sea, model grid boxes

were divided into those over the land surface and those above the sea surface. Theoretically the

model may perform better over the land surface close to where there are observations which it

has assimilated, but there are other factors such as the orographic effects of the land surface, the

heterogeneous variation of the land surface making weather more difficultto simulate. Also, more

satellite data can be assimilated over the sea surface, so the model could potentially perform better

here.

Results from performing the analysis over land surface are shown in figure 5.8 and the results

over the sea are shown in figure 5.9. In both sets of plots the ECMWF lidar forward model

accurately represents the location of most of the features seen by ICESat. There are noticeable

errors in the ECMWF-lidar forward model representation of the cloud fraction, frequency of

occurrence and amount when present over Antarctica; the mean cloud fraction is 0.4 in the model

where the lidar measurements show it to be closer to 0.25 and the frequency of occurrence is

similarly at 0.35 when in reality it is measured to be closer to 0.3. The amount whenpresent is

again too large, in the ECMWF it is shown to be 0.75 but in the ICESat measurements it is closer

to 0.5. This again is most likely due to the ECMWF model having difficulty in representing the

ice cloud. Similar results can also be seen in the northern hemisphere polewards of 60◦, although

the amount of cloud detected by both ICESat and the ECMWF model is much lower at these
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Figure 5.8: Data from the ECMWF model and ICESat lidar over the 15 day comparisonperiod, where the only

points are selected are those above the land surface. (a) ICESat lidar mean cloud fraction; (b) ICESat lidar frequency

of occurrence; (c) ICESat lidar amount when present; (d) ECMWF-lidar forward model mean cloud fraction; (e)

ECMWF-lidar forward model frequency of occurrence; (f) ECMWF-lidar forward model amount when present. The

lowest contour interval in the cloud fraction plots is 0.01.
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Figure 5.9: As for figure 5.8, but for grid point selected that were over the sea only.

latitudes. Observed mean cloud fraction peaks at around 0.15 while the ECMWF model through

the lidar forward model is showing a mean cloud fraction peaking at 0.2; frequency of occurrence

shows the same bias. However, the amount when present at these latitudesis only overestimated

by a very slight amount— the error here is closer to 0.2.

In the tropics and between 10–15 km, the ECMWF lidar forward model over land shows

a large mean cloud fraction that although appears fairly correct, the largest cloud fraction and
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associated frequency of occurrence covers too large an area. Amount when present in this region

is slightly too low by around 0.15, so again cloud can be seen to be modelled morereadily at

these regions than observed in nature. Finally, mean cloud fraction, frequency of occurrence and

amount when present are all overestimated by up to 0.15 by the lidar forward model in the region

between25◦S and50◦S and at most altitudes cloud is present.

Over the sea surface, a similar picture emerges. Tropical ice cloud within theupper tropo-

sphere is too frequent; in the ICESat measurements the frequency of occurrence is around 0.1

between 0◦ and 20◦N and above 10 km, yet in the ECMWF lidar forward model the frequency of

occurrence is closer to 0.4, which reflects in the mean cloud fraction the ECMWF lidar forward

model is showing at these latitudes and altitudes. The amount when present isoverestimated,

but only slightly. In both hemispheres, polewards of 40◦ the frequency of occurrence is overesti-

mated by as much as 0.2 and this causes the mean cloud fraction to be overestimated by a similar

amount. Over much of the region between 20◦ and the pole in each hemisphere, the amount when

present is too high by 0.1–0.15, which is again most likely a problem with the amount of ice cloud

given within the model.

Some of the lowest clouds are represented quite accurately within the ECMWFmodel. Look-

ing at the boundary layer and marine stratocumulus which exists between40◦S to40◦N, it can be

seen that although the mean cloud fraction is too low, the amount when present is only underes-

timated by 0.05, although the frequency of occurrence is again too low in these regions by 0.15,

meaning that the ECMWF model is having some difficulties in representing the boundary layer

clouds that exist over the ocean.

Generally, the performance of the model appears from these plots to be approximately the

same over both locations. However, in section 5.4.5 we shall examine the skill ofthe model over

each location as well as the overall skill and give different skill scoresfor both land and sea, which

will help determine whether the model is more accurate over land or over sea.

5.4.4 Backscatter Comparison

In addition to assessing the ECMWF model’s performance with mean cloud fraction, frequency of

occurrence and amount when present, the analysis can be extended to see how well the ECMWF

model predicts the backscatter that would be observed by the ICESat satellite. This can be done by

comparing the mean backscatter over time for different locations around theglobe. In addition, a
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new variable, ‘backscatter when present’ (represented by the symbolβWP) can be derived. This

is analogous to the amount when present variable used earlier; the backscatter when present vari-

able consists of the mean backscatter of all the detected cloud pixels, while themean backscatter

includes all pixels, including those which have no cloud. Hence, for this reason, it should be

noted that mean backscatter can drop beneath the ICESat sensitivity threshold, butβWP should

remain above the sensitivity threshold.

Analysis of the mean backscatter andβWP has been completed for the same 15-day study

period as the cloud fraction climatology analysis. The results have been binned into six latitude

bands as before and are shown in figure 5.10. Errors in the lidar forward model have been included

on the plots and are useful in determining the validity of the results. In general, the backscatter

when present derived from the ECMWF lidar forward model is closer to the measurements from

ICESat than the mean backscatter; this is most noticeable equatorward of 30◦ and above 10 km

in altitude. A likely explanation is that this effect is due to the ECMWF model overestimating the

frequency of occurrence of the clouds in these regions, noted in sections 5.4.2 and 5.4.3.

In different regions the lidar forward model results show better agreement with the measure-

ments from ICESat, yet in other regions there are noticeable differences. The high-altitude ice

cloud equatorward of 30◦ in the lidar forward model results shows a higher backscatter than

expected, which is too high even when the errors on the lidar forward model are taken into con-

sideration. TheβWP in these regions is again too high, although within the bounds of error,

this is in agreement with the ICESat measurements. Polewards of−60◦, it appears that the lidar

forward model is actually underestimating the backscatter from ICESat. However, referring back

to figures 5.8 and 5.9, it can be seen that there is little model cloud above 12 kmbut cloud ex-

ists within the ICESat measurements to 15 km over the land. When backscatter when present is

examined, there is a better agreement, only a slight underestimate most likely caused by the ice

cloud being too thin in the model, while ICESat is detecting a thicker ice cloud.

In addition to the high backscatter in the ice cloud equatorward of 30◦, there is also too large

a backscatter and backscatter when present at lower altitudes beneath 3km. This implies that

although the model cloud due to convection and the boundary layer has too low a frequency of

occurrence in the land and sea comparison (section 5.4.3), where it doesoccur, the backscatter is

actually too high. As we have seen from earlier comparisons, the amount when present in these

regions is roughly correct (possibly slightly too large over the ocean surface), so this result could
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Figure 5.10: Plots of mean backscatter (top row) and backscatter when present (bottom row) taken from ICESat and

the ECMWF model over the 15 day study period. The latitude region of eachprofile is denoted at the top of the plot.

The blue dashed lines on each plot show the error in the backscatter defined from the error analysis, corresponding to

the edges of the grey region in figure 5.7.

be due to a higher value of effective radius for liquid water clouds in the model. The sensitivity

to effective radius will be examined later in section 5.4.6. Elsewhere in the lidarforward model,

the backscatter and backscatter when present is a fair representation of the observations from the

ICESat lidar.

5.4.5 Skill Scores

The comparisons of mean cloud fraction, frequency of occurrence and amount when present

evaluates the climatology of the model. In addition, we can evaluate the quality of individual

forecasts using skill scores. This is done simply by comparing each model grid box of cloud
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fraction data with each point of ICESat data averaged on to the model grid.Using a cloud fraction

threshold of 0.05, that grid box can then be determined as a “hit”, a “miss”, a“false alarm” or a

“correct rejection” as shown in Table 5.3.

Many different skill scores have been developed for cloud fraction evaluation within models.

Maceet al. (1998) and Milleret al. (1999) used hit rate, threat score, false alarm rate and proba-

bility of detection. Palmet al.(2005) defined their own skill score by subtracting the misses from

the hits and dividing by the total pixels. However, a good skill score will have a low dependence

on the frequency of occurrence and a random (no skill) forecast willalways get a low score, close

to zero. Hence, this study will concentrate on two more useful skill scores, the equitable threat

score, (ETS), used by Illingworthet al. (2007) and the odds ratio, (θ; Stephenson, 2000), defined

as follows:

ETS =
A − (A + B)(A + C)/N

A + B + C − (A + B)(A + C)/N
(5.4)

θ =
AD

BC
(5.5)

The equitable threat score removes any points that might have occurred due to chance, with

random forecasts having a score of zero and one where the ECMWF lidar forward model agrees

perfectly with ICESat having a score of 1. The odds ratio is also useful, however it is more

common to take the natural log of the odds ratio for each point, as the linear odds ratio can vary

over several orders of magnitude. The log of odds ratio gives a zero score for random noise, but

tends to break down where N is small, as large variations can occur inθ. The equitable threat

score should therefore be more reliable at showing model performance inareas where there are

only a few points. However, for a random forecast where equal numbers of A, B, C and D are

recorded, the odds ratio will be one and the log of odds ratio will also be zero.

Figure 5.11 shows both skill scores for the different latitude regions. The results from both

skill scores show that the ECMWF model is most skillful within the southern hemisphere mid-

latitude storm tracks and is least skillful within the equatorial low-altitude regions. This is because

the equatorial regions have strong convection which is not accurately forecast within the model.

The earth’s surface within the southern hemisphere storm tracks is mostly made up of sea and

is more uniform in nature and hence doesn’t suffer from the same problems in representing the

small-scale convection observed over the land.

Both sets of scores show an increase in skill as we progress from the surface of the Earth to
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ICESat grid point full ICESat grid point empty

Model grid point full Hit False Alarm

(A) (B)

Model grid point empty Miss Correct Rejection

(C) (D)

Table 5.3: Definition of skill score parameters, the letters denote the symbols used to represent these variables in

the skill score equations. An extra variable,N , is the sum ofA, B, C & D. This follows table 2.2, but is repeated here

for clarity.
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Figure 5.11: Figures showing the latitude (grouped into bands of 30◦ width) and height variation of the equitable

threat (top row) and log of odds ratio (bottom row) scores for the ECMWFmodel, after the lidar forward model has

been run. The black line represents all data; the blue line shows the scores for data above the sea surface only and the

red line shows scores for the data above the land surface only.
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mid-altitude regions around 5–10 km. This is most likely due to the model being ableto success-

fully produce higher cloud, which is generally associated with large-scalefeatures, but having

difficulty in resolving the small-scale boundary layer and convective cloudat lower altitudes.

This could also be a sampling feature where high, thick ice clouds obscure the lower clouds and

in order to get good skill in a profile, both the low and high ice clouds need to be right.

At mid-altitudes (5–10 km) there are more larger-scale features present, due to a lot of the

cloud being associated with transient weather systems or large-scale features. Hence the skill

score is better. From this altitude upwards, the log of odds ratio score shows an increase in the

skill of the model.

The equitable threat score gradually tends to fall as we pass through the highest cloud bands—

the gradually thinner ice clouds. Skill scores are generally low within the tropical bands (equa-

torward of 30◦) above 12.5 km and for polar clouds tend to drop off sharply above 10 km. This

is most likely due to the model incorrectly representing cloud, which is not in theobservations as

discussed earlier. However, due to the smaller number of points included within the study from

these regions, these results are less robust. At higher altitudes, as the number of cloud points

within both ICESat and the ECMWF lidar forward model decrease, the two scores produce dif-

ferent values of skill which may be hard to interpret, but at altitudes from 5–10 km, the results of

the skill scores should be fairly robust.

5.4.6 Sensitivity to Effective Radius

The results of equation 5.1 are sensitive to the values of the water contents (ice and liquid), the

effective radii of liquid and ice particles assumed, the lidar ratio and the multiplescattering value

assumed. As mentioned earlier, the water contents and effective radii aredetermined directly from

the ECMWF model assumptions; as this study intends to compare this model to ICESat, should

the values of effective radius and water content be wrong, it is a problem with the ECMWF

model parameterizations and not the lidar forward model. However, it is of importance to test the

sensitivity of the results to changes in effective radius as a reduction in effective radius may lead

to less ice cloud in the model, which was noted in sections 5.4.2 and 5.4.3 or a reduction in the

backscatter of tropical clouds below 3 km, which was seen to be too high in section 5.4.4.

In order to test the lidar forward model response to changes in effective radius, two simple

experiments were performed: one with both liquid and ice effective radius doubled and the other
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with liquid and ice effective radius halved. Results from both experiments are shown in two fig-

ures; figure 5.12 shows the changes to mean cloud fraction, frequencyof occurrence and amount

when present, while figure 5.13 shows the sensitivity in the backscatter andbackscatter when

present.

Changing the effective radius makes changes to ice phase in a differentway to the liquid

phase. Referring back to equation 5.1 we can see that the equation is made up of two forms, the

α within the exponential reducing the backscatter and theα outside the exponential increasing

the backscatter. For ice clouds, the attenuation term is small when compared tothe attenuation

by liquid clouds and the terms outside the exponential. Hence a decrease in effective radius

will lead to an increase inα (following equation 5.2) and as the term within the exponential is

small, the backscatter will increase and more cloud will be detected within the ICESat sensitivity

threshold. In the liquid water case, the value of extinction coefficientα is large with respect to

other phases and the exponential term will dominate. A decrease in effective radius will lead to

more attenuation and a smaller backscatter, meaning less cloud is detected. Hence the sensitivity

lines in each plot cross at some altitude within the profile.

From the backscatter plot shown in figure 5.13, the sensitivity to effectiveradius is greatest

within the ice cloud phase towards the top of the atmosphere. However, thereis generally more

sensitivity to the ice phase; this is probably due to the larger uncertainty in effective radius of ice

when compared to liquid water. If we were to assume that most of the cloud observed between

−60◦ and−90◦ latitude was ice it can be seen that the sensitivity to backscatter is large at 5 km.

In the polar regions in theβWP measurements, where there is little sensitivity variation with

altitude. Small backscatter andβWP sensitivity is noted equatorward of 30◦ latitude within the

boundary layer and small convective cloud, which suggests that the cloud in these regions could

have too high a backscatter noted in section 5.4.4 due to an incorrect value of effective radius, but

an incorrect value of liquid water content cannot be ruled out in these areas.

In figure 5.12, the changes in the extinction fed back into the amount of cloud; again the

sensitivity lines cross in the middle of each profile as a decrease in ice effective radius leads to

more ice cloud coming within the ICESat sensitivity threshold and in the liquid phase, effective

radius decrease leads to more attenuation and less cloud being detected. Sensitivity to mean cloud

fraction and amount when present is generally greater in the ice phase clouds, apart from within

the storm tracks, where the greatest sensitivity is within the mixed phase clouds— this is likely
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Figure 5.12: Plots of mean cloud fraction (top row), Frequency of occurrence (middle row) and amount when

present (bottom row) from the ECMWF model after running the lidar forward model (blue line) and showing the

sensitivity to changes in effective radius. The points where the effective radius is halved are shown as red dashed lines

and those where the effective radius is doubled are shown as black dashed lines.

to be due to the thickness of the ice cloud in these regions, and increases in effective radius lead

to decreases in the amount of attenuation by the thick ice clouds and hence more lower cloud is

visible. Apart from above the antarctic, frequency of occurrence is very insensitive to changes

in effective radius. Over the antarctic, the frequency of occurrenceis affected as the changes

in effective radius allow more or less cloud to fall within the ICESat sensitivitythreshold and be

detected. Elsewhere, changes in frequency of occurrence will occur when the cloud is so optically

thick that it totally extinguishes the lidar signal. Reducing the optical thickness by means of a

change in effective radius will increase the frequency of occurrence of some low clouds. In all

cases, the changes in effective radius do not alter mean cloud fraction or amount when present by
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Figure 5.13: Plots of backscatter (top row) and backscatter when present (bottom row) taken from the ECMWF

model (blue line) and showing the sensitivity to effective radii. The points where the effective radius is halved are

shown in red dashed lines and those where the effective radius is doubled are shown as black dashed lines .

more than 0.05, which is less than many of the errors noted in cloud fraction and amount when

present in section 5.4.2; so it can be concluded that the water contents or cloud fractions of the

ice and liquid clouds are the largest contributors to the apparent overestimate in cloud fraction.

5.5 Conclusions

This study has developed techniques to compare a forecast model with attenuated backscatter

from global lidar observations from space and demonstrated their use on15 days of ECMWF

model data. The method of using model output to derive the quantities observed by the instru-

ments are in this case far more satisfactory than trying to use the instrument to derive the model

variables. It is important for any study which compares radar or lidar from space to remove any

clouds from the model which would not be seen by the instruments making the observations. Pre-

vious studies using lidar to model comparisons did not take account of the lidar attenuation may

have produced misleading results.

Comparison has been made between the ECMWF global model and observations from the
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ICESat lidar. They have shown that the model has a tendency to get most features of the mid-

latitude storm tracks correct, although there is too much ice cloud within the model,which will

reduce the skill score of the model as well as affecting the way the model behaves towards incom-

ing and outgoing radiation. If the model does not have the correct amountof ice, this could lead

to incorrect representation of the radiation budget of the model and although the ECMWF model

is not a climate model, these problems within a climate model could potentially lead to incorrect

estimates of temperature in future climate.

The model also has problems in representing the low-altitude clouds in the equatorial regions.

This is probably a combination of two reasons, the model incorrectly representing the shallow

convection which is taking place, particularly due to its stochastic nature. Also, the processing of

the lidar forward model data will remove some of the low equatorial cloud due toextinction of the

lidar signal by the large amount of ice present within the model. Later versions of the ECMWF

model have reduced the amount of ice (A. Tompkins, Personal Communication) and hence once

the data for this period is available, it should be possible to rerun the lidar forward model to give

a more accurate prediction of the representation of the lower clouds that mayhave previously

been obscured by the attenuation from the high altitude ice clouds. Results show that the model

performs in a similar manner over the oceans to over the land, but the problemwith the increased

amount of ice cloud is more prevalent over the ocean. Tests have also shown that the model has

only a 10% error due to the largest unknowns within the lidar forward model:the lidar ratio and

the multiple-scattering factor.

The performance of the model has been examined over land and sea regions. Comparison

of cloud fraction indicate that there is too much ice cloud over both surfacesin the tropics, that

the model has too high a frequency of occurrence within the ice cloud regions, most notably

around the poles and the upper-level tropical ice clouds. Over the sea,boundary layer and marine

stratocumulus clouds have too low a frequency of occurrence, particularly in the tropics. Over the

land surface, model amount when present is too large, particularly in the polar regions, possibly

due to thick ice cloud. Skill scores indicate that the model performs the best over the land surface,

but the skill of the model reduces as altitude decreases. The equitable threat skill score is a robust

method suitable for cloud fraction comparisons and is not particularly sensitive to the number of

points included in the calculation of the score; log of odds ratio is generally robust, but has no

upper bound and is not as accurate when only a few data points are considered.
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Backscatter and backscatter-when-present comparisons have beenperformed. In most cases

the backscatter produced by the lidar forward model is accurate within the error bounds of the

model; however, the backscatter is too high within the tropical high-altitude ice clouds and within

the tropical and sub-tropical marine and boundary layer stratocumulus clouds observed around

the equator.

Sensitivity studies show that doubling or halving the ice cloud effective radius makes a change

of up to 5% in the cloud fraction and amount when present. Since this is not enough to change

the amount of ice cloud within the model to values equivalent to those observed by ICESat, it

is likely that the model is producing too much ice cloud, rather than an error in effective radius.

These sensitivity studies also reveal that the backscatter in the tropical boundary layer and lower

free atmosphere liquid clouds is too high and this could be due to a high effective radius within

the liquid cloud phase.

Comparison of the ECMWF model to lidar observations is an essential precursor to systems

involving the data assimilation of lidar data into a forecast model. In this case, themodel can be

used to predict backscatter from the laser and then inaccuracies in backscatter can be satisfied by

changing the liquid or ice water contents or cloud fraction to allow the two backscatter signals to

agree. This method can also be used for testing new cloud physics schemeswhich appear within

the model.

5.6 Future Work

Although this study has shown the value of active remote sensing from space, it has concentrated

on only a few days of data. Longer periods of lidar data is now available from the CALIPSO lidar,

which is part of the A-Train of satellites (Vaughanet al., 2004). This data will be over longer time

periods and hopefully should not suffer from the laser deterioration problems that have affected

long-term measurements with the ICESat satellite. However, due to the strong attenuation of

liquid water clouds from the lidar, measurements by radar from space, such as CloudSat will be

more suited to model evaluation for the thicker ice clouds. However, shorterwavelength radars

or lidars could be used to sense the thin ice clouds. Working together with longer wavelength

radars (Hogan and Illingworth, 1999), the vast majority of clouds within theatmosphere could be

detected, allowing for fairer evaluation of models of the earth’s climate systemand in principle
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leading to fewer inaccuracies of forecasts of future climate. This work can lead on to assimilation

of cloud properties into numerical weather prediction models, which should improve the quality of

cloud forecasts. Further radar measurements will improve our understanding of future climate and

the cloud feedbacks on future climate. Simulators are currently being developed by the Met Office

and elsewhere for CloudSat (for example Bony-Lena (2006) and Stephens (2006), discussed at

the ECMWF workshop on cloud parameterizations) and this work has proved that the simulation

method works and will be useful in these future studies.
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CHAPTER SIX

Summary, Conclusions and Future

Work

Clouds are an important part of the radiation budget of the Earth, yet theyremain one of the largest

uncertainties within the climate system, with many numerical models disagreeing on thesign and

magnitude of the change in cloud radiative forcing in the future climate system. This thesis has

examined use of the simulation (or model-to-observations) method for evaluating different aspects

of how clouds are represented within numerical models.

6.1 Summary of Findings and Conclusions

As part of this thesis, simulation has been used for two separate experiments. Firstly, it has

been used to convert the cloud scheme output from the Met Office model into Doppler radar

observations of the clouds above Chilbolton, to examine where the model may have errors in the

evaporation of ice. In the case of the Doppler velocity, it would have beenvery difficult to derive

the model parameterized ice particle fall speeds and hence simulation has proved of use in this

area.

Secondly and arguably the most useful application of the simulation method hasbeen made in

developing a lidar forward model to predict observations from the ICESat lidar using the ECMWF

model. This allows a fair comparison between the ECMWF model and the ICESatlidar and

the findings will be looked at in detail in section 6.1.2. Although a comparativelynew field

for cloud studies, simulation has applications in the data assimilation of radar variables, which

are different in nature from the variables of cloud fraction and water contents used by models to

represent clouds. It also has practical applications in evaluating models;for example the change of

a parameterized ice particle spectrum within the model can be evaluated by comparing simulated

radar or lidar data to the corresponding observations.
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6.1.1 Evaporating Ice within Operational Models

In chapters, 3 and 4, 94-GHz Doppler cloud radar measurements have been used to see how

well the evaporation zone beneath ice cloud is represented in operationalmodels. The work was

inspired by Forbes (2002) who found in his thesis (subsequently published; Forbes and Hogan,

2006) that the depth of the evaporation of ice (defined as the change in icewater content from the

maximum within the profile to 10% of this maximum value in the area beneath the maximum)

was 2–3 times the depth of that in radar observations. Observations made withDoppler radar

(not available at the time of Forbes’ thesis) has shown that the depth of the evaporation zone in

the Met Office model is on average, 2.55 times that observed by IWC measurements calculated

using radar reflectivity and model temperature. This feature is not uniqueto the Met Office

model, with several operational models from the Cloudnet programme all showing increased

evaporation depth of 2–3 times the radar observations. Various candidates for the increased depth

of the evaporation zone within the Met Office model have been considered. In addition, a simple

numerical model of ice evaporation has been constructed, allowing a realistic representation of ice

evaporation within the Met Office model, but with a high resolution grid. Following the results of

these two chapters, the following possible causes of the error are discarded:

• The model parametrized fall velocity being too high. Simulations of model parameterized

fall velocity show that in the middle of the cloud (where the effects of the vertical air

velocity are small), the modelled particle fall speed is around 30% too low.

• The lack of turbulence in the model at ice cloud altitudes. Measurements of turbulence and

evaporation zone depth show no evidence of any correlation.

• The parametrized density of the ice particles. When simulating radar measurements using

a wide variety of ice particle density functions suggested by recent studies, the depth of the

evaporation zone within the Met Office model is found to change by less than10%.

The humidity gradient within the evaporation zone or immediately beneath the ice cloud is

much smaller in model profiles than in radiosonde ascents from Larkhill. The drop off from moist

air with 100% relative humidity to dry air with 20–30% relative humidity within the radiosonde

observations takes place in a shallow layer with depths of around 500 m. Studies of the layer

mean evaporation rate show that the model’s parametrized evaporation rate isabout one third of
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that derived using radar observations and model temperature. The parametrized evaporation rate

equation used in the parameterization scheme is based on well-established cloud physics and is

dependent on the temperature, humidity, particle diameter and pressure. The error in evaporation

rate is thought to be due to incorrect humidity as unrealistic changes in the other parameters would

be required. The sharp drop in humidity would take place over the space ofone model grid box

and would be represented as a step function, but the numerics of the modelare presumably too

diffusive and so the sharp humidity gradient cannot be maintained.

As it is difficult to test the problems within the Met Office model, this thesis has introduced

the ELePhANT model, an explicit microphysics model which has tested the hypothesis that the

deeper evaporation zone depth in the operational models were due to the models incorrectly rep-

resenting the sharp drop in humidity within the evaporation zone. This containsthe parameteri-

zations of the Met Office model but with high resolution (5 m grid spacing), toallow any sharp

changes in humidity gradient that take place over a few hundred metres to beaccurately repre-

sented. It has been used both to examine the sensitivity of the Met Office model to cloud and

thermodynamic variables relevant to cloud formation, and to represent evaporation from radar

and radiosonde case studies.

The evaporation zone depth is most sensitive to changes in the humidity gradient. If the

humidity gradient increases from 0.02% m−1 then the evaporation zone depth decreases from 1

km to 500 m. Evaporation depth is also sensitive to changes in the temperature profile, due to

the effect on the specific humidity within the evaporation zone. Changes in theinitial ice water

content, made by changing the equivolumetric mean diameter (D0) of the ice particles are also

important. Doubling the value ofD0 leads to an increase in the evaporation depth by 200 m.

The evaporation zone depth is not sensitive to changes in pressure or changes in ice water

content made by changing particle number concentration. Changing the starting pressure from

500 to 1000 mb changed the depth of the evaporation zone by less than 100 m.

The ELePhANT model can predict evaporation depths for both radar and model profiles of

ice water content to within 200 m of those observed by the radar. Systematic inaccuracies occur

from the differences in grid spacing between the models, the parameterization scheme differences

and that the sonde may have a lag of a few seconds when it passes from dry to moist air. Random

inaccuracies may occur when the profiles of humidity may not be from the samecloud the radar

is seeing over Chilbolton, depending on the direction of the wind and the sonde drift.
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The results from the ELePhANT model show that if the Met Office model hadthe correct

humidity gradient it could accurately represent evaporation zone depths. The evaporation zone

depth is more sensitive to humidity gradient changes than changes in any other variable and hence

the results from the ELePhANT model give strong evidence that the shallowhumidity gradient

within the evaporation zone in the Met Office model causes the deeper evaporation zone in this

model.

There has been some consideration (Westbrooket al., 2007a) that the Met Office model may

(by assuming all particles are spheres) be underestimating the capacitanceof the evaporating

ice and hence affecting the evaporation rate. This needs to be tested in further studies with the

ELePhANT model, but experiments show that using a lower capacitance, yet keeping all other

factors the same, would actually increase the depth of the evaporation zonein the model to greater

depths than with the present scheme, and that humidity gradient is still the most obvious cause of

the deep layer within the Met Office model.

6.1.2 Assessment of the Performance of the ECMWF model using ICESat

Chapter 5 has developed techniques to compare models with attenuated backscatter from global

lidar observations from space and demonstrated their use on 15 days of ECMWF model data.

Although previous authors (Milleret al., 1999; Palmet al., 2005) have examined the performance

of the cloud scheme within the ECMWF model using spacebourne lidar, they have not accounted

for the attenuation of the lidar signal when making their comparisons. While this may be good for

thin ice clouds, where extinction of the lidar signal takes place, an unfair comparison of the model

may result. Comparison has been made between the ECMWF global model and observations from

the ICESat lidar. Fifteen days of ICESat and model data have been examined, which is equivalent

to over 9 million kilometres of ground-based radar data and assuming a mean wind speed of 20

m s−1, is around 14 years of observations made at a mid-latitude ground-basedstation such as

Chilbolton. Using the lidar forward model, the following conclusions can be drawn:

The method of simulation (in the form of a lidar forward model) is in this case far more

satisfactory than trying to use the lidar data to derive the model variables. Importantly, the com-

parison removes any clouds from the model which would not be seen by theinstruments making

the observations.
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• Results of mean cloud fraction, frequency of occurrence and amount when present have

shown that in general the model has a tendency to get most features of themid-latitude

storm track resulting in an error in the frequency of occurrence in the high altitude ice

cloud in the tropics of 10–15% and over the polar regions of up to 15%. Thislarge amount

of ice will change the model behaviour towards incoming and outgoing radiation and could

potentially affect surface temperature forecasts.

• The model also has problems in representing the low-altitude clouds in the tropics. This

is probably a combination of two reasons, the model being able to accurately represent the

shallow convection which is taking place, and the processing of the lidar forward model

data removing some of the low equatorial cloud due to extinction of the lidar signal by the

large amount of ice present within the model. It is likely that only one of these errors is

present, but the at this stage it is not possible to say which one.

• Tests have also shown only a 10% error in the comparison due to the largestunknowns

within the lidar forward model: the lidar ratio and the multiple-scattering factor. When the

effects of a reasonable range of values of the forward model are included, there is very little

change in the results.

• Comparisons into the performance of the model have been carried out over land and sea

regions, and results for each region have been derived separately.Cloud fraction evaluations

indicate that there is too much ice cloud over both surfaces above the tropicsand the model

has too high a frequency of occurrence within the ice cloud regions, mostnotably around

the poles and the upper-level tropical ice clouds.

• Over the sea, boundary layer and marine stratocumulus clouds have too lowa frequency of

occurrence, particularly in the tropics. There is evidence that misrepresentation of mountain

ranges affect boundary layer clouds (Xuet al., 2004) and it could be that this is the case

with the ECMWF model. Over the land surface, model amount when present istoo large,

particularly over the polar regions, possibly due to thick ice cloud that may bepresent in the

model. Evidence from Beesleyet al.(2000) produces similar results and it can be concluded

that generally, the ice cloud scheme within the model needs revision as the radiation budget

of the polar regions, an area of importance to climate due to the melting of the ice caps will

not be accurately represented within the ECMWF model.
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• Skill scores of equitable threat score and log of odds ratio have been calculated for the

model performance and indicate that the model performs the best over the land surface,

but in general the skill of the model reduces as altitude decreases. The equitable threat

skill score is suitable for cloud fraction comparisons and is not particularlysensitive to the

number of points included in the calculation of the score; log of odds ratio is generally

robust, but has no upper bound and is not as accurate when only a fewdata points are

considered.

• Backscatter and backscatter-when-present comparisons have beenmade using model data.

In most cases the backscatter produced by the lidar forward model is accurate within the

error bounds of the model; however, the backscatter is too high within the tropical high-

altitude ice clouds and within the marine and boundary layer stratocumulus clouds observed

around the equator to 30◦ north and south. These comparisons prove useful in validating

the way the model will behave to short wave radiation.

• Sensitivity studies show that doubling or halving the ice cloud effective radius makes a

change of up to 5% in the cloud fraction and amount when present. Since thisis not

enough to change the amount of ice cloud within the model to ICESat levels, it islikely

that the model is producing too much ice cloud. These sensitivity studies also reveal that

the backscatter in the equatorial boundary layer and lower free atmosphere liquid clouds is

too high and this could be due to a high effective radius within the liquid cloud phase.

Comparison of the ECMWF model to lidar observations is an essential precursor to systems

involving the data assimilation of lidar data into a forecast model. In this case, themodel can

be used to predict backscatter from the laser and then inaccuracies in backscatter can be satisfied

by changing the ice water contents. This method can also be used for testing new cloud physics

schemes which are being considered for inclusion within the model.

6.1.3 Spacebourne Radar and Lidar Cloud Climatology

In chapter 5, 15 days of ICESat data were used to obtain global averages of cloud location and

amounts. With the launch of the CALIPSO lidar in 2006, this study could potentiallybe extended

to provide long-term climatologies of clouds for use in validating climate models, aswell as

advancing our knowledge of global clouds where current observations are not always available.
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However, one of the key issues raised in chapter 5 was that the lidar signal is attenuated (and

in some cases extinguished) as it passes through thick cloud. Although this study has made efforts

to account for attenuation to be fair to the model, one obvious shortfall of global spacebourne lidar

measurements will be that low altitude clouds are not always detected.

However, CALIPSO is part of the A-train of satellites along with the CloudSatradar, which

orbit the Earth along the same track, a few minutes apart. Hence, combined radar and lidar obser-

vations of the same cloud profiles are now available. The synergy of the twoinstruments allows

both the detection of liquid cloud by the radar, (which the lidar will not detect) as well as very

thin ice cloud (which the radar will not always detect). So although on its own, lidar measure-

ments will not be able to validate every type of model cloud, the two sets of observations coupled

together will allow very powerful evaluations of cloud climatology and model performance in the

future.

6.2 Future Work

Work in this thesis and climate science has shown the need to improve the way clouds are repre-

sented within GCMs, to constrain the error on estimates of future temperature due to poor cloud

representation.

The first step is to see which GCMs are performing well and which have large errors. Al-

though the Cloudnet programme (Illingworthet al., 2007) has gone some way towards evaluating

European models and is undergoing expansion to include ARM (AtmosphericRadiation Measure-

ment) data from the USA; the inclusion of further models to this programme shouldbe encour-

aged. Using data from multiple ground-based studies, the operational models can be evaluated to

examine which ones perform well over a long period of time at individual locations.

In addition, global profiles of clouds have been made from space by ICESat and are currently

being made by the CALIPSO lidar and the CloudSat radar (Stephenset al., 2002), which form

part of the A-train of satellites. In future more such satellites are planned to be launched, such

as the EarthCare satellite (Bezyet al., 2002), which will have radar and lidar on board the same

platform and is scheduled for launch in 2012. This will be of particular usein examining the

performance of GCMs in the areas where radar and lidar observations are difficult, such as the

polar regions, tropical upper troposphere and over the oceans, where few cloud observations exist.
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With the extra measurements, the extraction of observation and model profilesof cloud properties,

similar to that with the ECMWF model in chapter 5 can be used and a Cloudnet-styleprogramme

on model evaluation from space can be set-up. This should include all global GCMs available for

evaluation, in order to reduce the error in how clouds are represented.

In addition, conclusions may be drawn for the short-term development of the studies in this

thesis. Section 6.2.1 at the ice evaporation problem, section 6.2.2 examines the further develop-

ments in the ECMWF model evaluation and section 6.2.3 looks at how simulation may develop

in the future.

6.2.1 Ice Evaporation

As noted in chapter 4, Westbrooket al.(2007a) have found that the Met Office may underestimate

the capacitance of ice particles. The spherical assumption could be relaxed within the ELePhANT

model and using the work of Westbrooket al. (2007a), a re-run of the ELePhANT model can be

attempted with the new particle shapes to see how the results are affected.

In addition, tests using the ELePhANT model can be made to determine a critical grid res-

olution threshold, where any grid spacing greater than this threshold wouldresult in the model

being unable to represent the humidity gradient properly. The results could, in principle be used

to change the grid resolution of the Met Office model in future versions.

Although evaporation has been studied using four models from across Europe in chapter 3,

only the Met Office parameterization has been studied in detail. The ELePhANT model could be

run with the ECMWF or Ḿet́eo-France parameterization scheme to assess where these models

may have problems in representing evaporation.

6.2.2 ICESat and the ECMWF model

More recently, the ECMWF model has reduced the amount of ice in its cloud scheme (A. Tomp-

kins, personal communication) and therefore a rerun of the analysis of the ECMWF model on a

later time period (from early 2005 onwards) would be of use. However, there have been problems

with the availability of good quality ICESat data from a later period; the signal strength of the

lasers has reduced somewhat while the satellite has been in orbit. If good quality ICESat data is

available, this comparison should be possible. However, as an alternative, attenuated backscatter
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data of good quality is now available from CALIPSO and could be used for the evaluation. It

would be particularly of use to see how the ECMWF model represents lower-level clouds once

the amount of ice and hence the amount of attenuation is reduced at upper levels.

In addition, the work can easily be extended to include other operational models, such as

the Met Office global model. As the ECMWF model is not specifically a climate model, it is

difficult to specifically use the results from chapter 5 to show how climate modelsare performing.

Instead, the ECMWF model cloud scheme can be improved and then used as the basis as a cloud

scheme for a climate model, such as the RACMO model examined in chapter 3. Knowledge of

the major pitfalls in cloud schemes can then be used to write better cloud schemes and hence

this methodology can directly affect the predictions of future climate and reduce the uncertainty

caused by clouds.

6.2.3 Simulation

This thesis has undoubtedly proved the use of simulation in future work and itis useful to de-

velop the method for future spacebourne missions. This is currently being done for CloudSat

(Bony-Lena, 2006; Stephens, 2006; Haynes and Stephens, 2006,document in preparation) and

CALIPSO (Bony-Lena, 2006) and should be attempted for EarthCARE before its 2012 launch.

They are valuable in model evaluation studies, particularly for lidar studies where signal attenua-

tion takes place and for high-frequency radar studies (e.g. 94-GHz) where some signal attenuation

takes place in thicker water clouds.

In addition, simulation of ground-based radar signals should continue from the methods devel-

oped by Chiriacoet al. (2006) and applied to the Cloudnet programme. This will enable accurate

comparisons of models in a similar way to the methods of Hoganet al. (2001), who removed ice

cloud that could not be seen by the radar. Simulation would offer an alternative method to this, as

well as testing the model parameterization schemes in their effectiveness at reproducing the ob-

servations. This would give additional insight to the cloud model comparisons already undertaken

(Illingworth et al., 2007).

In addition, simulation can be used for data assimilation purposes. Work in variational re-

trievals are already being done in the radar group at Reading using CloudSat data (Delanöe and

Hogan, 2007, document in preparation) and could potentially be extendedto a combination of

CALIPSO and CloudSat data, EarthCARE after its 2012 launch and futureCloudnet work. The
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simulated radar and lidar signals can be used to make a comparison with the observations and

the results applied into model cloud schemes. This should allow more accurate representations of

clouds for NWP models.

Due to the increasing number and complexity of data assimilation methods, more variables are

set to be assimilated into operational models and hence simulation has a positive outlook for the

future. As we continuously wish to examine model performance, simulation provides scientists

the only way to represent radar and lidar signal attenuation, and hence the most accurate tests

of model performance. This study has barely scratched the surface ofthe simulation technique,

which can be adapted for many different instruments, but is especially useful for radar and lidar.

Simulation methods should be used in many future studies and would be especiallyrelevant within

the Cloudnet programme, as it expands to evaluate more models with more radardata. The results

of further published simulation experiments are eagerly anticipated.
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ACTIVE REMOTE SENSING The detection of an object’s properties at a distance

by sending out electromagnetic or sound waves from a transmitter

and receiving them some time later.

AEROSOL An airbourne solid or liquid particle which may be of natural or an-

thropogenic origin and of size of the order of micrometres. These

can be detected by somelidar wavelengths.

AMOUNT WHEN PRESENT The meancloud fraction detected byradar or lidar

or observed in a model grid box, with the condition that the mean

grid box cloud fraction is above a certain threshold (usually 5%,

but sometimes 50%).

ATTENUATED BACKSCATTER Thebackscatterobserved by a lidar, including a

transmission term for theattenuation of the lidar signal:

β′ = α
s exp

[

−2η
∫ r
0 αdr

]

, whereβ′ is the attenuated backscatter,

α is theextinction coefficient, r is the range from the lidar andη

is themultiple-scattering factor.

ATTENUATION The loss of aradar or lidar signal as they pass through a dense

medium, such as cloud, atmospheric constituents or rain.

BACKSCATTER Similar to Reflectivity factor, the backscatter is a measure of the

signal returned to alidar and can be expressed in linear or loga-

rithmic form. It contains information about the target and is related

to properties of the target.

BACKSCATTER WHEN PRESENT ( βWP) Analogous to Amount When

Present, backscatter when present is the mean attenuated

backscatter, ignoring zero values from the calculation.

BINARY SKILL SCORE SeeSkill Score
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CALIPSO Acronym for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation, launched in April 2006. This is a 2 year spacebourne

lidar mission, with one of its aims to monitor clouds.

CAPACITANCE Making an electrostatics analogy, capacitance is a variable which

refers to the ability of a particle shape to allow diffusion and evap-

oration of water vapour on to its surface. The highest values are for

spheres, with capacitance decreasing for different particle habits.

CLOUD FRACTION The fraction of cloud filling a model grid box, defined in terms

of its volume or area in 3 dimensions. This is different from cloud

cover, which is the fraction of a model grid box filled with cloud

when observed from beneath.

CLOUDNET A European experiment using ground-based cloudradar andlidar

to evaluate properties of clouds in operational models.

CLOUD PHASE Referring to whether clouds are composed of liquid water, ice or

a combination of the two. Cloud phase of 1 is totally liquid; 0 is

totally solid ice.

CLOUDSAT Launched on 28 April 2006, this is a satellite with a cloud profiling

radar on board, which is making orbits of the Earth and able to

observe snapshots of clouds.

DEPTH FACTOR A variable introduced for comparing model andradar evapora-

tion zonedepth. It is simply the ratio of modelevaporation zone

depth toradar evaporation zonedepth, so that a model having

a depth factor of 2 has anevaporation zonedepth of double the

radar .

DIAGNOSTIC VARIABLE A variable in the model which is not carried between

timesteps, yet instead isDiagnosedfrom relations withPrognostic
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Variables.

DOPPLER RADAR A radar which in addition to measuringreflectivity factor, is

Dopplerised, enabling it to obtain information on the Doppler shift

of scatterers in its beam. When theradar is vertically pointing,

Doppler shift is useful to obtain estimates of particle terminal ve-

locity and turbulence at cloud base innephologicalresearch.

DUAL WAVELENGTH RADAR Use of two (or more)radars simultaneously to re-

motely sense objects. Innephologicalstudies it has applications

in determining cloud particle size.

EARTHCARE A planned spacebourneradar andlidar mission, due for launch in

2012.

EFFECTIVE RADIUS A measure of the radius of a particle from the point of view of

it’s interaction with radiation. This is defined asre =

∞
R

0

n(r)r3dr

∞
R

0

n(r)r2dr
,

wherer is the radius of the particles andn(r) is the number of

particles of sizer.

ELEPHANT Evaporation LEvel PHysics and Numerical ice Transport. A model

created for this thesis to simulateevaporation zones.

EVAPORATION ZONE Coined by Forbes (2002), an evaporation zone is the area

close to the base of ice clouds in which the particles evaporate

(strictly sublimate, seeIce Evaporation). It is defined as the depth

of atmosphere between the maximumIce Water Content in the

profile to 10% of this maximum value at some altitude between the

maximum value and the Earth’s surface.

EXTINCTION COEFFICIENT For a particular substance, the extinction coefficient

is a measure of how well it absorbs electromagnetic radiation. Sub-
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stances with higher extinction coefficients absorb more radiation.

In this thesis, extinction coefficient represents the reduction in a

lidar signal as it interacts with atmospheric constituents. A high

extinction coefficient leads to a weaker lidar signal further away

from the instrument, yet a higher attenuated backscatter from the

particles interacting with the radiation.

EXTINCTION-TO-BACKSCATTER RATIO SeeLidar Ratio .

FREQUENCY OF OCCURRENCE A measure of cloud climatology, being the frac-

tion of times cloud is above a detection threshold in a particular lo-

cation. See alsoAmount When PresentandMean Cloud Frac-

tion.

GENERAL CIRCULATION MODEL (GCM) A model with large grid resolution

which is concerned with representing the general circulation of the

earth’s atmosphere rather than small-scale variations in weather.

GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) SeeICESat.

ICE EVAPORATION Strictly, the sublimation of ice to vapour bypassing the liquid

phase. Termed evaporation in this thesis to avoid confusion with

sublimation from vapour to ice.

ICESAT Acronym for Ice, Cloud and Land Elevation Satellite. It was

launched in 2003, which carries alidar platform on board

(GLAS), which is capable of making profiles of clouds as one of

the secondary aims of the mission.

ICE WATER CONTENT (IWC) A measure of the amount of ice contained within a

cloud or model grid box. Ice water content is the mass of ice per

unit volume.
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INTEGRATED BACKSCATTER The lidarbackscattersummed over a profile. This

may be done to calibrate the lidar (O’Connoret al., 2004), to de-

termine themultiple scattering factor through a cloud of which

the properties are known, to predict theLidar Ratio , or to estimate

the cloud optical depth.

LIDAR Acronym for Light Detection and Ranging.Active remote sens-

ing instrument which operates at wavelengths centred around the

visible, ultraviolet and infrared wavelengths.

LIDAR IN-SPACE TECHNOLOGY EXPERIMENT (LITE) Experiment where a

lidar flew on board the space shuttle “Discovery” in 1996 to deter-

mine whether future spacebournelidar missions would be possi-

ble.

LIDAR RATIO The ratio ofextinction to backscatterobserved by a lidar instru-

ment. For liquid water, it is nearly constant at 18± 0.8 sr, however

it varies within ice clouds, largely due to variable habits.

LIQUID WATER CONTENT (LWC) See alsoIce Water Content. A measure of

the amount of liquid water contained within a cloud or model grid

box, defined as the mass of liquid water per unit volume.

MAXIMUM OVERLAP SeeOverlap.

MAXIMUM-RANDOM OVERLAP SeeOverlap

MEAN CLOUD FRACTION The average cloud fraction for one particular model

grid box or location; hence a measure of cloud climatology.

MULTIPLE SCATTERING FACTOR Defined by Platt (1973), the multiple scatter-

ing factor is a scaling factor for optical depth due to the amount of

radiation from a lidar that is scattered out of the beam. It has an up-
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per limit of one, where there is only single scattering and a lot of ra-

diation is scattered outside of the lidar field-of-view. This is proba-

bly most suitable for ground-based instruments. The lower limit is

0.5, which represents the maximum amount of multiple scattering

and all scattered radiation remaining within the lidar field-of-view.

This value is particularly suitable for spacebourne instruments.

NEPHOLOGY Term for the scientific study of clouds.

NUMERICAL WEATHER PREDICTION (NWP) A model or models usually with

smaller grid spacing and timesteps than aGCM , used for forecast-

ing of the weather up to a few days in the future.

OVERLAP SpecificallyCloud overlap; a term that is applied to an assump-

tion of how clouds from different model grid boxes in the vertical

overlap each other, which is important for cloud radiation calcula-

tions. Usually there are three main types that are used in models:

Random, where the clouds are overlapped randomly; maximum,

where at all times maximum extent of overlap is maintained and

maximum-random overlap, where clouds with vertical extent over

one or more grid boxes are maximumly overlapped or otherwise

randomly overlapped.

PARAMETERIZATION In a numerical weather model, parameterization is the rep-

resentation of small-scale processes (with scales of less than the

model grid), yet important for the model large-scale physics which

are represented in terms of a series of expressions allowing their ef-

fects to be felt on the large-scale grid. For example, cloud conden-

sation is parameterized to form cloud and to modify the model’s

large-scale humidity.

PARTICLE SPECTRUM Another name for size distribution of particles. This refers
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to the number of particles available for a specific size of cloud

droplet or ice particle and the variation of number of particles with

particle size.

PASSIVE REMOTE SENSING Remote sensing technique where distant information

about an object is determined by observing radiation that is re-

ceived from the object.

PROGNOSTIC VARIABLE A model variable that is carried from timestep to

timestep with a equation for its time derivative.

RADAR Acronym for RAdio Detection And Ranging;Active Remote

Sensing instrument that works at radio and microwave wave-

lengths. For cloud studies, wavelengths are on the order of cen-

timetres or millimetres.

RANDOM OVERLAP SeeOverlap.

REFLECTIVITY Also known asReflectivity Factor, it is the variable measured by

a radar : Z =
∫

∞

0 N(D)D6dD, whereN(D) is the number of

particles of sizeD. It can be expressed in logarithmic (dB) or

linear (mm6 m−3) form.

SIMULATION Using model variables to predict (or simulate) measurements made

by an instrument, where the model variables are not directly mea-

sured by the instrument.

SKILL SCORE A binary score of determining model performance when compared

to the observations. Used in this thesis for examining how well

clouds are forecast in models. Each model grid box is compared

to the radar or lidar measurements and each model grid box is

categorized as either a hit, a miss, a correct rejection or a false

alarm (see table 2.2). A skill score uses this categorization to judge
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the skill of the model’s forecast cloud.

TROPICAL RAINFALL MEASURING MISSION (TRMM) An early space-

bourne radar that was launched in 1997 for the purpose of

measuring rainfall in the tropics.

VENTILATION COEFFICIENT A variable used in evaporation growth and diffu-

sion calculations to model the airflow around the particle, which

can lead to increased vapour diffusion or evaporation.
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Symbols

Chapter Two

Using Radar and Lidar for Model Evaluation

PR Power returned to the radar receiver

r Range of the targets from the radar

Crad Radar constant; dependent on radar hardware

PT Power transmitted from the radar

∆V Radar pulse volume

σ Backscatter cross section of particles detected

λ Radar or lidar wavelength

K Dielectric factor

N Number of particles of a specified diameter or within a specified diam-

eter bin

D Particle Diameter

m Complex refractive index

γ Mie-to-Rayleigh ratio

Kwater Dielectric factor of liquid water

Kice Dielectric factor of ice

ǫ Complex dielectric constant of ice

γg Attenuation of radar signal due to atmospheric gases

γw Attenuation of radar signal due to cloud liquid water.

γi Attenuation of radar signal due to cloud ice.

Clid Lidar constant; dependent on lidar hardware

β′ Attenuated lidar backscatter

β Lidar backscatter

r′ Dummy variable of range,r

η Multiple scattering factor

α Lidar extinction coefficient

s Lidar (or extinction-to-backscatter) ratio
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q Specific humidity of a model grid box

qt Total cloud water content of a model grid box

ql Cloud liquid water fraction of a model grid box

qi Ice water fraction of a model grid box

qsat Saturation specific humidity of a model grid box

ADV Subscript to denote change in cloud prognostic variables due to advec-

tion

DIFF Subscript to denote change in cloud prognostic variables due to diffu-

sion

TM Subscript to denote change in cloud prognostic variables due to turbu-

lent mixing from the boundary layer

ST Subscript to denote change in cloud prognostic variables due to strati-

form cloud formation or dissipation processes.

P Subscript to denote change in cloud prognostic variables due to precip-

itation

CV Subscript to denote change in cloud prognostic variables due to con-

vective activity

EV Subscript to denote change in cloud prognostic variables due to cloud

evaporation

αCP Cloud phase function, where a phase of 1 is entirely liquid and0 is

entirely ice.

RHcrit Critical value of relative humidity, at which cloud formation can begin

CF Cloud fraction

LWC Liquid water content

IWC Ice water content

â, b̂, ĉ, d̂ Coefficients in the Hoganet al.(2006) relation of ice water content to

radar reflectivity

A Skill score hit

B Skill score false alarm

C Skill score miss

D Skill score correct rejection

HR Skill score of hit rate (Wilks, 1995)
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POD Skill score of probability of detection (Wilks, 1995)

TS Skill score of threat score Wilks (1995)

FAR Skill score of false alarm rate Wilks (1995)

PSS Skill score developed by Palmet al.(2005)

ETS Equitable threat skill score

E Component of equitable threat score which removes randomness from

the score

Chapter Three

Doppler Radar Evaluation of the Representation of Evaporating Ice in Operational

Models

N Ice crystal concentration

D Maximum crystal diameter

N0 Number concentration at zero particle diameter

T Temperature

Λ Parameter used to express the exponential decay of the ice particle size

spectrum.

D0 Equivolumetric median diameter of the ice particle spectrum

a Coefficient of mass-diameter as used in the Met Office model

b Exponent of mass-diameter as used in the Met Office model

ρi Ice particle density

IWC Ice water content

m Mass of an individual ice particle

Z Radar Reflectivity

dB Indicates that a quantity is measured in decibels

VDop Radar measured vertical Doppler velocity

|Kice| Dielectric factor of ice

γ Mie to Rayleigh ratio

vc Ice crystal terminal velocity
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α Coefficient of velocity-diameter as used in the Met Office model

β Exponent of velocity-diameter as used in the Met Office model

ρ0 Density of 1 kg m−3

ρa Density of air

R Gas constant for dry air

p Atmospheric pressure

qi Ice water mixing ratio

ǫ Turbulent kinetic energy dissipation rate

σv̄ Standard deviation of mean Doppler velocity

va Vertical air velocity

vt Reflectivity-weighted particle terminal velocity

Da Area averaged particle diameter

RH Relative humidity

t Time

C Capacitance of an ice crystal

F The ventilation coefficient

Si Saturation ratio

X Diffusivity

esatice Saturation vapour pressure

Ls Latent heat of sublimation of ice

ka Thermal conductivity of air

µ Dynamic viscosity of air

ρ Air density

z Altitude

zadj Adjusted altitude

Sc The Schmidt number, equal to 0.6

Re The Reynolds number

Chapter Four

Simple Numerical Model Studies of Ice Evaporation
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m Mass of an individual ice particle

t Time

C Capacitance of an ice crystal

Si Saturation ratio

F The ventilation coefficient

Ls Latent heat of sublimation of ice

ka Thermal conductivity of air

µ Dynamic viscosity of air

X Diffusivity

esatice Saturation vapour pressure

Sc The Schmidt number, equal to 0.6

Re The Reynolds number

T Temperature

ρ Air density

D Maximum crystal diameter

v(D) Ice particle terminal fall velocity, expressed as a function of D.

RH Relative humidity

R Gas constant for dry air

p Atmospheric pressure

ρi Ice particle density

IWC Ice water content

N Ice crystal concentration

N0 Number concentration at zero particle diameter

Chapter Five

Use of a Lidar Forward model for comparisons between ICESat and the ECMWF model

β′ Lidar attenuated backscatter
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α Lidar extinction coefficient

z Altitude

s Lidar (or extinction-to-backscatter) ratio

η Multiple scatting factor

zlid ICESat orbit altitude (altitude of the lidar)

z′ Dummy variable forz

IWC Ice water content

LWC Liquid water content

rei Ice particle effective radius

rel Cloud droplet effective radius

ρi Density of solid ice

ρl Density of liquid water

γw Integrated backscatter

βWP Backscatter when present

ETS Equitable threat skill score

θ Odds ratio skill score

A Skill score hit

B Skill score false alarm

C Skill score miss

D Skill score correct rejection

N Total number of points used to calculate a skill score (= A+B+C+D).

157



References

Arking, A. (1991). The radiative effects of clouds and theirimpact on climate.Bull.

Amer. Meteorol. Soc., 72, 795–813.

Atlas, D. (1954). The estimation of cloud parameters by radar. J. Meteorol., 11, 309–317.

Atlas, D., Matrosov, S. Y., Heymsfield, A. J., Chou, M.-D., andWolff, D. B. (1995).

Radar and radiation properties of ice clouds.J. Appl. Meteorol., 34, 2329–2345.

Baedi, R. J. P., de Wit, J. J. M., Russchenberg, H. W. J., and Poiares Baptista, J. P. V.

(1999). Alternative algorithm for correcting FSSP measurements. CLARE’98, ESA-

ESTEC.

Battaglia, A., Ajewole, M. O., and Simmer, C. (2007). Evaluation of radar multiple

scattering effects in CloudSat configuration.Atmos. Chem. Phys., 7, 1719–1730.

Battan, L. J. (1973).Radar Observation of the Atmosphere. University of Chicago Press.

Beesley, J. A., Bretherton, C. S., Jakob, C., Andreas, E. L., Intrieri, J. M., and Uttal, T. A.

(2000). A comparison of cloud and boundary layer variables in the ECMWF forecast

model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice

camp.J. Geophys. Res., 105, 12337–12349.

Bengtsson, L., Hodges, K. I., and Roeckner, E. (2005). Storm tracks and climate change.

J. Climate, 19, 3518–3543.

Bezy, J. L., Kondo, K., Kumagai, H., Leibrandt, W., Lin, C. C., Poiares Baptista, J. P. V.,

Silvestrin, P. L., and Suzuki, M. (2002). The EarthCARE mission. In Proc. Second

158



REFERENCES

Int. Workshop on SpaceBorne Cloud Profiling Radar, pages 23–32. Communications

Research Laboratory (CRL).

Boers, R., Russchenberg, H., Erkelens, J., Venema, V., van Lammeren, A., Apituley,

A., and Jongen, S. (2000). Ground-based remote sensing of stratocumulus properties

during CLARA, 1996.J. Appl. Meteorol., 39, 169–181.

Bony-Lena, S. (2006). Cloud feedbacks in GCMs: what did we learnfrom IPCC? In

Workshop on Parametrization of clouds in large-scale models. ECMWF.

Born, M. and Wolf, E. (1999).Principles of Optics: Electromagnetic Theory of Prop-

agation, Interference, and Diffraction of Light, 7th ed, chapter 13.5, pages 633–644.

Cambridge University Press.

Bouniol, D., Illingworth, A. J., and Hogan, R. J. (2003). Deriving turbulent kinetic energy

dissipation rate within clouds using ground based 94 GHz radar. In Proc. 31st AMS

Conference on Radar Meteorology, volume 1, pages 193–196, Seattle, USA.

Bower, K. N., Moss, S. J., Johnson, D. W., Choularton, T. W., Latham, J., Brown, P. R. A.,

Blyth, A. M., and Cardwell, J. (1996). A parameterizations of the ice water content

observed in frontal and convective clouds.Q. J. R. Meteorol. Soc., 122, 1815–1844.

Brown, P. R. A. and Francis, P. N. (1995). Improved measurements of the ice water

content in cirrus using a total-water probe.J. Atmos. Ocean. Technol., 12, 410–414.

Brown, P. R. A., Illingworth, A. J., Heymsfield, A. J., McFarquhar, G. M., Browning,

K. A., and Gosset, M. (1995). The role of spaceborne millimeter-wave radar in the

global monitoring of ice cloud.J. Appl. Meteorol., 34, 2346–2366.

Browning, K. A. (1983). Air motion and precipitation growth in a major snowstorm.Q.

J. R. Meteorol. Soc., 109, 225–242.

Browning, K. A. (1985). Conceptual models of precipitation systems.Meteorol. Mag.,

114, 293–318.

Browning, K. A. and Monk, G. A. (1982). A simple model for the synoptic analysis of

cold fronts.Q. J. R. Meteorol. Soc., 108, 435–452.

159



REFERENCES

Browning, K. A., Clough, S. A., Davitt, C. S. A., Roberts, N. M., Hewson, T. D., and

Healey, P. G. W. (1995). Observations of mesoscale sub-structure in the cold air of a

developing frontal cyclone.Q. J. R. Meteorol. Soc., 121, 1229–1254.

Brussaard, G. and Watson, P. A. (1995).Atmospheric modelling and millimetre wave

propagation. Chapman and Hall.

Burgess, D. and Ray, P. S. (1986).Mesoscale Meteorology and Forecasting, chapter 6.

American Meteorological Society.

Bushell, A. C., Wilson, D. R., and Gregory, D. (2003). A description of cloud production

by non-uniformly distributed processes.Q. J. R. Meteorol. Soc., 129, 1435–1455.

Carswell, A. I. and Pal, S. R. (1980). Polarization anisotropyin lidar multiple scattering

from clouds.Appl. Opt., 19, 4123–4126.

Chapman, D. and Browning, K. A. (2001). Measurements of dissipation rate in frontal

zones.Q. J. R. Meteorol. Soc., 127, 1939–1959.

Chen, W.-N., Chiang, C.-W., and Nee, J.-B. (2002). Lidar ratio and depolarization ratio

for cirrus clouds.Appl. Opt., 41, 6470–6476.

Chiriaco, M., Vautard, R., Chepfer, H., Haeffelin, M., Dudhia,J., Wanherdrick, Y., Mo-

rille, Y., and Protat, A. (2006). The ability of MM5 to simulate ice clouds: System-

atic comparison between simulated and measured fluxes and lidar/radar profiles at the

SIRTA atmospheric observatory.Mon. Weather Rev., 134, 897–918.

Clough, S. A. and Franks, R. A. A. (1991). The evaporation of frontal and other stratiform

precipitation.Q. J. R. Meteorol. Soc., 117, 1057–1080.

Clough, S. A., Lean, H. W., Roberts, N. M., and Forbes, R. M. (2000). Dynamical effects

of ice sublimation in a frontal wave.Q. J. R. Meteorol. Soc., 126, 2405–2434.

Cox, G. P. (1988). Modelling precipitation in frontal rainbands. Q. J. R. Meteorol. Soc.,

114, 115–127.
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Donovan, D. P., Eastment, J. D., Gaussiat, N., Goddard, J. W.F., Haeffelin, M., Klein,

H., Baltink, O., Krasnov, O. A., Pelon, J., Piriou, J.-M., Protat, A., Russchenberg, H.

W. J., Seifert, A., Tompkins, A. M., van Zadelhoff, G. J., Vinit, F., Will én, U., Wilson,
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