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ABSTRACT

Abstract

Clouds are an important constituent of the Earth’s atmospheric radiatigqebadd are one
of the major uncertainties in predicting future climate. In order to predict Houds will behave
in future climate, we first have to evaluate how they are represented in imahmaodels in the

present day.

This thesis explores the evaluation of model cloud parameterization schemggwo sim-
ulation methods, where radar and lidar observations are predicted fralel rariables. Simula-
tion of ground-based radar data is used to investigate why many opetatiodals have a deep
evaporation zone when compared to radar observations and has atlwevegjection of many
possible causes of the deep evaporation zone. However, when d¢ogi@atiosonde and model
humidity profiles it can be seen that, in many cases, there is a sharp dromidityuwithin
the evaporating layer. A simple numerical model is created that uses the flitet @odel pa-
rameterization scheme to test the sensitivity of evaporation zones to atmosfainebles. Using
radiosonde temperature and humidity profiles, the evaporation model #tewgiven the correct

humidity gradient, the Met Office model could accurately represent th@oexon zone depth.

Secondly, simulation is used to make a global evaluation of the ECMWF modelsl clo
scheme. A forward model is used to predict lidar backscatter from th&a€CEatellite using
ECMWF model variables. This accounts for the extinction of the lidar signélramoves any
cloud that would not be detected by the lidar. Over nine million kilometers of EESta are
compared to the corresponding ECMWF model output. Results show thaCW&\E ice cloud
is too frequent, tropical boundary layer clouds are poorly repredemtd the model has greatest

skill at high altitudes and over the land.
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CHAPTER ONE

Introduction and Motivation

1.1 The Importance of Clouds within Climate and Weather Fore-

casting Models

Clouds are important within the climate system as they interact with both solat y&ne) and
terrestrial (long wave) radiation. With recent estimates of the future isergacarbon dioxide,
climate models have predicted a rise of global mean temperature from 2 to Bikthewnext 100
years (IPCC, 2007). The difference between a 2 K rise and a 5 K rigeresalt in dramatic
differences in the frequency of severe weather events, the likelinbmthermohaline shutdown
(e.g. Manabe and Stouffer, 1999), sea level rise (e.g. Bengtisahy 2005) and the action
required by policymakers and politicians to tackle climate change (IPCC,) 20@¥well known
that much of the uncertainty in the global mean temperature rise is due to thericggand

behaviour of clouds in a future climate (Arking, 1991; IPCC, 2007; Qaie2004).

In order to understand how clouds are likely to behave in a future climatmusgefirst under-
stand how they behave in the present climate. As the microphysical pesdisd form, evolve
and dissipate clouds occur on scales much smaller than the size of a modebgmérameteriza-
tion is needed for models to represent clouds. An accurate knowledhe pfocesses that form,
dissipate and modify cloud are necessary to develop accurate cloudgiareation schemes for

general circulation models (GCMs).

In addition to their importance in the climate system, clouds are also important ittshror
forecasts produced by numerical weather prediction (NWP) modela,fomber of reasons. The
firstis that they produce precipitation, and good forecasts of cloutigroand nature are the first
step in good forecasts of precipitation location and intensity. Another meigasthat low-lying
cloud tends to reduce visibility of mountains, taller buildings and trees, whichitect the flight

patterns of civilian and military aircraft, as well as military operations.

Also, clouds affect the radiation budget and hence correct rapegg® of clouds is im-

portant to ensure accurate surface temperature forecasts; in wadii@os this will affect the
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evaporation rate and soil moisture content, while in cold conditions the ambcioual is impor-
tant for forecasting of frosts. Finally, the amount of aircraft wing icindependent on the water
contents, cloud phase and temperatures of clouds the aircraft fly thremgorrect representation

of clouds is important in this case to ensure flight conditions for aircrafhat dangerous.

The complexity of cloud parameterizations is always increasing; howtngis no guarantee
of improved accuracy. When a new cloud parameterization scheme is in fileas@nportant
to evaluate the scheme’s performance by comparing properties of the ndodieliels to the
same, or similar, observed properties. Evaluation of model parameterizati@mes can lead
to improvements in a model’s parameterization of clouds. Within a GCM, this shadddean
increased confidence in the behaviour of clouds within a future climatecirggl some of the
uncertainty in any future predictions of global climate. Better representafi@touds within
NWP models has been the focus of recent research (e.g. Wilson anddB&B&9; Tompkins,
2002; Jakob, 2003; lllingwortlet al,, 2007). Improvements within some NWP models due to
change in cloud scheme have been noted. For example, Wilson and Ba88&) {mplemented
changes in the Met Office cloud scheme and state that these chandigs drser boundary layers
and better visibility estimates, better representation of deep precipitating syateihmsproved
forecasts of freezing rain and drizzle, which led to more accuratedsteof visibility, heavy
rain events and freezing conditions that produce icy roads. In addilingworth et al. (2007)
showed that improvements in theé#o-France model led to better estimates of model Ice Water
Content (IWC) which should improve the way the model represents ragliméinsfer as well as

surface temperature forecasts.

1.2 Two Methods of Evaluating Models

As clouds can exist as high as 20 km in places, in-situ measurements fronaftaéire sparse
in nature, often quite expensive and hence do not lend themselves easibkiog long-term
observations of clouds that are useful for model evaluation, but are swted to making mi-
crophysical measurements that can evaluate parameterization schemese Rensing methods,
either from ground-based stations beneath the cloud or satellites abasteubletend to be used

for evaluation of model cloud climatology.

Cloud parameterization schemes in NWP models and GCMs are formulated in fggrop-o
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erties, such as the cloud water content within a model grid box and the fradtaoud filling a
grid box. However, radarand lida? instruments do not directly measure water contents. Instead
they measure the backscattered intensity of the electromagnetic radiatioredstitom the cloud.
Due to the narrow beamwidth of the instrument when compared to the size of thes gnial box,
a vertically pointing radar or lidar is not capable of obtaining the instantaneloud fraction of
the entire grid box, just an echo showing the location of cloud in the atmaspbere the instru-
ment. Hence the variables measured by radar and lidar are distinctly niffetthose used within
the model cloud scheme. This presents a challenge when one wishes &teweatnodel cloud
parameterization scheme. By contrast, to compare radiosonde measurehtemigerature, hu-
midity and pressure with model profiles is relatively straightforward; alleéhriables exist as
prognostic variables within the model and, providing the radiosonde heectoalibration, data
assimilation methods can be used to equate the model temperature profiles tubtiaosed from
sondes. However, as radar and lidar measurements are diffenentifoolel prognostic variables,
one quantity must be converted to the other before any evaluation of fioeemance of the model
cloud parameterization scheme can take place. There are two methods dahimisgown in fig-
ure 1.1. The firstis to convert the radar or lidar observations into modables, or alternatively,

the model variables can be used to simulate the observations.

An example of converting observed quantities to model variables is the rsimvef radar
reflectivity to an ice water content that can be compared with the model. Thixkasattempted
using radar measurements with theoretical particle size distributions (S498 Sassen and
Liao, 1996) to derive the ice water content. Alternatively, radar measmes can be combined
with aircraft-measured patrticle size distributions and model temperature fiddllangworth,

2000; Hogaret al.,, 2006) to obtain estimates of ice water content.

The second method is to use the model variables to predict or simulate thetkinabuld
be observed by the radar or lidar. Although there have been some r@eal¥ing and single-
column model simulations of radar and lidar data, (letal., 2003, 2005), these have not specif-
ically been intended to evaluate the performance of an operational modek b simulation
of radar and lidar signals of cloud using model variables for model etiatupurposes is a fairly

novel idea. There are only two known previous examples of simulationdair rand lidar data:

!Radar is an acronym for RAdio Detection And Ranging.
2Similarly, lidar, (after Middleton and Spilhaus, 1953) stands for Lightebgon And Ranging.
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Model Cloud Variables

(e.g. Water Content, Cloud Fraction)

Simulation

Observations to Models
(e.g. Empirical Formulae)

Radar or Lidar Observations

(e.g. Radar Reflectivity,
Doppler Velocity)

Figure 1.1: Schematic diagram showing the two different methods that evaluate rolodel parameterizations

using radar and lidar.

Yeh et al. (1995), who used a cloud resolving model in order to predict the oatens of the
Tropical Rainfall Measuring Mission (TRMM) radar, in particular to note #itenuation of the
radar signal; and Chiriacet al. (2006), who examined the ability of the joint Pennsylvania State
University and National Centre for Atmospheric Research MesoscateeMMMS5) to simulate

radar and lidar cloud profiles, which were compared with measurementaniod:r

The simulation technique is useful to allow data assimilation to take place. Oncadtireor
lidar measurements are simulated by the model, differences between theedeaslisimulated
data can be examined. This is the first step in data assimilation. Simulated daten&deh
analysis of the atmosphere can then be compared to radar or lidar dataanddél adjusted so

that the model simulations agree with the observations.

With the launch of the CloudSat and CALIPSO (Cloud-Aerosol Lidar arficated Pathfinder

Satellite Observation) satellites, which use a spaceborne radar and lidaasanmelouds, there
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has been an interest in the use of radar and lidar simulation, becausepaisgibility of signal
attenuation. By using the simulation method, the signal attenuation can be pidnictee model
water contents. However, it is tricky to predict model ice or liquid water austgiven a signal
that has been attenuated and hence a fairer comparison between nwdatianor lidar can

result from use of a simulation method.

Examples of CloudSat simulators are currently being developed at the NMe¢ Bony-
Lena, 2006) and elsewhere (Stephens, 2006; Haynes and Stepb@6sdocument in prepara-
tion), while examples of CALIPSO simulators are being trialled in France (Bama, 2006).
In addition, they can also be used to test new model parameterization schedrniessalready
planned to assimilate CloudSat data into models using the simulation (or as it is algo, Kor-
ward modelling) technique (Stephens, 2006). In both cases, simulatiamdael prove useful

and hence development of the methodology, including this thesis, is important.

1.3 This Thesis

The purpose of this thesis is to evaluate a number of aspects of model doamigierization
schemes using radar and lidar. This thesis will use two examples of the simutaibod out-
lined above to convert model variables into observations measured by gatiote sensors, using

both ground-based radar and spaceborne lidar observations.

In chapter 2, we shall look at the origins of radar and lidar as a toolléwdcstudies and
the important principles of radar detection of cloud hydrometeors. Isfgnsitivity and radar
wavelength to be used will be discussed, due to their importance in detectdouaf. The
second half of the chapter will examine how models parameterize cloudseinthibrophysical
processes. This is important in order to take the model variables, applyrtblagon method to
convert them into observed quantities. A number of previous evaluatfanedel cloud schemes
using radar and lidar will be reviewed and there will be some examination ineyemmodel

evaluation and development using radar and lidar may lead in the future.

Chapter 3 focuses on the problem of evaporating ice representation wWithioperational
models. Previous studies (Forbes and Hogan, 2006) have identifieth¢havaporation of ice
beneath warm fronts takes place in a shallow layer around 500 metresvaeaeas in the Met

Office model this layer is represented as being 2—3 times the depth of tagkwations. In this
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chapter it is shown that the deep ice evaporation problem is not unique tceth@ffice model; in
fact a number of operational models from across Europe produce syniégap evaporation depth
scales when tested. Several hypotheses are suggested for thewncewf this phenomena and
tested accordingly using simulation techniques to predict radar reflectivitypappler velocity.
Doppler parameters were not available for the work of Forbes andrH@§®6). By comparing
observed and simulated data, several of the hypotheses can be rajetteddence is presented
that the deep model evaporation is caused by incorrect humidity profiles whtt Met Office

model.

In order to completely test the hypotheses raised in chapter 3, a simple nalmsoitel con-
cerning the mechanics of ice evaporation is developed in chapter 4. Thiesuthis evaporation
parameterizations from the Met Office model upon a high resolution (5m) igiiglfirst used to
test the sensitivity of the evaporation rate to fundamental atmospheric guaofitemperature,
humidity and pressure, as well as cloud ice water content. Further expésimue carried out
using radiosonde and radar data to simulate the evaporation beneath a néinbeloud evap-
oration case studies using the model parameterization scheme. The modaVaiktible from
these cases can also be used to simulate the model evaporation of ice.lidine ofathe Met
Office model parameterization scheme can be tested and the cause of (D#ibéemodel’s deep

evaporation layers will be identified.

Chapter 5 uses simulation techniques to make a fair comparison between Se Ic&r and
the ECMWF model. Due to the near-global coverage of the ICESat sateltitpetfiormance of
the ECMWF model can be assessed at locations where there are nd-¢pased radar or lidar
instruments. A sample of 15 days of data, equivalent to a distance of 9 millianddtes on the
Earth’s surface is used to derive statistics of the performance of mmelisess with latitude
and height. Differences in model performance above land and sescssirtan be obtained;
previously model performance statistics over the sea have been difficlitam due to a lack of
observations of cloud profiles in these regions. In addition, two skillescare used to test the

validity of model forecasts across the globe.

Concluding remarks to this thesis and the possibility of future work in devedagmulation

techniques for model validation and development are drawn in chapter 6.




CHAPTER TWO

Using Radar and Lidar for Model

Evaluation

2.1 Introduction

In chapter 1, clouds were identified as one of the greatest sources@tainty in GCM predic-
tions of future climate. Active remote sensing (and in particular, radar aad s the ability to
obtain profiles of cloud data in the direction of the beam emitted from the instimeking it

an ideal choice for evaluating model cloud parameterization schemes.

As NWP and GCM model performance is of interest to meteorologists, thdiragian has
already been the subject of a number of studies. For cloud schemes ftasldib make direct
measurements of cloud properties on a global scale and on a freq@is)tdmaremote sensing
is often used. This can be in the form of satellites measuring the outgoing lavg nadiation
from cloud top, radiometers on the surface measuring the downwellingicadfeom clear sky
and cloudy conditions, and a few radar and lidar stations making activeteesensing obser-
vations of the cloud. Although ground based radar and lidar stations ereiseful to evaluate
model performance at a single point, they tend to be located over the lararatichited to a
few sites across the globe, most often in the Northern Hemisphere (examglete the ARM

(Atmospheric Radiation Measurement) sites in America and the Cloudnet sitasdpes.

Passive instruments have been used for many years to monitor globalodeecage from
space in projects like ISCCP (Schiffer and Rossow, 1983). Howigvthre last decade or so, the
use of active instruments in space has been discussed (e.gedgsl995; Brownet al., 1995;
Hogan and lllingworth, 1999). At the time of writing, there have alreadybielar studies from
space using LITE and ICESat (McCormiekal,, 1993; Zwallyet al., 2002). An active radar has
been used in space for the tropical rainfall measuring mission (TRMMclath27 November
1997, Simpsoret al,, 1988). CloudSat, the first active radar from space directly intended f

cloud observations (Stepheasal, 2002) was launched on 28 April 2006 along with its sister
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satellite CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellliservation) and both
instruments are making satisfactory measurements of clouds. These t&oé fher A-train of
satellites (Stepheret al., 2002; Vaughaet al., 2004). Future space based cloud observations are

planned for the future, such as EarthCARE (due for launch in 2012).

In this chapter, the principles behind radar and lidar remote sensingaarereed with particu-
lar attention to their use in evaluating operational models. Previous studies &l pgstbrmance
are discussed. Section 2.2 concentrates on the principles behind apedrediar, including the
scattering by atmospheric particles, the sensitivity of wavelengths usedfs@od wavelengths
are suitable for studying clouds. The history of radar for meteorologicgdoses will be dis-
cussed briefly, with suitable equations given. Section 2.3 examines hownatés, from the
earliest studies, to some of the more recent works and the developmentiefmimlars for at-
mospheric measurements and how they can be used to detect cloud. Setiiook2 at how
clouds are represented in numerical models, including the main variablestef gontents and
cloud fraction, including a discussion on whether they are better as gstigior diagnostic vari-
ables. There will be a number of cases from existing models to explain thepbeis behind
representing clouds in terms of these three variables. There will be ahtimsig the different
cloud overlap schemes used in GCMs, providing supporting evidentedmalidity of assump-
tions made in the cloud schemes. Section 2.5 reviews the previous work ablising radar
and lidar observations to evaluate the performance of weather and climagtsmolis includes
a review of previous work in retrieving water contents, cloud fraction@retlap statistics from
radar and lidar measurements. In addition, the evaluation of individualdstg is examined us-
ing skill scores; this methodology will be explained and previous exampleast ¢€iteally, section
2.6 provides an insight into how numerical models might develop in the fututte use of radar

and model studies to improve model representation of clouds within the Ecithate system.

2.2 Principles of Radar Remote Sensing

2.2.1 The Radar Equation

The radar principle involves transmitting a high powered pui%e (owards a target and measur-
ing a much smaller powet{g) that is backscattered to the instrument. The meteorological form

of the radar equation, neglecting attenuation due to atmospheric gasesnsagifollows (after
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Probert-Jones, 1962):

Pr(r) = Craa—5 ) (i), (2.1)
AV

whereC,,q4 is a constant that depends on the hardware of the radar equipmemia&aatenna
gain and dish size); is the mean distance of the targets with backscatter cross sedtiom the

radar. The subscriptrefers to an individual target within the unit volurdg/.

The backscatter cross-sectian,of a spherical particle (such a cloud droplet or small rain-

drop) can be expressed using the Rayleigh approximation as follows {Ba#&3):
m° 216

where\ is the wavelength of the electromagnetic radiatibnis the particle diameter anl is

the dielectric factor, defined as

m? —1

= 2.3
7 (23)
wherem is the complex refractive index of the scatterer amdis the dielectric constant. Equa-

tion 2.2 can then be substituted into equation 2.1 to give the following form:
érad’K|2 6
Pr=——"7—)>» D" 2.4
= (2.4)

In determining equation 2.4 we have incorporated the consiantand the other constants to
form a new hardware constat..y. It is also assumed that all particles within the radar beam
have the same value 0K |2. If this is not the case, thgk|? should lie within the summation.
The values of K'|? change for water droplets as the radar wavelength decreases fintimetees

to millimetres and are also a function of temperature. From equation 2.4 we fia@ tihe radar
reflectivity, Z. In simple terms, this is a parameter of the cloud to which the radar is sensitive.
We have incorporated the wavelength dependence in equation 2.2,iptén equation 2.4. In
defining radar reflectivity, we should like to remove this dependence erlergth so that two
radars with the same hardware but operating at different wavelengtliswe the same value of

reflectivity. Hence, radar reflectivity is determined as follows:
Z =Y ND}. (2.5)

Here,D; is the diameter of the particles per unit volume a¥ids the number of particles of size

D; per unit volume. Taking a distribution of liquid water drops in a cloud, equ&iércan be
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expressed as

7 = / N(D)D%D, (2.6)
0
with N (D) x dD being the number of particles with diameter frdimto D + dD.

The Rayleigh approximation introduced in equation 2.2, is reliable for whewaelength
of the radiation is significantly larger than the diameter of the particle. As theaavavelength
to particle size decreases to the point where the particle size is of the saanebrdagnitude
as the radar wavelength, Mie theory (as described in Carswell and 3&4; Born and Wolf,
1999) should be used. This can be done quite simply by adding the Mieyleigaratio ¢) into
equation 2.6:

7 = /OO v(D)N(D)D%D. (2.7)
0

The consequences of adding the Mie-to-Rayleigh ratio into our calculatrerte allow Rayleigh
scattering for the smallest particles, but for the backscattered powemiticsigtly reduce as the
particles get larger and enter the Mie size region, hence the magnituderefiéotivity decreases

compared to if the scattering was entirely within the Rayleigh regime.

Figure 2.1 shows the electrical size of a spherical particle (definedds) versus the nor-
malised backscatter cross section/ (r(D/2)?)). The lines for the Rayleigh regime are super-
imposed and it can be seen that as the normalised backscatter cross apptioaches unity
(wavelength of the radiation is roughly the same size as the particle diamegsr)thth particle
curves diverge from the Rayleigh regime into the Mie regime. For largéicles, the size of
the oscillations in the curve gradually gets smaller, until the principles of geizogtics can be

applied.

From figure 2.1, it can be seen that curves behave differently fonddiquid water particles.
In fact, the reflectivity values for liquid and ice need to be treated separ&iar ice this can be
done by modifying equation 2.7 as follows:

% 2
o |Kz'ce|

7 = o
0 |Kwater’2

v(D)N(D)D®dD, (2.8)
where| K| is the dielectric factor for ice and{,q:.-| iS the dielectric factor for liquid water.
The value of| K;..|? is 0.197 for solid ice, but lower as the density decreases, with the ratio of
| Kice| to ice density constant. Ice density reduces with increasing particle diaraegeBfown

and Francis (1995) give ice density to @67D~!"!, where ice density is in g cn¥ and D is in
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Figure 2.1: Backscatter cross sections for ice and water aE0with the Rayleigh approximation lines superim-
posed. The normalised backscatter cross section is defined as tleedtémkcross section, divided by the cross

sectional area of the particle. From Burgess and Ray (1986).

mm) and hence the dielectric factor decreases for larger particle sizesediit is that values of
| Kicc|> are much lower than for water and hence the valueg afe lower in ice clouds than in

water clouds.

2.2.2 Using Radar to Study Clouds

The choice of radar wavelength for cloud studies has implications on therdarabuloud de-
tected. From equation 2.2, we can see that the backscatter cross gectibhence the returned
power in equation 2.1) is inversely proportional to the fourth power of #uar wavelength.
Hence the shorter the wavelength, the greater the sensitivity of the afidzlse being equal. A
radar with greater sensitivity will be able to detect smaller particles, espettiabhg which exist
in the thinnest ice clouds. However, the shorter the radar wavelengtimdieelikely the radar is

to be affected by attenuation as it passes through clouds, as we stetiboste
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Although radar in meteorology is traditionally thought of as a means for degggtacipita-
tion, studies of clouds using radar have been carried out for the Pasties. Early studies were
limited by radar technology to use centimetre wavelengths (and hence lowefreg) measure-

ments of clouds (e.g. Marshall, 1953; Wexler, 1955; Wexler and Atleg9)19

It is well established that higher frequency radars are limited by atmdspdidesorption to
just a few spectral windows. This can be shown using a millimetre-waveagetipn model (e.g.
Liebe, 1985). The spectral windows result in frequencies for véntiparation of cloud radar
at roughly 35 GHz, 94 GHz, 140 GHz and 220 GHz. Following advanceadar technology,
millimetre wavelength radars were in operation by the 1980s: Heblas. (1985) verified the
use of 35-GHz radar (8.6 mm wavelength) for cloud experiments and thé®#irGHz (3.2 mm

wavelength) radar intended for cloud studies was constructed by Lhe(t88&).

Despite the sensitivity improvements that occur as a result of a shortetengtie there
are also attenuation problems. Table 2.1 shows the one-way attenuationebéttremagnetic
waves produced by radars at various frequencies and throuighisanediums encountered in the
atmosphere, over a range of atmospheric temperatures. As the wavealétigtltadar decreases,
the attenuation also increases through each medium. Although attenuation Ispla¢mo gases
(mostly due to oxygen and water vapour) is relatively small at low tempesatare85-GHz, at
high temperatures and frequencies, the attenuation is significantly highhehauld be corrected
for. The attenuation due to liquid watey,() is largest for the highest frequencies. For 35-GHz
and 94-GHz, attenuation is larger for the lower temperatures. The reSidesattenuation from

table 2.1 show that in general, ice attenuation can be neglected for Raydeitgrisg.

Figure 2.2 shows the attenuation coefficients due to rain rate, assuming adamgpef 20C.
It can be seen that for a rain rate of 1 mnT hrthe attenuation coefficient of a 94-GHz would
be of the order of 1 dB km'. For 35-GHz, this value would be closer to 0.2 dBkm This
relationship between rainfall rate and attenuation coefficient is roughlgrlioe all frequencies.
Attenuation by rain is significant for 35-GHz and 94-GHz radar datathmre is an additional
attenuation due to rain on the radome of the radar. Using a 94-GHz raalganiet al. (2003a)
reported a difference of 9 dB between measurements where the raglaestiaally pointing and
exposed to the rain and where the radar was sheltered at an angf&Cah4@in. They blame the
difference in measurements entirely on wet radomes. Given the attenuatioriigure 2.2 and

the results of Hogaat al. (2003a), it is unwise to use data from millimetre wavelength radars for
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Yg(saturated) Yw i
dB km~! (dB km~1)/(g m~3) x10~4(dB km~1)/(g m—3)
Hogan (1998) Meneghini and Kozu (1990) | Meneghini and Kozu (1990)
35-GHz 94-GHz| 35-GHz 94-GHz 140-GHz 35-GHz 94-GHz 140-GHz

—20°C | 0.0541 0.1128|, 1.77 5.41 6.60 0.28 0.37 0.42

—10°C | 0.0620 0.1785| 1.36 5.15 6.82 0.38 0.49 0.54
0°C 0.0843 0.3230| 1.05 4.82 7.06 1.40 1.80 2.10
10°C | 0.1355 0.6358| 0.82 4.37 7.12

20°C | 0.2455 1.3101| 0.64 3.85 6.91

30°C | 0.4773  2.7544| 0.52 3.32 6.45

Table 2.1: One-way attenuation of radar signals for atmospheric gasgs liquid water cloud {.,) and ice water

cloud ¢;). Pressure is assumed to be constant at 1013 mb and Rayleigh sgagtessumed.

cloud studies during rain events.

There have been further experiments on higher frequency radanalisns. In a trial for
a highly sensitive radar with small vertical resolution, Mesdl. (1989) used a 215 GHz (1.4
mm wavelength) radar for remote sensing of cloud and fog. Howevtreag high frequencies,
Meadet al. (1989) noted that the results depended highly on the amount of watennapihne
atmosphere. In addition, from table 2.1 we see that attenuation incredseguency increases.
Although detection of stratocumulus and fog was still possible with the Meatl (1989) study,
the radar beam would rapidly extinguish in thicker liquid water clouds anelatafity values will
be variable dependent on the humidity between the radar and any cldndsbased. However,
the high sensitivity and small beamwidth could, in theory allow good measurewofehisner ice
clouds with smaller particles if the radar was mounted on an aircraft or a sateliiveever, since
the frequency is above 100-GHz, there could be some attenuation proiolehisk ice cloud

(Brussaard and Watson, 1995).

Throughout the last twenty years, there have been many studies 8ngdgks possibility of
spaceborne radar (Lhermitte, 1989; At&sal., 1995; Brownet al, 1995). As radars from space
encounter the higher and cooler ice clouds before they reach the liquidci@uid, they are less
liable to attenuation and thus shorter wavelength radar systems can beHaggah @nd llling-

worth, 1999). However, radar measurements from space have to bdéedan satellites in low
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Figure 2.2: Attenuation coefficient at various radar frequencies with rain rate aademperature of 2@ from
the results of Lhermitte (1990). The dashed line marked "EXP. WALLAG#hotes an experiment by Wallace (1988)
for 94-GHz and the circled cross shows one 94-GHz measureméiftampnitte (1990).

earth orbits at altitudes of less than 1000 km. Higher orbits would lead to lpuse volumes,
lower sensitivity and hence a radar on a geostationary satellite would givariftilenation on
the clouds below. As the radars are in low Earth orbits, they travel arthendlobe, profiling

snapshots of clouds rather than making climatological profiles in one place.

To summarise, in planning a new ground-based radar system for thedongnonitoring
of clouds would depend on the number of radars to be used and the loohttmstudy. For a
single wavelength study, a 35-GHz or 94-GHz radar would be the moftl @ésethey have high
sensitivity and would be able to detect the maximum amount of cloud. Howbeagsults when
precipitation takes place would have to be looked at with great care and trcas®s, discarded
from the study. If the radar was to be located in an area of the tropicsevitejuent heavy
rain occurs, a lower frequency radar would probably be more suitbbtethis would limit the
detection of thinner ice clouds. In these locations, a 35-GHz radar weuidierable as it has

less attenuation to liquid, gas and will Rayleigh scatter more particles than &194&@ar. A
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94-GHz radar will have greater attenuation and will be able to detect mahe sfall non-cloud
signals such as birds and insects. In addition, in the tropics, the watentofi@ouds can be

higher and hence attenuation due to liquid water could be greater for &242@ar.

For spaceborne radar studies, the situation is different. The firsidewason is the physical
size of the dish; trying to launch a satellite with a radar dish larger than 2 m diaiséificult.
Attenuation of the higher radar frequencies takes place in rain, liquid cloddvater vapour,
so from space the radar will be able to penetrate a significant depth offatiares Considering
these factors together, a wavelength of at least 94-GHz should bercfursts physical dish size
and greater sensitivity. Meneghini and Kozu (1990) noted that for-&l94 radar the attenna
diameter is 1.8 m, as opposed to 5 m for 35-GHz and 10 m for 15-GHz. Tike power will be
lower for 94-GHz radar and at 300 km from the radar, the footprintldzbe 500 m for the 35 and
94-GHz radars and 600 m for the 15-GHz radar. Hence, the 94-G¢tar is more suitable for
spacebourne use. However, as the radar receiver has a wideoffigklv from space, multiple

scattering will take place, which may be a problem at 94-GHz (Battagkd, 2007).

2.3 Principles of Lidar Remote Sensing

Lidar works on the same principles as radar, but instead of using radattimicrowave wave-
lengths, it uses laser radiation and operates at ultraviolet to infrareglevmths. The basic prin-
ciple is the same as for radar, with a transmitter emitting pulsed power towardgeg t@hich is

sent back to the instrument’s receiver. However, due to the much shavetength used, lidar
observations of cloud particles tend to use Mie and geometric optics apptmasheather than

Mie and Rayleigh scattering approximations used by millimetre cloud radars.

As reported in Weitkamp (2005), the origins of lidar were from attempts to measudensity
profiles using telescopes and searchlight beams (Hulbert, 1937;0joéinal., 1939), but rapid
development of the instrument followed the invention of the laser in the 1988snan, 1960;
McClung and Hellwarth, 1962). Since then, there has often been ctilsdaration between

laser and lidar, with development linked to technological innovation (Weitk2®05).
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2.3.1 The Lidar Equation

As lidar tends to work on similar principles to radar, it is possible to derive tle dduation based
on similar work for the radar equation, shown in equation 2.1, taking at@dtine extinction of

the signal due to particles in the atmosphere.

The lidar equation in its most common form and in the single-scattering limit is as ®llow

Weitkamp (2005):

/

Pr(r,\) = PTC:;dﬁ(r, A) exp [—2 /0 ' a(r/,/\)dr’] : (2.9)

where Py, is the small amount of power backscattered to the instrument from the tafgeis,
the transmitted power, is the range of the targets ands the lidar wavelength. The hardware of
the lidar is represented by the constahyt;. The term within the exponential is the transmission
term, which relates to the extinction of the lidar signal as it passes through iamméslich as
cloud), with a depth”’ and extinction coefficient. The termg is the backscatter coefficient of
the particles interacting with the radiation. Following the same way that radactieity can be
defined from backscattered power, the lidar attenuated backsgattan be defined, with units
of s m~L. It can be seen that this is different to radar reflectivity, (with different units. It
is perfectly valid to express radar reflectivity as a backscatter, butahtin, radar scientists
have used reflectivity as most targets are in the Rayleigh regime and theodakféectivity is
independent of wavelength for Rayleigh scatterers. Dividirig equation 2.2 by unit volume
does not give attenuation in the same way attenuated backscatter doesvdukiamostly in the
geometric optics region and historically worked independently of radadafided backscatter

as a wavelength-dependent quantity with little reference to radar science.

In addition, with many particles, we often wish to consider multiple scattering andie so
by including the multiple-scattering factoy,(after Platt, 1973), within the exponent. Although
multiple scattering can be calculated numerically (Kattawar and Plass, 197antp1998), it
can potentially be very computationally expensive and hence the approxinohttatt (1973) is
more frequently used. Values givary from 0.5 in the wide telescope receiver field-of-view limit
to 1. With a value of 0.5, the maximum amount of multiple scattering is assumed to tales pla
meaning that all the scattered photons remain within the field of view of the lidaiver. With

ann value of 1, the photons entering the receiver have only been scattered Accounting for
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multiple scattering, equation 2.9 can be written in termg’ads

B'(r, ) = B(r, \) exp [—277 /T a(r’,/\)dr’] . (2.10)
0

In addition to the approximation of the multiple-scattering factor, we can defenextinction-to-
backscatter ratio (sometimes called the lidar ratio) asa/ 3 and express equation 2.10 in terms

of a:

A "

B(r,\) = a(r,)) exp [—277/ a(T',)\)dr’] ) (2.11)
$ 0

From this expression, it can be seen that large value of the extinctioficéemfresults in a large

signal returned to the telescope receiver, but also an attenuation adjtiad &s it passes through

the medium, and a reduced sensitivity to detecting the medium further downahe be

For most wavelengths, scattering depends on the ratio of the wavelertgthlwfar radiation
to the size of the particles. The valuescoind 5 in equation 2.11 depend on the wavelength of
the laser light. Weitkamp (2005) give the extinction coefficiengs a function of range-] and

wavelength ) as follows:
a(r,A) =Y N;j(r)ojen(N), (2.12)
J

wherelV; are the number of particles of extinction cross sectign,; per unit volume.

2.3.2 Using Lidar to Study Clouds

For cloud detection, the most common lidar type used is elastic-backscatteWidare the par-
ticle radius is much smaller than the lidar wavelength (such as for lidar scattéiing smallest
aerosol particles or molecular gases), Rayleigh scattering occursesdrihitivity to extinction
and scattering is inversely proportional to the fourth power of the wagtiefiowever, for most
of the larger particles found in clouds, there is little wavelength dependenbackscatter as the
scattering is in the geometric optics region (where the wavelength of the lidardls smaller

than the particle diameter), although the refractive index may be waveleegémdent.

However, in equation 2.11, the value of the lidar ratois variable and depends on the
medium the lidar signal is passing through. For liquid water, values\afry with drop size
and wavelength. There is also a dependence on the dielectric constatitisbchanges very
little with the temperature within liquid water clouds and as cloud droplets areisphaercan be

assumed to vary with drop size and wavelength alone, as in O’Cantradr(2005).
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Using a variety of droplet size distributions, Pinniek al. (1983) find s for liquid water
between 14.2 and 19.9 sr, dependent on wavelength. However, atiateiby O’Connoret al.
(2005) using a gamma shaped drop distribution foundsiealmost constant between drop sizes
of 10 and 50um, despite changing the shape of the gamma distribution. O’Castradr(2004)
calculates for a 905 nm lidar and liquid water drops to b&8 + 0.8 sr. They also note that this
result varies little for shorter wavelengths of 532 nm, wheig®18.6 4+ 1 sr and 355 nm, where
sis18.9 £ 0.4 sr. For ice, the value of is highly variable, as changes in temperature may result
in changes in ice particle habits and sometimes aggregates can form. Avenytgnperature,

there may be a range of ice particle habits that occur.

Hence, Platet al. (1987) gaves to be approximately 50 sr in tropical cirrus clouds between
—40 and—80 °C, and proposed a link between the lidar ratio and temperature. In latersstudie
data from the Atmospheric Radiation Measurement (ARM) Pilot Radiation r@disen Experi-
ment (PROBE) were used (Plait al., 1998), with results showing ranging from 28.6 to 44.9
sr, with higher values of at colder temperatures. Data from the Lidar In-Space Technology Ex-
periment (LITE) were used (Plagt al., 1999) to provide similar calculations ef which ranged
between 12 and 21 sr dependent on temperature. Although these valuesemamuch smaller
than those used for the PROBE experiment, it should be noted that LITE mash larger re-

ceiver field-of-view and thus a smaller value of the multiple scattering factor.

Once this multiple scattering factor variation is taken into account, it is sometimes fou
(Plattet al,, 1999) that the values afare of similar sizes. Cheet al. (2002) examined values
in ice clouds at different heights and temperatures and found: tvetes from 20.4 sr at 15-16
km altitudes ¢ 70 to —75 °C) to 36.7 sr at 12—13 km+{48 to —58 °C), with an average lidar ratio
of 29+12 sr.

Although the variability ofs can sometimes be explained by different instruments having
different fields of view and different values of the multiple scattering facipa more likely
explanation is due to the temperature dependence &/hereas individual cloud droplets are
roughly spherical and thus can be shown to have the same lidar ratio argeaange of sizes,
this is not true for ice. Ice crystals can have a variety of habits (platesdrites, columns and so
forth) and can experience aggregation. Hence the optical propefri@saan differ very rapidly
within the cloud and producing very different lidar ratios. The temperatapendence we see in

the studies of Platt al. (1998, 1999) and Chegt al. (2002) are likely to be due to different lidar
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ratios for the predominant crystal habit at these different temperatures

The choice of wavelength used by lidar depends also on the laser anojigspes (Weitkamp,
2005). Early studies (Maiman, 1960; McClung and Hellwarth, 1962y usby lidars (694nm).
More recently, Neodymium gases combined with yttrium aluminium garnet digstéattices
(Nd:YAG) has been one type of lidars manufactured for modern studiegk&hp, 2005), with a
wavelength of 1064 nm (near infra-red). Using nonlinear crystalsfrdggiency can be doubled
to 532nm and tripled to 355nm, which are more sensitive to the smaller partidesaardetect
molecular backscatter. Reduction of molecular backscatter can thend®&usetecting optical
depth through a medium. Using other gases, lidars can be developed tcatvalikost any

wavelength from 250 nm to Lim.

2.4 Model Representation of Clouds

Representation of cloud within general circulation models (GCMs) and in climatéels has
always been important for radiative transfer calculations and sutéwperature calculations.
In operational models, clouds are also important for visibility, aircraft i@ngd forecasting of
precipitation, to name but a few reasons. In this section, current methpdsameterizing cloud

will be examined.

Although early GCMs were developed within the 1950s and 1960s (Ra2@8ld), at this
stage clouds were not specifically represented in weather forecasisnda some studies, cli-
matological zonal values were used, which tended to ignore longitude anddimagons of the
cloud amounts (e.g. Manakeal,, 1965; Smagorinskgt al., 1965; Holloway and Manabe, 1971).
During the 1970s the need for more physically based cloud schemesaogsiged. By the mid
1970s the National Center for Atmospheric Research (NCAR), in the Uslfahscheme where
the cloud amount at each grid box was diagnosed empirically from relativedity (Washing-
ton, 1974). Although these schemes remained within models for some ya&ars§lago, 1980,
1987), since the 1990s most models have a prognostic cloud water c(atem@times separated
into different phases of liquid, ice and mixed phase). In addition, sormeperizations treat
cloud fraction as a prognostic variable. This section examines cloud sshfemiquid water
content (section 2.4.1), ice water content (section 2.4.2) and cloud figstation 2.4.3). Also

of importance to radiation calculations is the amount of cloud the radiationgptssegh. How-
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ever, the only information carried within the model is the value of cloud fractiba vertical
column of model grid boxes is not completely clear and not completely clowdye .ssump-
tions must be made as to how different layers of cloud are overlapped highimodel. This is

discussed in section 2.4.4.

2.4.1 Liquid Water Content

The first step in developing a prognostic cloud scheme involves derivirggaation for the rate

of change of liquid cloud water mixing ratigy;j. The simplest schemes make no distinction
between liquid water mixing ratio and cloud ice mixing ratig) @t this stage, so that actually
incorporates both phases. The rate of changg dépends on various source and sink terms as

follows (following, Smith, 1990):

d d d d d d d
dar _ <ﬂ> N (ﬁ) N <ﬂ) N (ﬂ) N <ﬂ> + <ﬂ> . (2.13)
dt dt Japy  \dt )prep \dt )y \dt )Jgp \dl/)p \dt/cy

In equation 2.13, the subscripts of each term are as folloW31” refers to advectionDI F' F
refers to horizontal diffusion7 M refers to vertical turbulent mixing from the boundary layer;
ST refers to stratiform cloud formation (due to condensation) or dissipatiom t@evaporation);
P refers to the loss by formation of precipitation afid” refers to the source of cloud water by
detrainment from cumulus convection. The advection term will be positiveiétts a net flow of
cloud into the grid box from neighbouring cloudy grid boxes. The diffuggrm will act to move
cloud water from where there is a large amount to where there is little. Thisittear be positive
or negative, depending on whether the grid box has more or less cldedtvan its neighbours.
The turbulent mixing term can either mix in dry air into the clouds from a less huoiddary
layer, or in the case of a warm front, where the cloud base gradualgdés with time, moist
air can be mixed in from a humid boundary layer. The stratiform cloud temhase either sign,
depending on whether the air is rising, cooling and condensing, or whetikesinking and the
cloud is evaporating. The precipitation term is always negative; cloudrvigatever gained by
rain production. The detrainment from cumulus convection is always pesttiere is never a

sink of cloud water by this process.
The principle of having a cloud water content represented by a prigmnasiable was first
developed by Sundqvist (1978), who used only the terms for advediftusion, stratiform cloud

formation/dissipation and precipitation formation. The basis for the clouchsebesed for the

20




CHAPTER 2: Using Radar and Lidar for Model Evaluation

last 15 years in the Met Office unified model is Smith (1990), which useatrou2.13, ignoring
only the convection term, as in his model version, the convection schemeoivesupled to the
cloud water content scheme. The Smith (1990) scheme carried a singlecaatent, making
the distinction of liquid or ice phase only for the precipitation and not for clomdich was
assumed to have just one water content. The distinction of precipitation plaaseased on a
linear function of temperature as shown in equation 2.14, with being the fraction of the total
water content of the grid box which is liquid. The variableés. and7} are the temperatures at
which all the precipitation is assumed to be solid and all liquid, respectfully.eisthith (1990)
scheme the value ;.. is 264.16 K and the value @f, is 273.16 K.

acp = 0 T< T%ce

T-T,
acp= g Tl Tiee <T <To

acp = 1 T>1Tp (2.14)

In a similar manner to the Smith (1990) scheme, the ECMWF model (Tiedtke, 18BB)ses
just one variable for cloud liquid water, with the phase (based on earlige byoMatveev, 1984)
being a function of temperature as shown in equation 2.15, with the vallig.dbr this model

being 250.16 K andj being the same as in Smith (1990).
acp = 0 T < Tice
acp= (5%e) Te<T <D
acp = 1 T > T (2.15)

Figure 2.3 shows the change in phase §) with temperature for the two different schemes. It
can be seen that for the Matveev (1984) scheme that there is a tendetiwyinodel to maintain a
water phase at lower temperatures than the Smith scheme. Cloud phasesssheimas Matveev
(1984) and Smith (1990) have been evaluated in a number of aircrairandd-based studies.
Boweret al.(1996) found that there was generally a sharp change in phase beter@eand-10

°C over both maritime and continental clouds; they also found that the theertiet Office
parameterization of phase was biased by abdi® 3o that more ice clouds were occurring at
higher temperatures. This work is verified by Fieldal. (2004), who also noted the sharp drop
in phase by-10 °C in the majority of flights made over Chilbolton. Finally, Hogetral. (2003b)
found using flights from data over Chilbolton, that both the Met Office aGMB/F models
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Figure 2.3: Phase function for the Smith (1990) and Matveev (1984) schemesagepfalue of 1 implies that all

of the cloud phase is liquid.

overestimated the frequency of clouds including liquid water, especiallyrgidratures between

0 and—10 °C. Below —25 °C, the models tended to underestimate the liquid water fractions.
Work by Boweret al. (1996) suggested that these results were reasonable for the mid-latitudes;
most cloud contained a spread of phase from 0 to 1°&t &d by—25°C, all cloud phases
recorded were beneath 0.1. However, similar experiments over New ¥st@ved a spread of
clouds witha of 0.75 or above between temperatures of 0 a26 °C. Close to—10°C, most
observations showed a phase of 0.8 or higher, which is quite differemt the Smith (1990)
parameterization in figure 2.3. The Smith (1990) scheme has since beerereplith a scheme

by Wilson and Ballard (1999) which considers cloud in both the liquid and iesghas separate

prognostic variables; this methodology will be studied in the next section.
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Figure 2.4: Diagram showing the different phases and cloud phase changespescis the Met Office Unified
Model (from Wilson and Ballard, 1999)

2.4.2 Ice Water Content

So far we have only studied models with a single cloud water content vartateever, different
cloud phases produce different radiative effects and hence to makeviempents to cloud radia-
tive transfer, the separation of cloud water content into phases is impoviéison and Ballard
(1999) extended the scheme of Smith (1990) to allow each grid box of th&®iffiee model to
represent water in different phases of vapaiyice water contentyf) and liquid water cloudq)
as shown in figure 2.4. The arrows between the grid boxes show thesaifterent microphysi-
cal processes that are parameterized within the model. It should be nateldighto implications
of model run time to produce a forecast, all ice is classified as one varibbte;is no distinction
between hail, snow, cloud ice or graupel.

The separation of cloud water into liquid and ice quantities has a number ahtdes for
a NWP such as the Met Office Unified model. Wilson and Ballard (1999) natetieir method
of splitting water content into ice and liquid prognostic variables has manyngatyes over di-

agnosing phase from temperature, as in Smith (1990). In particular, dneteetter predictions
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of freezing rain and drizzle than the Smith (1990) scheme and that visibility ée8rage much
better due to drier boundary layers resulting from correct parameierizaf rain evaporation.
These are just two aspects which will be of direct benefit to forecasédtisough some of the
small-scale effects such as visibility and localised precipitation are not astampan climate
models, which concentrate on a much larger picture, the production of iod alad the differ-
ences between radiative transfer through liquid and ice clouds is signifo@ugh to justify a
separation of liquid and water clouds in most GCMs, which has been dorwria sases (for
example Fowleet al,, 1996 and Ghaet al,, 1997), which were designed specifically as GCMs,
without being developed as part of a suite of models with different glabadrages, like the Met

Office Unified Model.

There is little non-radar evaluation of model ice water content; Stepdteais(2002) shows
some of the results of vertically integrated cloud water from different GCdder the polar
regions where this is most likely to be ice the measurements of integrated cloedwaey as
much as a factor of ten. This issue can be aided by the use of radar; thiewlibcussed further

in section 2.5.2.

2.4.3 Cloud Fraction

Although at present most climate models and operational forecast moslela beognostic water
content in at least one phase, the majority use a diagnostic cloud fracttbnust a few models
having a prognostic cloud fraction. Initially, all models used a prognosti@igyater content but

a diagnostic cloud fraction. For example, in Smith (1990) the cloud fracfigh\Was diagnosed
from relative humidity R H), defining a critical relative humidityK H.;;), at which cloud begins

to form. The value oRRH...;; is 85% for all but the two model layers closest to the Earth’s surface,
whereRH.,,.;; is 92.5%. This scheme can be expressed diagrammatically, as shown irefigure
The distribution of total specific humidityy() in each model grid box is assumed to be a triangular
pdf, with the mean humidity corresponding to the peak of the distribution. Thegtrlar function
can move left or right on the axis, dependent on the grid box total spegfier content. When
the humidity exceedsHH.,;:), the right hand side of the triangle crossesghg line and some

of the water content is converted to liquid cloud waigj 6r ice cloud §;); the cloud fraction is
then simply the integral of the probability distribution@fthat is greater thany(,;), denoted by
the blue triangle labelled ‘CF’ in figure 2.5. Figure 2.6 shows the Smith (1980ydraction as
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Figure 2.5: The method of Smith (1990) for determining cloud fraction from humiditaseements. A typical

triangular distribution of humidity is shown, with the blue area representinglthel fraction.

a function of humidity. Cloud fraction increases as the humidity exceeds itsatnttue, with
half the grid box filled with cloud when the relative humidity is 100%. The grid iscompletely
cloudy once the grid box mean relative humidity reaches 115%. This gratlesss for sub-grid
scale variability within the grid box; if the grid box mean relative humidity is 100%dp#s not
automatically mean that all the grid box is cloudy and by setting cloud fraction foatel 15%
mean relative humidity is more realistic as it does not allow the grid box to be corypteady

until it is supersaturated.

Wood and Field (2000) compared the Smith (1990) parameterization to airgasurements
of cloud fraction from the First ISCCP Regional Experiment (FIRE), Altlantic Stratocumu-
lus Transition Experiment (ASTEX), and the European Clouds and RadliBkperiment (EU-
CREX). They tested the parameterization in ldW)(< C+ < 0.3), medium (.3 < Cr < 0.7),

and high 0.7 < Cr < 1.0) occurrences. The root-mean squared error for low cloud fraction
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ranged from 9-14%, but was as high as 30% for the other categotiesSrith (1990) method
was used to diagnose cloud fraction within the Met Office model until a mstgncloud fraction
was introduced (Busheét al,, 2003). Wilson and Ballard (1999) used the Smith principles to
diagnose both liquid cloud fraction and ice cloud fraction, assuming two diiits for cloud

ice and cloud water.

Initial attempts to produce a prognostic cloud fraction were pioneered oyKE€1993), who
introduced a scheme for the ECMWF model. The basic equation for the ratanfje of cloud

fraction is similar to equation 2.13:

dc dc dc dc dc
% (D) (Do () (D
dt dt ADV dt DIFF dt TM dt ST

dc dc
+ (—f> + <—f> . (2.16)
dt ) gy dt ) v

However, comparing the two equations we see that the precipitation gendsatioin equation
2.13 is replaced by a general evaporation term (subséripy in equation 2.16, which has to
be negative by definition. It should also be noted that the stratiform tefyniciudes cloud
formation and not dissipation. Similar equations were produced by Grega (2002) and
Bushell et al. (2003); the latter describes the prognostic cloud fraction currently wsthih
the Met Office Unified Model. As noted by Busheit al. (2003), sub-grid scale variations of
cloud fraction are important for radiation and surface temperature catmgaand the use of a
prognostic cloud fraction improves the radiation calculations within their modevjging the
correct overlap assumptions are used. Overlap aspects will be didcusghe next section;
however, the debate about whether a prognostic cloud fraction isesh@edenodel still continues.
While a model liquid water content is directly related to physical processesaporation and
humidity, cloud fraction calculations are more complex and subjective. Itfisulifto evaluate
model cloud fraction using passive instruments and observers aloneyéoradar and lidar are

useful tools for this purpose. A review of work in this area will be made atise 2.5.3.

2.4.4 Cloud Overlaps

In addition to the model cloud variables (such as liquid water content and &laction), each
model has to make assumptions about how clouds are overlapped betwvéeal grid boxes.
The way clouds are overlapped is important for calculations of radiatesfer, cloud albedo

and optical depth.
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Figure 2.6: The method of Smith (1990) for determining cloud fraction from humiditasugements. Note that
once the humidity passes the critical value of 85% that cloud begins to fadrtha grid box is fully cloudy at relative

humidity of 115%.

The three most common model overlap assumptions are shown in figure thé.dase of the
maximum-random overlap (after Geleyn and Hollingsworth, 1979 and Mtiecand Fourquatrt,
1986), the clouds are overlapped so that neighbouring cloud in thealagtioverlapped to the
maximum extent. However, where there is a completely clear grid box betweediffigrent
cloud layers, random overlap takes place. In the case of the maximutapassumption, the
clouds are arranged so that there is the maximum amount of overlaplesgavflany clear layers
and in the third type, random overlap occurs throughout the column.

Currently, most GCMs and NWP models (including the Met Office Unified Nadel the
ECMWEF model) assume a maximum-random overlap between layers as it is eagldment
and the results agree with some observational studies (for example, THaBuary, 1989). It

would seem sensible at first to have layers separated by clear skynmndverlapped, as they
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Figure 2.7: The three main types of overlaps used in GCMs, taken from Hogan arginthirth (2000). The dashed

line shows what the total cloud cover in the column would be when viewed &toove.

may have been produced by different atmospheric conditions and tovhaieally-continuous
layers overlapped to their maximum extent as they may well have been pobdhycsimilar

conditions such as frontal systems or deep convection.

The effects of different overlaps have been examined by seveidibstuJakob and Klein
(1999) used a sub-grid-scale precipitation model to examine how ECMWIE oleerlap changes
affected the microphysics within the model. They found that the cloud ovedapmption is
important for total column precipitation. By changing the overlap from maximangdom to ran-
dom overlap within the sub-grid model, they found that the stratiform pretipiteate decreases
across the whole globe. Morcrette and Jakob (2000) looked at thgethamthe ECMWF model
overlap assumption would bring on cloud and radiation. They found tlaigthg model overlap
assumptions in the ITCZ varied the outgoing long wave radiation by as mudh\asm—2. In
addition, there were large changes in simulated global cloud cover. Farttlem overlap, cloud
cover was as high as 71.4%, but it decreased to 60.9% when a maximulapoves assumed.

For the maximum-random overlap, a value in between these two extremes9%6 B3recorded.

Currently there is very little observational data available to evaluate ovddtgties in mod-

els, but radar can again be used for this purpose. This is will be exanmisedtion 2.5.5.
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2.5 Comparisons Between Radar/Lidar and Models

Although in some cases cloud parameterizations have been evaluatedlasthgesolving mod-
els (e.g. Xu and Krueger, 1991), it is normal to use some form of ohsens to assess model
performance. It is particularly useful to have observations of the tragables used in the mod-
els: cloud fraction, liquid and ice water contents. However, it is very diffio measure directly
cloud fraction or water content of a cloud. The majority of experimentsipuely conducted
have used measurements from aircraft, plus satellite or ground-basetersensing and cloud

variables have been derived from measurements made from these inggume

For the past ten years or so, advances in radar and lidar technolegyath@wed a number
of new systems to start operating, such as active remote sensing froe) Bypgopler cloud radar
systems and dual-wavelength radar. In addition, a number of methoddeemedeveloped to
retrieve model variables of liquid water content, ice water content and dlagtion directly
from radar and lidar measurements of clouds. These methods will be exhmisabsections
2.5.1-2.5.3. Further to the retrieval of individual model cloud variablki#, ores denoting
the performance of individual forecasts of cloud location have also Beeeloped. This will be

covered in section 2.5.6.

2.5.1 Radar and Lidar Evaluation of Liquid Water Content

Measurements of liquid water content from radar reflectivity have beggested for some time.
The earliest work was by Atlas (1954), who suggested a power law neséiijp that related radar
reflectivity and liquid water contentZ = 0.048LWC?2. Since this study, several different forms
of this power law relationship have been suggested (for example Saivege Omar, 1987;
Baediet al,, 1999). However, Fox and lllingworth (1997a,b) show that drizzlgkits dominate
the reflectivity of a stratocumulus cloud, and can increase the radacti@fieby between 10
and 20 dBZz, although drizzle makes little change to the liquid water content afdbd. Since

drizzle is nearly always present, this effect can cause these empéliaabnships to fail.

As there has been some uncertainty in which technique to use and problendrizitle,
recently more physical approaches for estimating liquid water contentleavedeveloped. Boers
et al.(2000) used a variety of remote sensing instruments to determine liquid watentoTl hey

first determined the cloud thickness using radar and lidar measuremdiosetbby estimating
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the liquid water path from microwave radiometer data. By assuming the liquid wartgent
varied linearly with height, it was then possible to determine liquid water conteartyaheight

within the cloud.

An alternative method for determining liquid water content has been suggegtérasnov
and Russchenberg (2005), which uses radar-lidar synergy tardeteliquid water content of
clouds. This uses the ratio of radar reflectivity to lidar extinction coefftdieiorder to classify
every cloud range cell in the vertical radar/lidar profile as either withdazldy, with light drizzle
or with heavy drizzle. They categorise a numberof.IWW C relations from previous studies
(For example Atlas, 1954; Sauvegeot and Omar, 1987; Fox and Illingni®97b; Baedet al.,
1999) and give power law relations for cloud with no drizzle, light or lyednzzle. Although
this technique appears to give results in some conditions, there are stillnolintgtésssues of how
accurate radiometer measurements are during precipitation events, andithbe problems in

the thicker clouds where the lidar signal is extinguished.

Although both techniques for liquid water retrieval are used within the Cldyshogramme,
the method of Boerst al. (2000) is the most physically-based relationship. Although it may
be argued that the assumption that LWC increases linearly with height fiard base may be
false, liquid water clouds are frequently thin (lllingwoshal., 2007) and so this retrieval method
is more realistic than using empirical formulae that are likely to break dowmgiwny form of

drizzle precipitating from the cloud.

Illingworth et al. (2007) use data from three Cloudnet sites to make comparisons with 7 mod-
els (ECMWEF; Met Office mesoscale and global model&td France; Royal Netherlands Mete-
orological institute (KNMI)'s regional atmosphere climate model (RACMGye8ish Meteoro-
logical and Hydrological Institute (SMHI) Rossby Centre Regional Atrhesic Model (RCA);
German weather service (DWD) Lokal Modell (LM)). The results frora @loudnet data are
shown in figure 2.8. It can be observed that the 2 Met Office models anB@MWF model
come the closest to the spread of observed liquid water content below 2 kere &re some
problems with quite a number of the other models, such as ttedvFrance model having dif-
ficulty representing a spread of liquid water contents; this is probably diteed@gnostic liquid
water content scheme, where most of the other models use a prognoistizteséor liquid water
content. Above 2 km, the liquid water content measurements of all models hargeaspread,

due to phase changes in the models. lllingwattal. (2007) present observations for the year
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Figure 2.8: (a) Mean liquid water content profiles from the 7 Cloudnet models arat @lservations, for the whole
of 2004. The error bars on the observations are due to radiometgrassibly distribution of LWC throughout the
cloud. (b) Histograms showing the probability of LWC for clouds betweand®3 km altitude. Both figures are for all
liquid clouds observed over the 3 Cloudnet sites at Chilbolton in HampsZeteauw in the Netherlands and Palaiseau
in France. During winter, the dominant cloud types will be frontal stratadus, while in Summer, the higher liquid
water content values are more likely to be due to convective cumuluswandlenimbus. From lllingwortfet al.
(2007).

2004 with no seasonal variation; it would be interesting to see how models@&qtation changes
between summer and winter seasons with the change in the height of thiedriesel. They also
find that the ECMWF model overestimates the occurrence of liquid water €ldwd underesti-

mate the water content when cloud is present.

2.5.2 Radar and Lidar Evaluation of Ice Water Content

In similar fashion to the work on liquid water content, power law relations wetially suggested
for ice water content measurements from radar (e.g. Sassen, 138énSand Liao, 1996), but
Matrosov (1997) questions these relations. By comparing relations firorafa data from previ-
ous experiments (Liao and Sassen, 1994; Adtaa., 1995; Brownet al, 1995), Matrosov (1997)
finds that for a particular value of reflectivity there was a spread arted IWC up to as much
as one order of magnitude. However, Liu and lllingworth (2000) show tthia difference is
mostly due to differences in the radar frequencies used in the diffememaigns and differences
in how the density of ice is represented. After examining EUCREX (Eurmp@aud Radiation
Experiment) and CEPEX (Central Equatorial Pacific Ocean Experimetd)s#ds for particle
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size distributions, Liu and lllingworth (2000) suggested that measurememntsan particle size
or temperature could be used to constrain the IWC spread and give anoimékations linking
ice water content to reflectivity for different temperatures. Hoghal. (2006) took their work
one stage further and derived the following relations for IWC at differadar frequencies using

EUCREX aircraft data of the form
log1oIWC = aZT + bZ + ¢T + d, (2.17)

wherea, b, ¢ andd are coefficients which vary with the frequency of the radar and the units
used. Using 39 hours of scanning 3-GHz radar data, Hegah (2001) compare the mean ice
water content versus mean temperature for 3-GHz radar data, and theffite model. They
find that the mean relationships of the model and the radar betwgé@mnd —30 °C are close,
with a standard error at most of 25%. At higher temperatures, these iverga, possibly due

to aggregation. At lower temperatures, the model underestimatdditiie; at —45 °C, this is
around a factor of two. However, a close fit betweer) and—30 °C is promising for the Met
Office model, as the majority of radiatively thick ice clouds do occur at thespdeatures and
from studying Cloudnet data, it can be seen that in fact the majority of iaedslon the mid

latitudes occur in approximately this temperature range.

In addition to the work of Liu and lllingworth (2000) and Hoganal. (2006), other methods
have been suggested for deriving IWC from radar and lidar measatesmBonovan and van
Lammeren (2000) have developed a technique where they obtain ativeffadius from the ratio
of radar reflectivity to attenuation-corrected lidar backscatter and iséotbbtain particle size
and hence ice water content. The main drawbacks with this work is that thed igm ground-
based lidars is often completely extinguished through low-altitude liquid wateds|although
this techniqgue may have more merit with the combined CloudSat and CALIPS@alatapace.
Assumptions that relate the effective radius derived from the raddidardneasurements to the
true effective radius are made on the basis of ice particle habit. Uncersaimtietermining the

habit may lead to errors in the ice water content measurements.

An alternative to the Donovan and van Lammeren (2000) technique is tauabevavelength
radar. Hogaret al. (2000) used this technique to calculate particle size and hence improved
IWC from the ratio of the two reflectivity values (dual wavelength ratiosuasing a gamma
distribution of ice particles. However, there is limited data available at two wag#is, although

this technique shows potential for the future.
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Finally, methods have been developed using Doppler velocity and reifigdtivobtain ice
water contents. Matrosoet al. (1994, 1995) use radiometers, radar reflectivity and Doppler
velocity, and Delan@et al. (2007) use just radar reflectivity and Doppler velocity, and assume
a particle size distribution with relations on how parameterized fall speegismtdr diameter.
Delanc et al. (2007) uses Doppler velocity to gain the mass of the particle from an assumed
fall speed, and then uses reflectivity to get the intercept parameter péttiele spectrum. This
method is useful as it only requires Doppler radar measurements, bbfestsio the assumptions
made on the particle fall speed. In addition, the particle terminal velocity isireattty measured
by the radar; the measured velocity includes components of the air velohitsh wan introduce
errors into the method around the turbulent cloud base. Although not géydiated by Delané
et al. (2007), using a clear air radar, the air velocities can be determined anzdggerminal fall

speed extracted.

The Cloudnet programme (lllingwortt al., 2007) has used the techniques of Donovan and
van Lammeren (2000), Hog&t al.(2006) and Delan®et al.(2007) to evaluate IWC in the seven
operational models. Results of this analysis are shown in figure 2.9. lteca@en that Met Office
models and ECMWF model make the best representation of the mean profNCaimd that the
RCA model appears to have too large an ice water content throughoutdfile,pwith the pdf
of IWC shown in figure 2.9 (b) shows a large probability of ice water castbatween 0.01 and
0.1 g nT3. The German weather service’s model has the closest representatienpuff, but is
very poor at representing the mean ice water content, as it underestingies thater content
by 1 order of magnitude below 6 km, and overestimates it by roughly halfger of magnitude

above 6 km.

2.5.3 Radar and Lidar Evaluation of Model Cloud Fraction and Cloud Occurence

Having examined radar evaluation of model water contents, we now turn koalolbow radar
and lidar can be used to evaluate model cloud fraction. Although earlide aas been done
on cloud boundaries and vertical extent using radar and lidar (fonpbeaPalet al., 1992; Uttal
et al, 1995), the first radar and lidar study for model comparison was atediy Maceet al.
(2998). In their work, cloud occurrence in the ECMWF model was coethay measurements of
cloud occurrence from a 35-GHz radar operating at the Atmosphed@ian Program (ARM),

Southern Great Plains (SGP) site. A lidar ceilometer was used to determine#tietoof the
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Figure 2.9: As for figure 2.8, but for ice water content. The profiles shown inctimtéed lines which are the model
results before filtering to remove cloud that the radar would not deteethiBtograms in (b) are between 3 and 7 km
altitude. From Illingworttet al. (2007)

cloud base. Using a month of data, Maatel. (1998) found that the model underpredicted cloud
occurrence between 1 and 9 km, but overpredicted the cloud occarbemeath 1 km and above

9 km.

Similar work by Beeslet al. (2000) used synergy with a 35-GHz radar and a lidar ceilometer
for cloud base detection located over the Arctic. They compared howfiigs of cloud fraction
in the ECMWF model over a 24 day period in November 1997 with the same pefictar
observations, and showed similar results to Metal. (1998), given Mace used a frequency of
occurrence and Beesley hourly cloud fraction. Beestegl. (2000) found that the model under-
estimates cloud from 1-5 km and overestimates it above 5 km. Due to the coltegrtgures
over the polar regions, the ice cloud will exist at lower altitudes in both tharrad the model.
Hence the overestimate at the Artic at 5 km is probably due to the same prolilenoavmuch

ice cloud above 9 km reported by Maetal. (1998).

Hoganet al. (2001) continued the work of Maca al. (1998) and Beeslegt al. (2000) by us-
ing 35-GHz and 94-GHz radars at Chilbolton in Hampshire. Instead of adngpcloud fraction
or frequency of occurrence, Hogahal. (2001) examined three variables: mean cloud fraction,
frequency of occurrence and amount when present. Cloud fracagrdetermined by assuming
a model grid with one hour time resolution and the model vertical grid resolutidrclaud frac-

tion was determined by the number of piXeteen by the radar in this grid box. Frequency of

1One pixel in data from the Chilbolton 35-GHz and 94-GHz radar data is 6@mby 30 seconds in time.
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occurrence is simply the frequency that some cloud (above a cloud frdteshold), is observed
above Chilbolton in each hourly profile, and at each model vertical gnd Bocloud fraction
threshold of 0.05 was selected so that grid boxes with cloud fraction griésate this amount
were defined as having cloud. Amount when present is the cloud fradéitmtted when cloud
fraction in a grid box is above the threshold. Multiplying frequency of o@mce and amount
when present together results in mean cloud fraction. Hegah (2001) also attempt to be fair
to the model by removing modelled cloud that has too low an ice water contentdetbeted
by the radar and where, in some mid-level cases, it was difficult to distim¢peisveen ice cloud
and precipitating snow. To ensure a fair comparison, the snow-flux batwertical grid boxes
is used to increase the ECMWF model cloud fraction. Hoggal. (2001) find that even after
these considerations have been made, the model overestimates the atad &aove 7 km by a
factor of 2. They note that the modelled cloud tends to occur in the lowest kKilerag much as 3
hours before any cloud features are observed in reality. This is similantz&i al. (1998) who
note that deep cloud events are often predicted too early, and take tomIdisgipate. It should
also be noted that the Mace study took place at a lower latitude than the HagsgnEhis means
that the ice clouds within the model and observations existed at a higher altitisiékely that
the problems expressed by Maeteal. (1998), Beesleyt al. (2000) and Hogaset al. (2001) are
similar in nature; the ECMWF model has difficulty in correctly representing iceds; but the
altitude difference is likely to be due purely to the latitude difference betwesethtee data sets.
lllingworth et al. (2007) perform cloud fraction analyses following Hogetnal. (2001) on the
various models that take part in the Cloudnet project. The results from tis ave shown in
figure 2.10, where they are presented as profiles (with and without fitesiremove cloud that
would not be detected by the radar) and as a pdf of cloud fraction. dhadts for the ECMWF
model are similar to those of Hoganal.(2001), with the model having difficulty in representing

cloud above 7 km.

From the pdf in figure 2.10, it can be seen that the Met Office model hiisutty in repre-
senting the cloudiest grid boxes (those with cloud fraction values from AR fbhe Met Office
model has some problems representing the mean cloud fraction from 0—6Here Woth the
global and mesoscale models underestimate cloud fraction by around 59¢e Atkm, the Met
Office models tend to overestimate cloud fraction by 2—3%, which is in line with aidisé other

models. The RCA and RACMO models have problems in representing the clthaltap of the
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Figure 2.10: Cloud fraction from radar observations and 7 operational models, Iifigworth et al. (2007). As
in figure 2.9, each model profile has a dotted line, which representdate fraction before filtering to remove any

cloud which would not be detected by the radar.

boundary layer; at 1.5 km, they overestimate cloud fraction between 5@#td Probably the
best performer is the German weather service (DWD) model, which malesieagproximation

to the cloud fraction pdf and mean cloud fraction profile.

Although ground-based instruments are useful for climatological stuéitee dbehaviour and
performance of clouds within models at a single point, coverage over tbiewiodel domain
is useful. Spaceborne remote sensing has been proposed for a long.imAt{aset al., 1995;
Hogan and lllingworth, 1999). The Lidar In-space Technology Expent (LITE), described
by McCormicket al. (1993) offered the scientific community the ability to test the potential of
spaceborne lidars. The lidar instrument flew on the space shuttle “Dis¢alging September
1996. Milleret al. (1999) compared the lidar data to the ECMWF model and used the same skill
scores suggested by Maetal. (1998) for their ground-based study. Milleral. (1999) find that
the model is good at getting the cloud position correct. They give few statistickoud fraction,
but give a percentage relating to how often cloud is detected within the n2&18p in total) and
the observations (28.4% in total) with no latitude or height variation. This doegive much

information into how good the climatology of the model is in terms of cloud fraction.

In 2003, another spacebourne lidar mission, ICESat (Ice, Cloud and-Elevation Satellite)
was launched (Zwallet al,, 2002). This is a platform from space, upon which a lidar instrument
called the Geoscience Laser Altimeter System (GLAS) is mounted. Althoughintsugraims

were to measure the height of the ice sheets in the polar regions, the les@ls@sensitive
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enough to enable global observations of clouds. Already, data frdBS&Chas been used to
evaluate cloud models. Paktal. (2005) advanced the work of Millet al. (1999) using ICESat
data. In a short experiment, they average the ICESat data on to the nmimdiel g horizontal
direction, yet interpolate the model cloud fraction on to the ICESat vertigél hey find that
over a few orbits that the model represents cloud fraction to within 3% beldkwilfor a 6 hour
forecast. Between 10 and 12 km, the model underestimates cloud fractas roych as 10%
and between 12 and 17 km, the model has a 10% overestimate in cloud fr&cirahe 48 hour
forecast, the overestimate is as large as 30%, and between 3 and 10 lretzst overestimates
the cloud fraction by 5%. However, like Milleat al. (1999), they make no attempt to correct for
the lidar attenuation, but Palet al. (2005) note that total extinction of the laser only occurs in

about 10% of cases.

2.5.4 Radar and Lidar Simulation

In sections 2.5.1-2.5.2, the methods of evaluating models all involved takiagaad lidar data
and transforming it to a model cloud variable. As discussed in chapter IJpdsisible to go the
other way and simulate radar or lidar data from the model variables, altlomlgh few previous
examples of simulation of clouds exist within the literature. Chiriatal. (2006) were able to
use the MM5 model (5th generation Pennsylvania State University-NCARSuale model) to
simulate observations made by radar and lidar at the SIRTA (Site Instrunden®dcherche par
Téledetection Atmospérique) observatory in France. The principle lies in using the microphys-
ical assumptions made in the model along with the model variables to predictrearad lidar
data. An example of this is shown in figure 2.11. It can be seen that the MMlmooduces
ice cloud about 3 hours too early than in the radar observations and thaschteflectivity is
too low, although the cloud is at approximately the correct height. The simdidgadprofile
shows ice cloud at the right altitudes, but the model is unable to represamidHayers of cloud
present. Both simulated radar and lidar signals seem very uniform in pafitidittle time vari-
ation. However, Chiriacet al.(2006) find that in the majority of cases, the MM5 model is able to
simulate ice clouds in the mid-latitudes, but in 35% of the cases studied, the icks elihin the
model persist for too long, due to too much solid water and not enough licaterwegardless of

the parameterization scheme used.
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Figure 2.11: Simulation of radar and lidar data by the MM5 model on 17 October 2008ntékm Chiriaccet al.

(2006). (a) Simulated lidar backscatter profile; (b) Measured lidakdzatter profile; (c) Simulated and measured

backscatter profiles for 0900 UTC; (d) Simulated radar reflectivity wittetiife) Measured radar reflectivity; (f):

Measured and simulated profiles for 0900 UTC. The time scales in jajdjb& (e) are in UTC.

2.5.5 Overlap Evaluation

Radar data has been used to test the validity of overlap assumptions. Hegdlingworth

(2000) developed a method to express the overlap of different modeklayenerically, with
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values of an overlap parameter of zero for random overlap and emaa®imum overlap. This
was tested on a small amount of data from Chilbolton. Later work by Macd3andon-Troth
(2002) used a much larger data set from 4 ARM sites ranging from thiesrtpAlaska, and over
a much longer time period (collectively 105 months of data). Results from lagibrp report that
the use of random overlaps for vertically non-continuous cloud (that el&hr sky in between
layers) is a good assumption. However, the use of maximum overlap finaouas layers is only
realistic when the layer separation is small. Hogan and lllingworth (200Qy $hat as model
level separation increases, the validity of the overlap assumption desrfasn a maximum
overlap at 0 separation to near-random overlap at 4 km. They preposeonential relationship
with an e-folding distance of 1.6 km to allow the overlap parameter to decay witkasing
level separation, so gradually more cloud is randomly overlapped agpgihg increases. Mace
and Benson-Troth (2002) note that the cloudy layers do not easily lemdseives to a simple
maximum or random overlap assumption and that for layers much greatetkhaseparation,

random overlap would be a better assumption.

2.5.6 Skill Scores

In addition to the climatological performance of the model, the quality of indivitbwacasts can
be assessed using skill scores. There are many such scores, @amedf which are detailed in
Wilks (1995). The principle for radar evaluation consists of first tramsig the radar and model
data on to a common grid, as per the Cloudnet programme described in s&bdhs?.5.2.
Then each point in the radar data matrix is transformed into a binary scibihea wloud fraction
threshold used to define whether a grid box is clear or whether it is cldtithe cloud fraction
in the box exceeds the threshold, its binary score is set to one, otherwisedte is zero. By
comparing the two data scores, each grid box can be classed as a hit, a falss,alarm or a

correct rejection following table 2.2.

Maceet al. (1998) were the first to use skill scores to evaluate model cloudiness tzlar
and lidar measurements. They used skill scores of hit #dtR)( probability of cloud detection

(POD), threat scoreq(S) and false alarm rateF{A R) to judge model (after Wilks, 1995):

B (A+ D)
HR_(A+B+C+D) (2.18)
POD = ( A(i) ) (2.19)
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Radar/Lidar grid point fulll Radar/Lidar grid point empty
(score 1) (score 0)
Model grid point full Hit False Alarm
(score 1) (A) (B)
Model grid point empty| Miss Correct Rejection
(score 0) © (D)

Table 2.2: Definition of skill score parameters, the letters denote the symbols usegresent these variables in
the skill score equations. For an accurate comparison, the two setsaafdat be on the same grid (For example,

Maceet al.(1998) used the model vertical grid and 30 minute time resolution).

_ (4)
TS = R e (2.20)
FAR = %. (2.21)

Maceet al. (1998) presented results from these skill scores without any heigleindence
and with a cloud fraction threshold of zero (that is any cloud amount withiidabgx counts as
cloud present) over a 3—month period (the same as in described in secti®nat® discovered
that in all scores the model performs better than a persistence forexhstimatology, both
generated from radar observations. The model would be giving aqiédrecast itH R, POD,

TS were equal to unity, whilé" AR was equal to zero.

The hit rate displays the ratio of correct forecasts to the total numberexddsts and for the
model is 0.82; however, this does not reflect the amount of non-aaweerof cloud, which is
easier to forecast than cloud occurrence. The model outperformbrifealogy and persistence
forecasts in probability of detection with values of 0.68, as compared to Or3efsistence and
0.23 for climatology. However, this may be biased if the model is consistentgésting cloud
occurrence all the time, so false alarm rate is used by Maek (1998) to assess the proportion
of times the modelled cloud does not have a signal in the radar measuremergsa kbwer score
is better and Macet al. (1998) find that the model has a mean value of 0.45, while climatology
is 0.77 and persistence 0.61.The threat score, which removes nomermauis thought of as the
probability of correctness of a cloud forecast. This has values of 6r4dé model, nearly double

the persistence value and more than 3 times the climatological value.

As part of their analysis into the performance of the ECMWF model using | Miller et al.

40




CHAPTER 2: Using Radar and Lidar for Model Evaluation

(1999) used the same skill scores as Matel. (1998). In addition, they examined the same
scores by allowing the model to be ‘correct’ in the case of it having cléubl grid box in the
horizontal or4+ 1 and+ 2 grid boxes in the vertical. Their analysis was carried out over night
time profiles of LITE only to avoid solar contamination and over 15 orbits of. d&tauming it is
night time 50% of each orbit, this equates to about 300,000 km of data. ©hag the hit rate to
be 0.86, rising to 0.92 when the extra grid boxes were included; the tloe@ was 0.56 rising
to 0.80; probability of detection 0.62 rising to 0.90 and false alarm rate of @lli6g to 0.12
with the inclusion of the extra grid boxes. These indicate that the model isgoey at getting
cloud in roughly the correct places, although it is far from perfect. Jtaéistics presented are,
in each case a few percent better than the Maca. (1998) results, except for the probability
of detection, which is much lower. However, Millet al. (1999) make no correction for lidar
extinction in deriving these scores, hence the model may have accuatdps$t low clouds that
could not have been detected by the lidar, but this will not be obvious therskill scores which

assume where there is no lidar signal then no cloud exists.

Instead of using skill scores previously developed, Patral. (2005) introduce their own
skill score (which | have denoted Palm Skill Scoreqs)) to evaluate the ECMWF model using

ICESat data as follows:
(A-C)
(A+ B+C+ D)

By definition, this skill score can go negative, should the number of hitsdsethen the number

PSS = (2.22)

of misses and its range is froml (all data are misses) tb(all data are hits). It should be noted
that if the model constantly forecasts no cloud (all data are misses amticajections), it has
a negative skill score. Palet al. (2005) also increase the cloud fraction threshold to 50%, only
counting cloud within a grid box that is more than half full in the lidar measuremeictsvaere
model cloud fraction is greater than 0.5. The results using this score lfoam&CESat orbit
(about 20,000 km of data) are 0.800 for the 6 hour forecast and @or4Be 48 hour forecast;
a degradation of the forecast skill as would be expected. Due to theetiffeature of the score
and the 50% cloud fraction constraint, it is difficult to compare their results etfiier ECMWF
model evaluations. The 50% score may be a little unfair on the model shouékdomnple, an
ICESat grid box be 51% full and the model only have a cloud fraction &b,4his would be
counted as a miss for the model but would be a hit in the scores of Btadg(1998) and Miller

et al.(1999). Palrret al. (2005) note that further work on the ECMWF model is required to fully
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test its performance and that their study is only an introduction into using mezasats from the

ICESat satellite to validate models.

Illingworth et al. (2007) examine the scores used by Matal. (1998), but conclude that the
hit rate and false alarm rate used by Mace are not independent oéthesficy of occurrence of
the event. lllingworthet al. (2007) suggest that a random forecast should have a skill score of
zero and instead use an equitable threat score (ETS) as follows:

(A-E)
(A+B+C—E)

ETS = (2.23)

where E is the number of hits given by chance, defined as

A+ B)A+0)
~ (A+B+C+D)

Illingworth et al. (2007) note that the equitable threat score produces the value of 1 for a
perfect forecast and zero for a random forecast and note thatiégsvonly weakly with cloud
fraction threshold. Using a cloud fraction threshold of 0.05, they evalhatscore for all the
Cloudnet models (detailed in section 2.5.3), as well as a persistencedogereerated by the
same method of Macet al. (1998). They note that the forecast skill decreases in summer as the
cloud systems become more convective and stochastic. Model skill semiges from 0.1 to 0.4
and all remain above the climatology. Due to its low sensitivity to cloud fractiorstiule and
low scores for random forecasts, tR&'S is a better method for cloud fraction detection than the

scores used by Mac al. (1998), Milleret al. (1999) and Palnet al. (2005).

2.6 Future Remote Sensing of Clouds and Model Comparisons

The future holds a number of possible developments in the field of cloud$i@mdhey are
represented in GCMs and NWP models. As clouds are one of the largestainties in future
climate, one of the most important things would be to constrain how clouds ihtéthgadiation
and give better estimates of the short wave and long wave radiativedavticlouds. This can
be done with more observational campaigns and particularly with satellitesCiblieSat and
CALIPSO missions (Stepheret al, 2002) are the first step in establishing global long-term
profiles of clouds from space. Combined radar and lidar measurement®agsed to constrain

ice particle spectrum size (as in Intrier al, 1993), and ice water content (as in Donovan and
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van Lammeren, 2001). Eventually these are planned to be carried onntleepsatform as part
of the EarthCARE mission. Dual Wavelength Ratio (Hogdral, 2000) would be useful in
estimating particle size and constraining ice water content and it would bel hbatone day

dual wavelength radars could be operated from space.

Simulation of radar and lidar data has been discussed and many ideaktooward (Bony-
Lena, 2006; Stephens, 2006). In the presence of thick liquid clot@suation of lidar signals
and some radar signals occur. In this case, simulation can allow a faireadsopof modelled
cloud to be produced. In the case of lidar operating at visible wavelergjthslation is partic-
ularly useful as it shows how model clouds would affect incoming soldiation. Simulation is
very useful in providing a model equivalent of the measured radar ar siginal, which allows

data assimilation of the measured signals to take place.

In parameterization the sub-grid scale representation of clouds is becammgimportant.
Already there has been some work into expressing cloud vapour anidfras a pdf over the grid
box (e.g. Tompkins, 2002, 2006) and the treatment of cloud on a sulseald is important for
radiation. Improvements to the maximum-random overlap scheme seem pos&hlthg results
of Hogan and lllingworth (2000) and Mace and Benson-Troth (2081&)wing cloud layers with
grid spacing closer together to have maximum overlap, but layers thatidherf apart to be

semi-randomly overlapped, dependent on the grid spacing.

From the poorer performance of the diagnostiétd France model in representing liquid
water content (lllingworttet al., 2007), the need for prognostic liquid water content is important
for correct cloud representation. Splitting of cloud into different phaseduces good results in
the Met Office models and should continue, although work is required to thakeistribution
of water contents closer to the observed pdf without compensating with afeasan cloud

fraction.
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CHAPTER THREE

Doppler Radar Evaluation of

Evaporating Ice in Operational Models

3.1 Introduction

The representation of ice clouds in operational weather and climate modelsasin crucial to
radiative transfer (e.g. Stepheesal, 1990; Senior and Mitchell, 1993; Lohmann and Roeck-
ner, 1995), but can have several implications for both the dynamics antiehmodynamics of
the model. Clough and Franks (1991) suggested that the dynamics @ftiopat models can
be altered significantly by the evaporation of ice beneath warm fronttdcas. Using simple
numerical models, studies such as Clough and Franks (1991), H&73%)(4and Hall and Prup-
pacher (1976) suggested that due to the low bulk density and fall veloeigvéporation should,
in theory, take place in a shallow layer. This rapid cooling (on the ordeiohaur—') in a shal-
low layer leads to alteration of the thermal structure of warm fronts, afigttiarmal advection
and hence the dynamics of the front. Forbes (2002) and Forbes ajahH2006) examined this
problem using Chilbolton 94-GHz radar observations of approachimgwii@nts. They found
that in the radar observations, ice crystals evaporated at the bottom fybtital surface in a
layer that was 500 m deep on average, with no evaporation layer gteatea depth of 1 km.
When they examined the corresponding Met Office Unified Model datg,dbhserved that this
“evaporation zone” was 2 to 3 times the depth shown in the observationsnishrepresentation
of this layer means that the model does not accurately represent thegcaaimd the base of the
ice clouds and they then showed that this can lead to the front developigdotty within the

model. This can eventually lead to the incorrect position of the front andstceged rainbands.

Forbes (2002) re-ran several experiments using the Met Office nandetuggested several

candidates that may cause the poor representation of this layer in the mioeet dre as follows:

e The model vertical grid resolution may be too low at cirrus altitudes, and s w©lat allow

for a sharp decrease in prognostic variables such as ice water comtentcurrent Met
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Office operational model has a vertical grid spacing between 500 abwh #Dthe mid-
troposphere and so it is not possible to resolve depth scales less than itesckoud

altitudes.

e The relative humidity in the model may be too great beneath the evaporatinguck €his
incorrect representation of the humidity gradient in the model would lead icegrarticle
evaporation rate that is much too low, and hence the particles falling furéierebthey

completely evaporate.

e The model’s ice particle terminal fall speed may be much too high or the numeties in
model much too diffusive. A higher fall speed will lead to the ice crystals falfinther
before they have evaporated. This may also be due to numerical problémthevice

sedimentation term.

e The model's parameterized ice evaporation rate may be much too low, due torathe-

physical assumptions, leading to greater evaporation depth scales.

In addition to these reasons, the effect of turbulence on the evaporati@has not been exam-
ined. The Met Office model only contains turbulence within the boundasrlayowever, at the
base of thick ice cloud, the air can be very turbulent (Harris, 1977nBdbet al., 2003). As the
ice crystals evaporate from the base of the ice cloud into drier air, theoenis significant cool-
ing that occurs, which can trigger convective instability and lead to turbelefmhis turbulence
will increase the amount of entrainment of clear, dry air that could inertfas evaporation rate
of the crystals. As this effect is not represented in the model, the model nigrestimate the
parameterized evaporation rate and overestimate the depth of the evapooato Therefore one

additional candidate for the increased evaporation zone depth caunlée tdhe list:

e The model does not account for the increased evaporation ratedcayisegorous turbu-

lence generated by the ice crystals evaporating from the ice cloud intoytladr dheneath.

Forbes (2002) performed a sensitivity study by modelling a front in onersioe (height).
Part of this experiment involved decreasing the model vertical grid spacitest whether the
model vertical grid resolution was adequate. Starting with a model with anaisedevertical
resolution of 70 layers, he re-ran the model and then gradually decré¢las number of levels

down to the operational level of 38. The results from various resolutionkl then be compared.
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He noted that there was only a 30% increase in the depth of the evaporatien Therefore,

some process in the microphysics of evaporating ice is not being accdantedhe model.

Forbes also compared the humidity profiles in the model with those obtaineddchosonde
launches from the nearby Larkhill radiosonde station. His studies shdve¢ on average, the
relative humidity in the model appeared to be too high just below the frontilcgurHe noted
that this would have a large impact on the evaporation depth scales, ldihcbgay categorically
whether the increased evaporation zone depth was due entirely to thisdaetbether another

factor in the microphysics was also important.

Since the study, the 94-GHz radar at Chilbolton has been updated to mdhsurertical
Doppler velocity parameters as well as standard radar reflectigity These extra parameters
include the Doppler fall velocity, which can be used to examine the fall velo€itye evaporating
ice crystals and the standard deviation of mean Doppler velocity, from wimecturbulent kinetic
energy dissipation rate can be inferred, using the method of Boanall (2003). Thus, other
candidates for the deeper model evaporation depth scale, such agdhq@arameterized fall
velocity and levels of turbulence can be examined in order to try and findetieon why the
evaporation of ice beneath ice clouds is poorly represented in the Mee@ffodel. This extra
information has also been of value in studies of ice clouds and in particulbothrelary between

the ice cloud and clear, dry air beneath.

In addition to the work covered by Forbes (2002), the existence of@t9zradar and model
data can be used to develop our knowledge of ice cloud. Several adloddgts have now become
available as part of the Cloudnet project. This enables an examinationais@roperties of ice
clouds, such as the variance in ice water content and the change in ti#négic energy through
the ice clouds. Not only can this data further our knowledge of ice cldudst can be used to
study how operational models other than the Met Office represent tpermten zone, and find
out if the problems discussed are limited only to the Met Office model or are conbetwveen

all models.

In this chapter, the various candidates for the increased evaporatierdepth in the model
are examined. Section 3.1.1 contains details about the structure of a warm 8ection 3.2
discusses the basic principles and equations used in the Met Office penaateon scheme.
Section 3.3 is an introduction to the radar and model data and their capabilitids,section

3.4 describes the method that was used to compare the two different sats.ofrdsection 3.5,
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the ice crystal fall velocity and its representation in the Met Office model diestu In section

3.6, the role of turbulence on evaporation zone depth is examined, to seeis the reason for
the increased evaporation zone depth in the Met Office model. In sectitme3:@le that density
plays within the model, is looked at by re-running the model parameterizatiemsewith several
different density functions. In section 3.8 the representation of humidityeimrtbdel is studied,
in order to see if the model can correctly represent the sharp drop fiveghamidity that occurs
beneath the evaporating ice cloud. The model’s evaporation rate is alsallgriticalysed— how
does it react to a sharp change in humidity over one grid box? Section 3énpsaesults of the
depth of the evaporation zone for other models— do other Europeaatimpme models all suffer
from an artificially increased evaporation zone depth? A summary of thégéom all sections

is provided in section 3.10.

3.1.1 Structure of a Warm Front

Warm fronts occur as part of mid-latitude cyclones, and both have hedied extensively for
many years (e.g. Wexler and Atlas, 1958; Harris, 1977; Browning aadkiM1982; Browning,
1983; Browninget al, 1995; Cloughet al,, 2000). The flow of cold, dry air beneath the warm
frontal surface has been illustrated many times (e.g. Browning and M88R; Browning, 1985).
Figure 3.1 shows a conceptual model of a mid-latitude cyclone from Branamad Monk (1982).
Plot (a) shows the plan view of the cyclone and the location of the major fléwsogst and
dry air through the cyclone can be seen, including the warm conveypmdech flows along
the cold front and then down the surface of the warm front. The locafidineowarm and cold
fronts, as well as the upper cold front are shown. Looking at thesesestions in plots (b) and
(c), the warm conveyor belt can be seen rising along the slope of tme fkant, and is shown by
the highest values of wet bulb potential temperatégg.( There is a sharp change fip, across
the frontal surface and dry, cold air can be seen to flow from ahe#tieovarm front towards
the frontal surface. Using radiosonde measurements, Taylat. (1983) show that the warm
front is indeed a very sharp boundary between cold, dry air beneatfiaht and warm, moist
air above the frontal surface. Browning (1985) show that precipitattmurs across most of the
warm front. At warmer temperatures, this precipitation will be liquid, but abéigltitudes, the
air will be much cooler. This is the level at which ice will fall and sublimate into theldyer

beneath. This sublimation of ice beneath approaching warm fronts hastaied many times
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Surface cold front Warm frontal surface

Upper cold front

Surface cold front

Figure 3.1: (a): Plan view of a conceptual mid-latitude cyclone showing the locationeoftirm and cold fronts,
upper level cold front and low wet bulb potential temperat@rg) @ir passing through the cold front. (b) Cross section
through the fronts, showing the inflow of dry air ahead of the warm fr@o}. Cross section of wet bulb potential

temperature, with high values 6f, corresponding to moist air. From Browning and Monk (1982).

before (e.g. Harris, 1977; Clough and Franks, 1991). Clough eantkB (1991) hypothesise that
the evaporation will take place in a shallow layer. They envisage that asathi@lf surface is a
boundary between dry air and moist air, there will be rapid ice sublimatiahttas will lead to
air descending beneath the front. This process is illustrated in figure @& this “Clough and

Franks” mechanism shown in figure 3.2, localised circulations within the vidifitye front have
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Figure 3.2: Schematic figure showing the slantwise ascent and descent mechagigested by Clough and Franks
(1991). Dashed contours show relative humidity with respect to icen Rtoughet al. (2000).

been suggested to occur. This has been supported by observatidealoe (Clough and Franks,
1991; Thorpe and Clough, 1991). In addition, Bourgbhl. (2003) show that the boundaries of
clouds can be very turbulent, which is possibly caused by sharp codlihg air as ice particles
evaporate. They derive a method for measuring the turbulent kinetigyedissipation rate within

clouds, which shall be used later in this chapter.

3.2 Model Parameterization Scheme

In order to see how well the Met Office model is representing the ice exipo zone, the as-
sumptions made in the ice parameterization scheme will be used (whether thightoe wrong)

to simulate radar reflectivityA) and Doppler velocity ¥p,p) from model ice water content. If
the model parameterization scheme is wrong, and this is the cause of the elegm@ation zone

in the model, then this will show in the analysis.

The ice parameterization scheme used in the Met Office Unified Model is detaifall in
Wilson and Ballard (1999). The model carries IWC as a prognostic dariabing an exponential

ice particle distribution as follows:

N(D) = Noe 12T =AD — N(T)e™ AP, (3.1)
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where N (D), the number concentration is a function Bf the particle diametef]" in °C and
A = 37, whereD is the equivolumetric median diameter. The model assumesihat 2 x 10°

m~ and the mass of an ice patrticle is parameterized as
m(D) = aD", (3.2)

wherea = 0.069 kg m~2 andb = 2.0. All particles in the model are assumed to be spheres. Ice
particles can have a variety of habits, which generally depend on air tatnpzr However, for
evaporation studies which take place at the base of the cloud, there in@vigiéeld and Heyms-
field, 2003; Westbrookt al., 2007b) that in this region, the dominant particle type are aggregates.
Hence, a spherical particle approximation can be seen to be reasodalrig.equation 3.2, the

density of the crystals in the model can be defined as
pi =0.13D7! (3.3)

wherep; is the crystal density in kg m and D is in m. This equation is very similar in form
to that proposed by Brown and Francis (1995): = 0.07D~!!, but there is a factor of two
difference in the resulting density. In this simulation, ice density is cappee atahsity of solid
ice, which prevents the formation of superdense ice. Section 3.7 exammedfelots of the
depth of the evaporation zone and the quantiieendVp,,, by changing the density function in
equation 3.3. The model parameterization for the mass of ice is also givefuastian of D.

Thus, ice water content (IWC) can be expressed as
IWC = /N(D)m(D)dD. (3.4)

The information obtained from equations 3.1 & 3.3 can be used to simulate teredidc-

tivity, (Z), using equation 2.8, and Doppler Velocity of the crystal,(,), as follows:

|che|
0. 93

)N(D)DSdD, (3.5)

T | Kuue| 2N (D)Y(D)ve( D) DSAD
VDop =2 50 . (3.6)
[ 1K 2N (D)y(D)DSdD
0

The ternry in equations 3.5 & 3.6 represents the Mie to Rayleigh ratio and is a functionrof dia

eter, with values ranging from 0 to 1. For small ice crystéls< 0.1mm), Rayleigh scattering is
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assumed, but the value efdrops sharply from 1 to 0 as diameter increases, oscillating just above
zero for diameters of 2 mm or larger. Despite the valueg aihdVp,, being much smaller for
these larger diameters when compared to Rayleigh scattering, there may stitheemportant
contribution via theD% term in both equationg K. |? is the dielectric factor of the ice particle,
which is proportional to its density squared. The value of 0.93 is the dieldatior for liquid

water.

The termu.(D) in equation 3.6 refers to the fall-speed of an ice particle of diameter D,
parameterized as

0.4
ve(D, pa) = aD’ (;’—0) (3.7)

wherea = 25.2 m*4™s~1 and3 = 0.527. Since the air density is not always constant at 1 kg
m~3, the correction used in Wilson and Ballard (1999) is incorporated into Zh&.alr density
calculated from the model’s pressure and temperature fields iwhile py is a density of 1 kg
m~3. The form of equation 3.7 originates from Locatelli and Hobbs (1974) feund it to be

a reasonable approximation for a variety of different single particle habits study modelling
precipitation in frontal rainbands, Cox (1988) toako be 16.8 fi4"3s~! and3 to be 0.527 for
ice particles as when integrated over the whole particle spectrum the relgtieedawith fall-
speeds for ice observed by Heymsfield (1977). Also, the fall velocid usthin the model tends
to be a favourite tuning parameter. By varying the values,adnd in some casg$ the lifetime

of the model cloud can be controlled. The valuesvadnd in equation 3.7 was increased from
the Cox (1988) value to allow the lifetime of clouds in corresponding climate nsicheilations

to be roughly correct and as the velocities produced at different tetypes agreed better with
observed values after the air density correction was applied (R. MeBoRersonal Communica-
tion). The method used to calculateandVp,, from IWC is straightforward. At each grid box,
the model value of IWC is calculated from the ice water mixing ragjp &ccording to

_ Dgi
IWC = RT (3.8)

wherep is the pressureR is the gas constant for dry air afidis the temperature. The variation
in Z and Vp,p, With IWC and temperature for Rayleigh scattering is shown in figure 3.3 while
the variation of these quantities assuming Mie scattering at 94-GHz is showguia 8.4. Using
values of D from 0 to 20 mm, which represent the full spectrum of ice crystals obderve

nature, equations 3.4, 3.5 and 3.6 are used to calculate values of \&IGY Vi, for values of
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Figure 3.3: variation of Z (left) andVn.p (right) with IWC and temperature for Rayleigh scattering at 94 GHz with
Do ranging from 0 to 5mm. Ice water content increases \ligh so that a given temperature, the lowest IWC values
correspond to the smallest valueslaf. In these figures, Rayleigh scattering is assumed by setting the vajuie df

in equations 3.5 and 3.6.
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Figure 3.4: variation of Z (left) and V., (right) with IWC and temperature for Mie scattering at 94-GHz with
Dy ranging from 0 to 5mm. As in figure 3.3, the lowest values of IWC cqoes! to the smallest values b¥,. Mie

scattering has been simulated by reducing the valaefodm 1 towards zero, dependent on particle diameter.

Dy between 0 and 5mm, and for a temperature°@.0rhere is some modification to bathand
Vpop When Mie scattering is assumed, and in particular it is worthwhile noting thatdditesing
actually reduces the velocity by as much as 50% at a given temperature caiergg affects
the calculation ofZ at higher temperatures. Analytical solutions are available to r&latelWC
for Rayleigh scattering? is roughly proportional to IW&'3 andVp,,, is roughly proportional to

A%527 but when Mie scattering is included , only numerical solutions are possible.
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Figure 3.5: Plots of the model parameterization results of IWC veiguteft) & Voo, (right) for a temperature of
o°C.

As the wavelength of the 94-GHz radar is roughly 3 mm aRdanges from 0 to 5 mm, the
assumption used for Rayleigh scattering that the wavelength is much biggénéhaean particle
size is no longer valid. Hence all calculationsbéindVp,,;, from now on include Mie scattering.

In order to calculateZ and Vp,,, from the model without needing 2D interpolation, the values

of IWC for a given temperature that have been obtained from model datihven scaled to the
equivalent value of IWC at® (IWCr—) by dividing by a scaling factog (= exp(—0.1227Y)),
whereT'isin°C. The plots of IWC versu& and IWC versus$’p,,, for 0°C are shown in figure 3.5.

The obtained value of IWg_ for each grid box can then be converted into a valugpf, and

a value ofl’p,p, using 1D interpolation and assuming Mie scattering. Since the radar retiectiv
factor is temperature dependent, the valuggf, must be converted to a value Bfby s. Since
equation 3.6 has th& (D) terms on both the top and bottom of the equation, it is independent
of temperature and hence thg,;, value does not need to be scaled by the temperature factor.
Thus, values o andVp,,, are obtained and can be compared with the radar measurements as

described in section 3.4.
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3.3 Description of the Radar and Model Data

3.3.1 94-GHz Radar Data

The instrument used for this study is the vertically-pointing 94-GHz radtreaChilbolton Ob-
servatory in Hampshire. Since July 2001, it has been able to measurdeDpppameters in
addition to the standard radar reflectivity)( It operated continuously (apart from short periods
of occasional maintenance) between January 2003 and March 2@D#hes provides a long data
set of the presence and microphysical properties of ice cloud; the aatiai$ chapter is taken

from this period. The three parameters used in this study are:

e Radar Reflectivity (7)
This parameter is the intensity of the echo returned to the radar after b#tekfoom the
ice particles. Itis defined as in equation 3.5. High values of reflectivityésofZ greater
than 5 dBZ in this example) occur in rain, or melting ice, while typical ice cloud baky
reflectivity values of around-10 dBZ in the example shown in figure 3.6; it should be
noted that these values vary between cases. It is possible to obtain estfm&#€s from
Z and temperature, using analytical formulae as suggested by Liu and Illitig({@®00)
and taken further by Hogaet al. (2006); this is the reverse of the model parameterization
scheme, which takes IWC and simulateas described in section 3.2. Figure 3.6 shows the
image ofZ taken through an approaching warm front on 23 January 2004. d$wedding
cloud base associated with the warm front can be seen, and the raoeéssgavith this
front is shown from 17.00 UTC onwards. The highest reflectivity valbetween 1100
and 1700 UTC indicate the position of the ice particles which are evaporatmgliiy air

beneath.

e Doppler Velocity (Vpop)
This is a measure of the reflectivity-weighted vertical velocity of the crystalthey fall
from the cloud. However, the Doppler fall velocity measured by the r@day,) is a sum
of the vertical air velocity and the actual ice particles’ terminal velocity. Thiamsdhat
in the presence of strong updraughts or downdraughts, such as imihéeti evaporation
zone, there is an error on the measured terminal velocity due to movemant Bigaire

3.6 shows the Doppler velocity of the 23 January 2004 case. This shawth¢hparticles
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have low velocities within the ice cloud, but the fluctuation of the velocity in@sasthe
evaporation zone. The heavy rain from 17:00 UTC onwards has thegtiggil velocity.
As well as showing the velocities of the falling ice crystdlg,,, can be used to distinguish
rain from falling ice and thus any data with very high fall velocities and hidlecavity

values can be rejected as rain.

e Standard Deviation of Mean Doppler Velocity ).
This is an indication of the turbulence of the air. It is the 30-second stdru#asiation of
1 second mean Doppler velocities. As the pulse repetition frequency ochdae is 6520
Hz, in each second 6520 samples are used to calculate the mean Doppéy aeld then
30 samples of mean Doppler velocity are used to calculate the standard deufati@an
Doppler velocity at the 30-second radar time resolution. The valuesaain be converted
into a turbulent kinetic energy dissipation ratg lfy the method of Bounioét al. (2003).
This method consists of taking measurementsefand large-scale horizontal model wind
to work out the intensity and size of the eddies being sampled, which then ircénrn
be related to the turbulent kinetic energy (TKE) dissipation rateusing a Kolmogorov
spectrum. Figure 3.6 shows a plot @f for the 23 January 2004 case. The red colours
show the very turbulent air within the evaporation zone, while the blue celwiihin the
ice cloud show that the eddies of a particular size have less energy antksiswelocity
variance associated with them. Hence there is less dissipation of TKE. Tthisala be
used to test the theory that the mis-representation of turbulence in the Kite# Ohified
Model is the cause of the deeper evaporation zone within the model. Thisvdisbussed
in section 3.6, where the relationship between the depth of the evaporatieramnde will
be examined. Although there are alternative methods of deriving turlufemm Doppler
spectral width (Chapman and Browning, 2001; Kollgtsal, 2001), another parameter
available from the 94-GHz Chilbolton cloud radar, the results obtained fnigmmethod
may be biased due to the contribution from the spread of terminal velocities jrattiele

size distribution. Hence the method of Bourgblal. (2003) is used in the study.
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Figure 3.6: Radar Parameters on 23 January 2004. Top is radar reflectivitylengdboppler Velocity and bottom
is standard deviation of mean Doppler velocity. A very comprehensatabdse of warm fronts and other cloud
occurrences is available as quicklooks on the Cloudnet website. Go to hitpiéleud-net.org/ for more details.
Also available are the corresponding model data and selected prostutisas ice and liquid water contents, particle

size and turbulent kinetic energy dissipation rate
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3.3.2 Met Office Model Data

The model used in this study is the Met Office Unified Model at mesoscadutes (approxi-
mately 12 km). The model time series is generated by taking hourly verticalgsrofithe grid
boxes that lie above Chilbolton, from 6—11 hour forecasts. Thesdyhsapshots give values
of model wind, temperature, relative humidity and ice water content (IW&g. microphysical
cloud parameterizations used in Wilson and Ballard (1999), which havediseussed in detalil
in section 3.2, are used to obtain radar reflectivity and Doppler velocity/p,,, from the Met

Office data, so that they can be compared with the radar data.

3.3.3 Selection of Data

The data are selected from a variety of cases of evaporating ice takea oue-year period from
January to March 2004. Each day was examined by eye and the followiagecwere used to

select cases used in this study:

e |ce cloud thickness and duration
Cases were divided into individual hours of data, and for an hour tete@ed for analysis,
it had to show ice cloud with ice evaporating into the layer below. The durafitimedce
clouds had to be at least 2 hours and the cloud had to be at least 2 km Almiglperiod
with no ice cloud, or ice cloud that was less than 2 km thick or did not last foerthan 2

hours were rejected from the study.

e Absence of Rain
Any hours that contained any rain amongst the ice data were rejectedf dvere was ice
present above the falling rain. This is because the radar signal is signtifi@ttenuated
by the falling rain (see figure 2.2 and associated discussion in chapted 2ng ice data
above the rainfall were usually of poor quality and not reliable enoughdtyse. Also, in
the cases where there is rain reaching the ground, as from 17.00 UT€ardmple shown

in figure 3.6, there will be no evaporation of ice into dry air.

e Ice data only
The temperature in each ice water content profile should remain bélGws@ that the

measurements from the radar are indeed ice and not liquid water cloudd phese cloud
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is also rejected using data from the Chilbolton 905-nm lidar ceilometer to locafgeke
ence of liquid water in the radar data. This shows as strong lines of atterhakscatter
superimposed within the ice cloud. Any data suspected to contain supetcoaier was

removed.

3.3.4 Definition of an Evaporation Zone

The depth of the evaporation zone is defined by the same method as RRO02% (The evapora-
tion zone is said to be the region between the maximum IWC and the height bekre thie IWC
had decreased to 10% of this maximum (i.e. 90% of the ice had evaporatedhieqrofile). In
each profile, the ice should completely evaporate just below the bottom ofdperation zone,
and profiles where there is liquid water cloud (where the temperature bisgs &C before the

bottom of the evaporation zone is reached) were rejected.

3.4 Methodology

To compare radar data, (which has a 30 second time resolution and 6@icalesolution), with
model data, (which has a one hour time resolution and a vertical resolutiovatiies from 500
m to 750 m in the mid-troposphere), would be rather difficult due to the laffpgahce between
the two grids. To overcome this problem, it is necessary to perform sorhefsmreraging that
allows a justified and fair comparison between the data obtained from theaadahe model.
However, performing long temporal averages through sloping ice claudes problems. An
average at constant height will average clear air ahead of the amimgdront, and as the cloud
base descends, the average will include the cloud base and evapamat®as well as the mid-
cloud regions and possibly even clear air above the descending clduglméans that the end
result is somewhat biased, tending to overestimate the depth of the evapamat& Since this is
the quantity of interest, it is important that correct measurements of this are madolve this
problem, adjustment of each radar and model profile takes place afterdisgeng of the radar

data on to the hourly model grid has taken place. The process is descritbetail below:

1. The radar data are averaged to a one-hour resolution, consisti@@ oddar profiles of 30

seconds duration. The vertical grid resolution remains the same. Thight@iaveraging
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removes some of the effects of updraughts and downdraughts on tisaMezlocity within

the cloud.

2. The model data are linearly interpolated on to the radar height grid. €tidle model

data and radar data to the same vertical resolution which allows a fair coomparis

3. The profiles of both radar and model are adjusted vertically to acdoumhe slope in
approaching warm fronts. This is done by finding the height of the maxinadiectivity
value in each hourly radar or model profile and shifting it up or down, abttie maximum

value occurs at an adjusted altitudg) of zero.

The entire process is shown in figure 3.7. As well as adjusting the reftgdtk), all the other
measured and derived quantities such as Doppler fall velocity, turliitetic energy dissipation
rate, ice water content, and model crystal fall velocity are averaged @jodted. However,
each profile is adjusted using the maximum reflectivity only, and not eachidodl quantity
maximum. So for example, thig,,, measurement that lies at; of zero in each profile is not
the maximum value oi’p,, in that profile. Instead, it is the value &b, that is at the same

altitude as the maximum value gfin that profile.

Once this procedure is complete, it is possible to time-average the entire tata geoduce

a profile of the mean radar reflectivity and fall velocities versus heidative to the peak irfZ.

3.5 Profiles of Radar Reflectivity and Fall Velocity

As mentioned in section 3.4, a comparison can be made between the radardeidefiectivity
(7). Also, a similar comparison can be made between the Doppler fall veldgity, X obtained
from radar measurements with teweighted fall velocity obtained from the model parameteri-
zation. Looking at the profile of radar and model reflectivity over the @% Iperiod (figure 3.8),

it can be seen that the valuesffrom the model are about 30% (3 dBZ) too large on average.
This could be a result of wrong values of ice water content in the modeduld e due to an
incorrect parameterization within the model. The larger density function resdibr could be

the cause; this shall be examined later in section 3.7.

The key result that is shown in figure 3.8 is that the model crystal fall itglax30% lower

than the Doppler fall velocityWp,,) measured by the radar. This could be due to an incorrect
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Figure 3.7: Transformation of radar and model reflectivigy)(data from 4 March 2004 to allow fair comparison.
Radar data are shown in the left column, model data on the right. Theatawscbn the top row. The centre row shows
the result of averaging the radar data to a 1 hour resolution, while thel mtatdewas interpolated over a radar height
grid. The bottom row shows the result of the adjusting of both data set$i (afile is set with maximunZ at z,q;

of zero.

model parameterization, but in order to see if this is the case, we need to elithieaiects of
updraughts and downdraughts that are present in the data. This iss#iddn section 3.5.1.
3.5.1 Preferential Sampling of Updraughts and Downdraughts withinthe Radar Data

When making a comparison between radar and model Doppler velocity, it istempto note the
effects of vertical wind on the radar data. The Doppler fall velocity messtshy the radar can be

broken down into two components:

Vbop = Va + V4. (3.9)
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Figure 3.8: Profiles ofZ (left) andVi., (right) averaged over 89 hours. The red and green lines on the Dopple
fall velocity plot give an estimate of the error on the radar fall velocity uereferential sampling of updraughts and

downdraughts throughout the cloud, discussed in section 3.5.1.

The components are due to the vertical air velocity),(and the Z-weighted mean ice particle
terminal fall velocity ¢;). The air velocity within ice cloud can vary from a few cm'sto 2 m
s~!. Atypical ice particle terminal fall velocity is on the order of 1 m's Although initially it
may appear that updraughts and downdraughts present a largénetrerdata, it is possible to
study an area of the ice cloud where the air vertical velocity is small, or whengpdraughts and
downdraughts will average out over a long period of time so the mean Verticeity is small.
This last statement is true for the middle of the cloud. The ragay data has been averaged
over one-hour periods. By doing this, it is assumed that in the middle of tliel clbe vertical
air velocity is entirely due to the ascent rate of the air in the warm front, whitypisally of the

order of a few cm s! (Browning, 1983), so that, << v;.

In the future, it may be possible to obtain measurements, afirectly by using a clear air
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radar, pointing at zenith. Although such a radar exists at the Chilboltomatisey, it is only used
on an event basis and therefore no data of this type was available dugiygdih-long 94-GHz

radar data set used in this study.

Figure 3.9 shows Doppler velocity measurements of an ice cloud on 23ry&0@. In the
evaporation zone there are areas of high downdraughts and one aptkaughts. Fingers of
strong downdraughts can be observed extending below the base o tiieud. In between these
downdraughts, there are dry, clear areas, with no radar echo. B®a&1-GHz radar can only
detect velocities of particles and not of clear air, this area shows upirag &@pty and free of
updraught. By taking a horizontal average through this area meansnilgahe downdraughts
which are visible to the radar will be included in the average and so angevevil tend to
overestimate the ice particle fall velocity in this area. In the middle of the cloude e no
clear pockets and so the updraughts and downdraughts will averageasuime. To see where
the data are reliable, in addition to showing an average of just the clouthnremy clear areas
within the cloud were filled with Doppler velocities of +2 m'sand -2 m s~! before each set
of data is averaged. The results are the red and green lines in figurd/Bede these two lines
agree exactly with the radar velocity curve, the data are reliable and Wiereeare biasing areas
of clear sky, the red and green lines diverge from the mean radarityel@ata from the areas
where the red and green lines agree is defined as the mid-cloud regimexists as a result
of the condition set in section 3.3.3 that the ice cloud must be at least 2 km 8gction 3.5.2
examines the differences between the model parameterized fall velocitiesdanr fall velocities

in the middle of the cloud and within the evaporation zone.

3.5.2 Using Velocity Measurements in the Middle of the Cloud to Test th&ccuracy of the

Model Parameterization

In order to test the accuracy of the Met Office parameterization schenue|suod radar Doppler
velocities have been compared for grid boxes (1 hour in time versus 6Ctioalewithin the
middle of the ice cloud and within the evaporation zone. In order to see hdwheenodel pa-
rameterization performs with different particle sizes, the velocity values begn plotted against
the reflectivity values. Due to the large amount of data, the fall velocities been binned into
1-dBZ bins, with the mean, standard deviation and range of the data sivégure 3.10 shows

the results for the middle of the cloud, and the results for the evaporatian Zyexamining
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Figure 3.9: The structure of Doppler velocityb.,) in a ice cloud, observed on 23 January 2004. Around the base
of the ice cloud and in the evaporation zone, there are large verticaltietodn the middle of the cloud, the vertical
velocity of the patrticles is much less, due to the absence of strong updsaargdowndraughts. The Doppler velocity

in these areas is very close to the terminal fall speed of the ice particttspafata from the mid cloud region can be
used to test the performance of the model’s ice crystal fall velocitynpeterization. Where there is clear sky close to

the edge of the ice cloud, any averaging will be biased.

the plot for the middle of the cloud, it can be seen that for low values (gmall particles), the
model accurately predicts the observed valuegf, . Above Z values of—15 dBZ, the model
crystal fall velocities are up to 50% less than those observed by the radas, the difference
in radar and model fall velocity abovg; of zero in figure 3.8 appears to be entirely due to the

model poorly representing the larger particles.

Looking at figure 3.10b, which shows the comparison between modebaad fiall velocities
in the evaporation zone, it can be seen that the radar fall velocitiesveaigsainuch greater than
the model values. This is due to the preferential sampling of downdraudjets averaging radar

data to a one hour horizontal resolution.
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(a) Middle of Cloud (b) Evaporation Zone
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Figure 3.10: Hourly averaged Z and V plots for (a) the middle of the cloud and (b) tapaation zone. The data
are binned into 1 dBZ bins, with the model data in red and the radar data inTiieanean Doppler velocity in each
bin is shown with a cross, the standard deviation about the mean in eachsbiowis by the edge of each box. The

whiskers show the range of the data.

From the comparison made for the middle of the cloud, it appeared that the paodmeteri-
zation was making a reasonable job of representing the radar Dopphezltadity. If one assumes
it behaves in the same way within the evaporation zone before the effebes\rtical air veloc-
ity were included, then it would appear that the model does not have thauitelgs falling out
too fast. In fact, as can be seen in figures 3.8 & 3.10 the model paramgteriganerally has
the ice particles falling out too slowly. Forbes (2002) suggested that #poeation zone depth
would scale linearly with ice particle fall velocity— so to have an evaporatiore zo the model
with a depth of 2 to 3 times that in the radar data, a model ice particle fall velocydtimes
the radar fall velocity would be required. Even with a strong downdrapggsent in the radar
data shown on the right hand plot in figure 3.10, there is no way that aityetf@—3 times the
radar fall velocity could occur. It is very unlikely that large-scale @udyhts and downdraughts
in ice cloud would be larger than 20 cm's so the model parameterized particle fall velocity can
be ruled out as the reason for the deep evaporation zone within the moddt,lif the model’'s
parameterized fall velocity were increased to match the radar measurethentguld increase
the depth of the evaporation zone and make the model’s error even bmene can conclude

that some other factor than fall velocity is causing the error in the depth efvéq@oration zone.
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energy dissipation rateg){ in each profile for the model and radar data. The model evaporatioa depth is 2—3
times the depth of the radar in the majority of cases, but there is no cletomdig@tween evaporation zone depth and

turbulence. Red crosses show the radar points and blue circles showode¢ points.

3.6 Examining the Effects of Turbulence

In section 3.1 it was hypothesised that the deeper evaporation zonerdtpimodel is due to the
model not accounting for the increased evaporation rate caused bpwimrbulence generated
by the ice particles evaporating from the ice cloud into the dry air beneatbe 8ie model does
not account for any turbulence above the boundary layer, this mayebeatlse of the deeper

evaporation zone in the model.

Turbulent kinetic energy (TKE) dissipation rat§ bave been estimated from radar observa-

tions of standard deviation of mean Doppler velocity)( according to the method described in
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Bouniol et al. (2003). The maximum value efin each profile has been plotted against the depth
of the evaporation zone for both radar and model data. If the mis-esgeg®n of turbulence

is the cause of the deeper evaporation zone in the model, then we shoaldisegase in the
radar evaporation zone deptheamcreases, but no change in the model evaporation zone depth
with e. Figure 3.11 shows the plot of maximuwnin each hourly averaged profile against evap-
oration zone depth for the 89 hours of study. In the vast majority of thescsisown in figure
3.11, the model evaporation zone depth is much greater than the radam, modt cases, it is
2-3 times this depth. However, there is no change in radar evaporatierdepth as turbulence
increases, which means that the amount of turbulence released daeffenbthe evaporation
depth scales of the ice. Thus, it can be concluded that the absencéuetae in the model

cloud parameterization scheme is not the cause of the deeper evapooagowithin the model.

3.7 The Effect of Ice Particle Density

In section 3.1 it was also hypothesised that the model's deeper evaparatiercould be due
to the model parameterization scheme having an incorrect density functiooh would af-
fect the parameterized fall velocity and thus increase the evaporatian depth. Currently
the function used is given in equation 3.3. This differs slightly from the Br@amd Francis
(1995)p; = 0.07D~'! and is completely different from the relationship Franetisal. (1998)
pi = 0.175D; %56, The differences in the relationships occur due to whether the dianiier,
defined by maximum dimension (Brown and Francis, 1995) or by dpgaKranciset al., 1998).
In both cases the mass of ice is the same. It is not clear from Wilson anddB@289) whether

the Met Office density function given in equation 3.3 is defined by maximum diroeror area.

In order to test whether incorrect parameterized ice particle density isitise ©f the deeper
evaporation zone in the model, a sensitivity test on the data set was pedforfine current
parameterization, given in equation 3.3 was altered as follows. First, theoftlue 0.13 constant

was doubled and halved to form two new relationships:
pi =0.26D71, (3.10)

pi = 0.065D7L, (3.11)

Equation 3.11 is very similar to the Brown and Francis (1995) relationshijharsds of use when
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comparing the results of the current model parameterization to that whicld Wwewachieved us-
ing the Brown and Francis (1995) relationship. Finally, the Fraetca. (1998) relationship was
inserted into the parameterization as another check to see how valid thet cnodel parameter-

ization was. The results of performing these tests are shown in section 3.7.1.

3.7.1 The Effects of Changing the Density Relationship

The results for all four tests described in section 3.7 are shown in figage Fquation 3.4
relates ice water content to particle mass, and therefore density. To compéstewhether
the evaporation zone depth would be affected by changes in densityould weed to re-run
the model and allow the density to affect the ice water content. Howeverg#iudts do show
how changing the particle density alters the parameterized fall velocity amddtel reflectivity
values. As these tests have not re-run the model, there was no detebiaiie ¢n evaporation

zone depth in any of the tests.

Looking back at figure 3.8, which shows the run with the original modekiterfp; =
0.13D~1Y), it can be seen that the reflectivity values predicted with the model panaragitns
are too high by about 3 dB. This means that the model IWC is also too large doe density
function being too large. When the Brown & Francis density function is os¢ide density func-
tion in the model is halved, as shown in the top right and bottom left plots ofefig§ut2, the
model and radar reflectivity values agree in the 3 km above the evaporatiee. Doubling the
density function in the model makes the reflectivity 6 dB too large above th@oeatéon zone.
Using the Francigt al. (1998) relationship makes the reflectivity 4 dB too large above the evapo-
ration zone. This means that the density function in the Met Office model isrige, land should
be closer to half the value. Since the Brown & Francis relationship agetes than the Francis
et al,, one can conclude that the diametBr, in the model is most likely defined by maximum
dimension, not by area. There is good evidence (Hagaal., 2006) for the Brown & Francis
relationship and since radar and model reflectivity agree very well wismelationship is used
this would suggest that the inputs used to simulate reflectivity are roughigotoHence, it can
be suggested that the agreement between radar and model reflectivigythb evaporation zone

gives evidence that the ice water mixing ratio is well represented in the mothedsa regions.

Looking now at fall velocity, it can be seen that altering the density in the hpatameteri-

zation has little effect on the profile of model Doppler velocity. It changdsetal by about 10%
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Figure 3.12: Profiles ofZ andVn.,, when the density in the Met Office Model is doubled (top left), halved (top
right), changed to Brown and Francis (1995) (bottom left) and chatgEcanciset al. (1998) (bottom right).

between the cases shown in figure 3.8. Changing the density affects itjiging of the large
and small particles towards the contribution in Doppler velocity, and this isguifisant enough
to make the parameterized Doppler velocity greater than the radar DopfaeityeHence the
incorrect particle density does not change the parameterized fall vetwitygh for it to cause

the deep evaporation zone in the model.

3.8 Humidity and Evaporation Rate Studies

So far, several candidates for the increased depth of the evapozatienhave been examined,
including ice particle terminal fall velocity, ice particle density and the effettsrbulence. One

remaining candidate is the role of humidity. Forbes (2002) partially addi¢kseproblem. He
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studied several sonde profiles through evaporating ice cloud, and that the model relative
humidity was on average 7% too moist beneath the frontal surface, wieereetparticles were
evaporating. He also studied several sonde profiles from Larkhithsadde station for the time
period corresponding to the year-long 94-GHz radar data set at @bitbd-orbes found that in
some of the individual sonde profiles, the relative humidity dropped shegmeath the evapo-
ration zone, a change that was not accurately represented by the mvbal,still had a moist
bias beneath the evaporation zone. Having eliminated most of the other a&i@sditcbm being
the likely cause of the deep evaporation zone in the model, this factor lookdikely to be

the cause. In section 3.8.1, several sonde humidity profiles are studigdandrsee how the
model represents the drop in humidity beneath the evaporating ice clouectinors3.8.2, the
eqguations set out in Wilson and Ballard (1999) are used to estimate theratrapoate beneath

the evaporating ice cloud, to see if the model's evaporation rate calculat®nsraect.

3.8.1 Model Representation of Sonde Humidity Profiles

In order to see whether humidity is really the cause of the deeper evaporatie within the
model, profiles from the Larkhill radiosonde were compared with the mawéilgs of relative
humidity. The Larkhill radiosonde station is 25 km to the west of Chilbolton anbddsclosest
radiosonde station to the radar that was available at the time of study. Hpas\erkhill is not
an operational radiosonde station, there were only a limited number of poofiles available at
the same time as there was evaporating ice cloud present. One case thatafiubgaargument
for how the model represents the humidity profile occurred on 4 March.ZBigure 3.13 shows
the radar reflectivity profile for this case study. During the day, a thickcioed developed,
which did not descend to the ground, nor was it part of a system thapleteuced precipitation
at Chilbolton. However, a sonde was launched from Larkhill at 13 UTe€ was analysed. The

results of this analysis are shown in figure 3.14. Similar sonde ascentglthn@rm fronts were

produced by Tayloet al. (1983) and Forbes (2002) and showed that humidity tends to increase

sharply around the cloud base.

Two points can immediately be raised from figure 3.14. The first is that thersubstantial
decrease in IWC predicted by the radar reflectivity values. The pda& vathe model’s IWC is
a full order of magnitude less than the radar’'s peak IWC. The modelmutdsave high enough

values ofZ beneath 5 km, caused by the values of IWC being much too low. Thus the haxlel
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Figure 3.13: Radar reflectivity data from 4 March 2004. A thick ice cloud was detected Ghilbolton for most
of the day, starting at around 07 UTC and remaining very thick until 16 UlNe cloud then remained until 24 UTC

but was substantially thinner than before.

not accurately represented this particular ice cloud.

The second point that can be seen is that the model does not accuegtelyant the gradient
of relative humidity beneath the evaporating ice cloud. The model's peakestaumidity value
starts at 6 km, and it does not decrease to 20% relative humidity until an altfiglem. The
sonde profile shows the relative humidity actually decreasing from 100%%0i2 a layer about
200 m deep, and at an altitude of 4 km, which agrees with the position of the lokme from the
radar measurements and the findings of Clough and Franks (1991 )agpears to be the cause
of the deeper evaporation zone in the model on this particular day.

In this case, the model has not correctly represented the IWC and thirigthe values
at the base of the ice cloud. Its humidity profile suggests that the evaposatoihd start a lot

further up at 6 km, and the model evaporation zone extends from 6 km tw®.5 km. This
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Figure 3.14: Analysed data from radar, model and 13Z UTC Larkhill radiosondéd dtarch 2004. Radar ice
water content was estimated using equation 14 of Hegah (2006). All humidity values shown are with respect to
ice. There is a sharp drop in both relative humidity and IWC at the cloue, theg the model does not represent the

maximum IWC. The gradient in humidity is much steeper in the observatiamsitithe model.

would mean an evaporation zone depth of 2.5 km; much deeper than that ghdwe sonde
relative humidity profile. But does this actually apply to all cases? In ordse¢owhat happens
for various humidity profiles during the period of study, several sorzdes were selected, and
profiles of both model and sonde relative humidity were plotted. Howeirere ¢ arkhill is not
an operational radiosonde station, sondes were only released oerdrbasis, and not at regular
intervals, as occurs at operational radiosonde stations. Also, in ncassk is the decrease in
humidity so clear cut as in the case in figure 3.13; in some cases there is aflayae moist air
immediately beneath the evaporation zone. What can be seen in some prafilshe relative
humidity from the sonde measurements decreases in the evaporation zithreeiees particles

evaporate into dry air, but there can be a moist area beneath this |las@sjsdsd with, say low
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cloud which causes a sharp increase in the humidity profile. Thereforadt ialways easy to
pick clear-cut cases where the humidity gradient in the sonde profileaszs, which can be
noisy when comparing it to the model gradient of humidity which is often smoabnender, it is

not too difficult to pick out the sharpest drop in humidity in each case.

In order to attempt a fair test of model humidity against sonde humidity, samdiéep were
selected that occurred during the year long period. These profilestaleen when evaporating
ice cloud coincided with an ascent from the Larkhill radiosonde statiower&keof the sonde
profiles were very noisy and it was quite difficult to compare these to the Ipoafées of relative

humidity. Thus many of the sonde profiles were rejected for one of deréeia:

e There was no corresponding ice cloud in the model, and therefore tlasreadWC or RH

profile from which to calculate an evaporation rate.

e The sonde profile had only a few points and these points did not give bleséiatimate of

humidity or humidity gradient.

e The sonde profile showed some layers of moist air close to the base ofiharation zone

and therefore relative humidity actually increased beneath the evaparatien

Itis, however, worth noting that relative humidity is reasonable when nmed$rom radiosondes.
Ferrareet al. (1995) noted a systematic dry bias in Vaisala radiosonde measurementsavhen
pared to Raman lidar, of the order of 3-5%. Heymsfield and Miloshevichbjlf®@ind that the
observed humidity from radiosondes was sub-saturated when simultacrgstal measurements
showed pristine crystals growing in ice-supersaturated measurememis, $igggesting that the
radiosonde humidity had a dry-bias. Miloshevital. (2004) also noted the lags of radiosonde
humidity sensors. For the Vaisala radiosondes, this lag varies from ¢ecoiugeconds at-10°C

to twenty seconds at35°C, which is the range of temperatures ice was found to evaporate in
this study. Despite these bhiases, relative humidity can be measured to withimB¥eshumidity

gradient derived from sondes is fairly accurate.
After the above criteria had been applied to the sonde profiles, twelvéegraire left. These
profiles are shown in figure 3.15.

In almost all of these profiles, it can be seen that the model does not madw good

representation of the humidity gradient beneath the ice cloud. The model termtiagnose a
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Figure 3.15: Profiles of saturation ratio with respect to ice \&ken from twelve sondes from the Larkhill ra-
diosonde station (plotted in red) and the corresponding model relativédfty profile (plotted in blue). The black
line indicates of the top of the observed evaporation zone, defined bytiiérmaximum value of the radar-derived

ice water content.

smoothed version of the sonde humidity profile, and it takes an increapédfde the humidity
to drop to its first minimum value beneath the top of the evaporation zone. Thelikeg
explanation is that the numerics of the model are diffusive, so sharpegtadn humidity cannot
be maintained within the evaporation zone. However, it is also important to ¢heckalidity
of the model’s evaporation rate. This is tested in section 3.8.2, and the tomdiatween the
humidity gradient through the evaporation zone and the evaporation eptieid shown in figure
3.16. It can be seen that the sonde-and-radar derived evaporatiendepth decreases with
increasing relative humidity gradient and that the model data appears tdldeifig the same
curve as the radar data. So it would appear that the two sets of meastg@imeynthe same laws
of physics. However, the model has smaller humidity gradients, and deegg@rration zones as a
result. This provides quite conclusive evidence that an incorrect hungidityient is the cause of
the deeper evaporation zone in the model. The next section compareamddaodel humidity

to see if the incorrect representation of the humidity gradient changes ttiel'smevaporation
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Figure 3.16: Plots of the depth of the evaporation zone versus the humidity gradieaaédr of the sonde/radar

and model profiles shown in figure 3.15.

rate.

3.8.2 Comparison Between Radar and Model Evaporation Rates

In section 3.8.1, evidence was examined that suggested the model’s desparation zone was
due to the model incorrectly representing a sharp drop in humidity within thzoestion zone.

This section compares the radar and model evaporation rates, to seevifitiiegnd examines the
evaporation rate equation used by the model, to see how it depends on huandlitshether the
incorrect humidity gradient suggested in section 3.8.1 would significantlygehthe evaporation

rate.

The formula used by the Met Office model to calculate evaporation or dieposf ice is
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given by Wilson and Ballard (1999) as:

dm ArC(S; — ) F

am _ . (3.12)
L. _ 1) Ls RT

dt (g —1) FaT T Xesario

Here,dd—T is the rate of change of the mass of the particle due to the supersaturatioesgétt
to ice (S; — 1). The gas constant for water vapour, R is 461.5 J'kg !, k, is the thermal
conductivity of air at temperaturg, X is the diffusivity of water vapour in air at temperatufe
and a given air pressure. The capacitance term is representédry since all ice particles in the
model are assumed to be sphexgss equal to%, while egqtice 1S the saturated vapour pressure
over ice andL; is the latent heat of sublimation of ice. The facfoiis a ventilation coefficient,
given by Pruppacher and Klett (1978) for spheres tdbe 0.65 + 0.44S¢!/3Rel/?, whereSc

is the Schmidt number, equal to 0.6 aRd is the Reynolds number, equalt0D)pD /u, where
v(D) is the fall speed of the ice particle apds the dynamic viscosity of the air. This equation
is similar to the forms of Pruppacher and Klett (1978) and Mason (197 )sabased on well-
established cloud physics, so the increased depth in the evaporatioshunrie not be caused by
an incorrect parameterization of the evaporation rate. However, thesvafithe variables used

in equation 3.12 may still be wrong and hence cause the deep evaporat&n zo

To see if the model evaporation rate is correct, it is necessary to congaaeand model
evaporation rates. This can be done by studying each hourly averafie pf Vp,, and IWC
in both the radar data and model output. The flux density in kg 87! at the top and bottom
of the evaporation zone can be estimated by multiplying the radar IWC at the tagitom of
the evaporation zone by the mean ralfar, at the same point. The same procedure can then
be followed for the data obtained from the model output. The differenceirbiétween the top
and bottom of the evaporation zone can then be divided by the depth ofaperation zone to
give an estimate of layer-mean evaporation rate. The differences inaadanodel evaporation
rate for the 89-hour period of study are shown in figure 3.17. It shbeldoted that the model
velocity used isip,, Which is Z-weighted. Ideally, we should use the IWC-weighted velocity.

However, the two do not differ significantly so uselgf,;, is justified.

Figure 3.17 shows that the model’s layer-mean evaporation rate is only icth@fthat de-
rived from the radar data. Since the equation used by the Met Officelrisbased on well-
established cloud physics, itis unlikely that the parameterization is wronggadbyeslarge amount.

Hence, the lower model evaporation rate must be caused by incorhees\d one or more vari-

75




CHAPTER 3: Doppler Radar Evaluation of Evaporating Ice in Operatidviatiels

x 10" Radar and Model Evaporation Rates
2 T T T T T
Hf\
IU)
?_ 15F .
S
(@]
<
2
g
c
9
S 1t .
8_ X
5]
>
(]
e] X
2 x x
ko) X
% 0.5 X % N X ) T
X X
E X
: >>2 X x X X x ) x x
x X X K x X * x
e X i};& X>2<>><< y 5 & x XX « x X X
0 R X X% " ! X o x | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
radar derived evaporation rate (kg m > s %) x 10’

Figure 3.17: The correlation of the radar layer-mean evaporation rate versus ttiel sparameterized layer-mean
evaporation rate calculated for the model and radar evaporation, zat@sdated using the IWC flux density difference

and the evaporation zone depth. The blue line is the line y=x.

ables being inserted into equation 3.12. Looking again at this equation,nseeahat although
it is a function of several factors; these can quickly be attributed to @samgfour variables.
The terms on the bottom half of the equation are functions of temperatureesslipe only. The
capacitance ternt;' is a function of particle diameter only, the supersaturation fgffio— 1) is
a function of relative humidity only and the ventilation coefficiehtyvaries with temperature,
pressure and particle diameter. Hence the entire equation is a weak funfcteanperature and
pressure, but strongly dependent on particle diameter and relative ibpumiidis suggests that
the either the relative humidity in the equation is wrong, or the parameterizécl@diameter is
wrong. If the particle diameter, given in equation 3.1 was wrong, then thelmazlild produce

incorrect values of reflectivity, IWC antp,,,, which would have been identified in sections 3.5
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and 3.7. The evidence from section 3.8.1 suggests the humidity gradieintig fy up to a factor
of three and this increases the model’s evaporation zone depth. Thissicicoumidity gradient

would also reduce the evaporation rate to one third of its true value, whieksgith figure 3.17.

3.8.3 Summary of Humidity and Evaporation Rate Studies

The evidence shown in figures 3.14 and 3.15 show that the model’'s humiditiegt is much
shallower than in the observations taken from the sondes releasedhillLém the observations
there is often a drop from around 100% relative humidity with respect to ias little as 20% in
the evaporation zone, which is typically about 500 m deep. Atice cloud a8tutde model’s grid
resolution is between 500 and 750 m, which means that this change in relamdity would
be represented as a step function. Due to the numerics in the model beirgpéytidiiffusive,
this sharp change in humidity cannot be maintained. The model’'s incorreutlityl gradient
means that the supersaturation with respect to ice in equation 3.12, whiemgdkie evapora-
tion rate is too high, and hence the evaporation rate is too low, causing eraés@jporation zone
in the model output. This agrees with Forbes (2002), who noted a shapprdnumidity around
the evaporation zone. The theory of the humidity gradient being 2—3 timéewsbiaand hence
causing a slower evaporation rate and eventually an evaporation dep#3 ¢ifnes that seen in
the observations would agree with the results presented by Forbeg &@DEorbes and Hogan
(2006). However, when Forbes (2002) increased the model gradutes, there was only 10%
observed change in the evaporation zone depth. This is most likely duefextiiee grid resolu-
tion was still not enough within the model to achieve an accurate representétioe humidity

gradient within the evaporation zone.

3.9 Other Operational Models

In addition to studying the Met Office model, it is interesting to see if other dipei models
have an increased evaporation zone depth. If one or more of the gibetional models do
not suffer from this problem, then there is something in these models that lsewwdapted and
used in the Met Office model. If the models all suffered from this common itond then
it may be an intrinsic numerical problem which could be difficult to resolve. pAg of the

Cloudnet project, corresponding ECMWEF eldo-France and RACMO (Regional Atmosphere
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Climate Model, produced by KNMI) model output was available for Chilboltotiha time of this
study, and in sections 3.9.1, 3.9.2 and 3.9.3 each of the individual modelsevgilubied in turn.

In each study, the Met Office model parameterization scheme has baknliéeis because the
equations used to relaie andVp,,, to IWC are unlikely to change significantly despite changes
in the cloud scheme between models. However, in section 3.7 it was hypethdsas the density
function used in the Met Office model, given in equation 3.3 may be too lardegrenBrown
and Francis (1995) density function was thought to be more realisticder tm account for this,
each model has been tested using the Brown and Francis (1995) denstiph and the density
function used in the Met Office model, shown in equation 3.3 and taken frasoi\and Ballard

(1999).

3.9.1 Comparison with the ECMWF Model

The ECMWF model uses a prognostic cloud scheme based on Tiedtke).(I9898 means that
cloud liquid content (either vapour or ice) and cloud fraction are caageprognostic variables.
Evaporation is parameterized as a simple change in saturation water vagssurg with time,
which can be related to a change in the ice water content of the model. The Inasdgd levels
in the vertical compared to the Met Office’s 38, which translates to the ECN\Eel having a
vertical grid resolution of 529 m at 5 km, which is less than the Met Officat$ igesolution of
615 m. However, when Forbes (2002) increased the number of levels Méh Office model,
he found out that there was only a 20% decrease in the depth of the [lifie# &faporation zone.
Will the ECMWF model show the same result? The results for the model with theOffiee

parameterization scheme and density function are shown in figure 3.18.

The results show that the ECMWF model does indeed have a much deaperation zone
than in the radar observations. The results are comparable to the Met @&icel shown in figure
3.8. The mean depth of the evaporation zone is defined as before, usimgdel profile of IWC.

In the ECMWF model, this depth is on average, 1334m which is 2.10 times thevabeas.
Looking at the profiles o andVp,,, the results are similar to those from the Met Office model.
The ECMWEF does underestimate the fall velocity of the ice particles, but thidtris probably
less reliable as the parameterization for particle velocity is not necessaribathe in both the
Met Office and the ECMWF models. THeprofile obtained via the ECMWF output is very close

to the observations, less than 1 dBZ in the region above the evaporatien™ua means that the
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Figure 3.18: Z andVi,, profiles (left) for the ECMWF model values using the Met Office modeapeeterization
scheme (left) and the Brown & Francis density function (right). The dsgal is the same as that used to study the Met

Office model earlier in the chapter.

ECMWEF does a better job of representing the IWC in the cloud above the&tagm zone, but

performs just as poorly as the Met Office model in the representation ef/dporation layer.

When comparing the results shown in figure 3.18 it can be seen that there giffitence in
the profiles ofZ andVp,, . When the Met Office density function is included, the model slightly
overestimates th& values above the evaporation zone. If the Brown & Francis densityitumc
is included, then the model slightly underestimatesAhealues. Since there is little difference
between the two profiles of, it can be concluded that the ECMWF model gets accurate mean
Z values and therefore predicts mean IWC very well. The depths of theetam zone do not
change when the density function changes, the same result as for ti@ffiMdetmodel and what

was expected after analysing the Met Office data.

3.9.2 Comparison with the Metéo-France Model

The Méto-France model differs from the Met Office and ECMWF models as & askagnostic,
rather than a prognostic cloud scheme. This means that it uses the moldRa reumidity
to diagnose the cloud amount and ice water content in the model. How doedffénisrdthe

representation of the evaporation zone?

At 41 levels, the Meteo-France model has slightly higher resolution in the vertical than the

Met Office model. The grid resolution at 5 km is 502 m, over 100 m smaller tleai#t Office’s

79




CHAPTER 3: Doppler Radar Evaluation of Evaporating Ice in Operatidviatiels

615 m. The results for using the Met Office density function and Brown Fnadicis (1995)

density function are shown in figure 3.19.

The Méteo-France model has difficulty getting close to the correct valueg above the
evaporation zone. At the closest point the difference is 5 dBZ. This snéwat the model is
underestimating the IWC by quite a significant amount. The evaporation zmtie i also poorly
represented. The mean depth of the evaporation zone is 912 m, which isnieé4that of the
radar observations. If we were to judge the model on evaporation dieptb, #his would appear
to be a much better result than the ECMWF and Met Office models. This is lgyotae to
the model’s ability to diagnose lower values of IWC using the lower humidity valbes it
still will have difficulty in representing the sharp humidity gradient, leading tbgtty deeper
evaporation zone than normal. However, despite the evaporation depgideer than the other
models, the representation 4f and hence IWC is quite low, the worst result from all of the
models studied in this chapter. This is most likely due to the use of a diagnostier than

prognostic scheme.

The profile ofVp,,, is similar to the Met Office and ECMWF models, on average 30% lower
than the radar observations. However, once again this result is stiifferences in particle
fall velocity between the parameterizations.

Inclusion of the Brown and Francis density function causes the modelderestimate the
mean value o¥Z and therefore the values of IWC by 8 dBZ, an even larger amount tifanebe
The depths of the evaporation zone are unchanged arichtheare unchanged. This means that
although the Miteo-France model makes the best model representation of evaporatedeuh,

it has serious problems in getting the correct mean values of IWC.

3.9.3 Comparison with the RACMO Model

The RACMO (Regional Atmosphere Climate Model) is produced by KNMI, thcb meteoro-
logical service. The model has 40 levels in the vertical and a resolutioBdfrbat 5 km, very
similar to the ECMWF model, with the same cloud scheme used (lllingwedrgi, 2007). The
results for this model are shown in figure 3.20.

When using the Met Office model density function, the RACMO model remtssthe peak

value of Z at the top of the evaporation zone to within less than 1 dBZ. However, tip@eatson
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Figure 3.19: Z andVn.,, profiles for the Meto-France model values using the Met Office model parameterization

scheme (left) and the Brown & Francis density function (right). The dsgal is the same as that used to study the Met
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Figure 3.20: 7z and V., profiles (left) for the RACMO model, using the Met Office model paramization
scheme (left) and the Brown & Francis density function (right). The datiaeisame as that used for the Met Office

study earlier in the chapter.

zone is not represented well aidvalues in the middle of the ice cloud are about 5 dBZ lower
than in the radar observations. When the Brown & Francis density is theed,values decrease
even more and thus this model will underestimate the values of IWC within the iad.clthe
profile of Vp,y, is similar to the other models and it is underestimated by 30%, although this result
will depend on the model crystal terminal velocity parameterization. The additle evaporation

zone in this model is on average 1317 m, 2.08 times the observations andwiay t® the result
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from the ECMWF model. The model is able to accurately represent the maanofahe peak
IWC in the profile, but performance is not as good in the depth of the cloudt lower IWC.
Factors within the model cause the ice mixing ratio to fall off too rapidly with heightthis

discrepancy is observed with both Met Office and Brown and Fran@B5)ldensity functions.

3.9.4 Summary of Results from the Other Models

From the results for each of the above models, shown in table 3.1, it caebédtmt the evapora-
tion zone depth is much deeper in each model than in the radar observttimdemonstrating
that the Met Office model’s problems are not unique. In section 3.8 thewtetidn in humidity

was discussed and it was suggested that the model is artificially diffusivarsble to maintain
a sharp gradient in humidity, hence affecting the evaporation rate apenieg the model evap-
oration zone. Perhaps such a numerical problem is the cause of thewdgepation zone in all

of these models.

The Méteo-France and RACMO models have problems representing the valugsasfd
therefore IWC accurately in the cloud above the evaporation zone. thisus something that
should be looked into further, clearly the representation of the IWC fieddi®éo be improved.
The differences in the Eteo-France model could be due to IWC being a diagnostic variable,

while in other models (e.g. ECMWEF, Met Office, RACMO) it is a prognosticalale.

3.10 Conclusions and Summary

This chapter has studied 94-GHz cloud radar measurements with the aim towgeeell the

evaporation zone beneath ice cloud is represented in the Met Office mbldeldepth of the
evaporation zone in the Met Office model is on average, 2.55 times thatvetddgy IWC mea-
surements calculated using radar reflectivity and model temperature u¥ar@amdidates for the
increased depth of the evaporation zone have been considered doliteng conclusions can

be drawn:

e The parameterized fall velocity in the model is around 30% too low. In ordexdamine the

fall velocity in the evaporation zone, the effects of the vertical air velo@gdto be taken
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Model Cloud Vertical Grid Mean Standard || Depth
Scheme | Resolution | Evaporation| Deviation of | Factor

at5 km Zone Depth| Evaporation

Zone Depth
Met Office | Prognostic 615m 1614 m 630 m 2.55
ECMWEF Prognostic 529 m 1334 m 865 m 2.10
Méteo-France| Diagnostic 502 m 912 m 452 m 1.44
RACMO Prognostic 532 m 1317 m 714 m 2.08

Table 3.1: Summary of evaporation zone depths, cloud schemes and grid resdhatio the models. The depth
factor is the ratio of model and radar mean evaporation zone deptlasdspth factor of two would imply that the

mean model evaporation zone depth is twice the radar observations.

into consideration. There is confidence in the result above the the poamevelraporation
starts, as the vertical winds will average to zero over a long time period. etdawthe
parameterized fall velocity still remains too small in this area and thus will tend t@ mak
the depth of the evaporation zone less in the model than in the observatiwrefdre the
parameterized fall velocity is not the cause of the erroneously high défita evaporation

zone in the Met Office model.

e The representation of turbulence in the model has no effect on the depeevaporation
zone. The depths of the evaporation zone in the model are always 2—3tienelsserved

depth, despite significant changes in the turbulence.

e Using a wide variety of density functions suggested by recent studiegleihih of the
evaporation zone within the Met Office model changes less than 10%. THisgrtipat the
parameterized density of the ice particles is not increasing the parametadizeziocity
enough to cause a deeper evaporation zone within the model. Using the BnowWrancis
(1995) density function in the model allows the best representation of meftkdtivity and
therefore ice water content. Without re-running the model, it is not possilsiee whether

the density changes would affect the IWC and change the evaporatierdepth.

e The humidity gradient within the evaporation zone or immediately beneath the igg clo
is much smaller in several model profiles than in radiosonde ascents frddhilLaThe

drop from moist air with 100% relative humidity to dry air with 20—30% relativenidity
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is observed to take place in a shallow layer. Studies of the layer mean atiapaiate
show that the model's parameterized evaporation rate is about 30% obgetwed by the
radar. The parameterized evaporation rate equation used in the paizatieteischeme is
based on well-established cloud physics and is dependent on fowarfemdal variables:
temperature, humidity, particle diameter and pressure. The error in edEporate can
be attributed to incorrect humidity as unrealistic changes in the other parameteid be
required. The sharp drop in humidity would take place over the spaceeomaadlel grid
box and would be represented as a step function, but the numerics of thed are too

diffusive and so the sharp humidity gradient cannot be maintained.

e The problems seen in the Met Office model are not unique and apply to el wibdels

tested from a variety of institutes and forecast centres across Europe.
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CHAPTER FOUR

A 1D Explicit Microphysics Model of

lce Evaporation

4.1 Introduction

Several studies (Hall and Pruppacher, 1976; Harris, 1977; ClanghFranks, 1991) have at-
tempted to theoretically calculate the survival distance of ice crystals andesnatsolid ice
evaporating into dry air. However, all of these studies have producseba depth scale of evap-
oration, rather than attempting to accurately calculate evaporation depth.rdtey simplifying
assumptions, such as using a single particle, assuming constant tempemahgtant pressure
and constant relative humidity are made. In the real atmosphere, thingsoaeecomplex, and
this study attempts to calculate evaporation depth as accurately as possitgea gspectrum of
particles and a profile of variable temperature, humidity and pressuredétddn represent the

real atmosphere as closely as possible.

In the previous chapter, data from the 94—-GHz radar at Chilbolton wasareshpvith output
from the Met Office model. In the model, the evaporation zone depth wasl ftlube between
two and three times that observed in the radar data. It was found thatredliesonde and model
humidity profiles were compared, the model humidity gradient tended to be mweh io the
evaporation zone than the sonde observations. Due to the height rasaiutiee model at this
altitude and problems with numerical diffusion, the model will not be able teessmt this sharp
humidity gradient. Instead the humidity gradient will be much shallower, as ghdtsefrom
chapter 3 have shown. If the Met Office model was able to accuratelggenpt this gradient of
humidity, for example, with a much higher resolution grid, would it be able toectlyr define the
evaporation zone observed by the radar? Forbes (2002) looked isitanith in his experiments
he doubled the number of levels in the Met Office model. This would have ntleanat ice
evaporation levels, the model grid spacing would be between 250 and 35 mesults showed

that the evaporation-zone depth would decrease by 10% in the Met @ifidel. However, taking
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a typical evaporation-zone depth to be 500 m, there would only be two mddgd@nts in the
evaporation zone, which | believe is not nearly enough to accuratelysept the model humidity

gradient.

Thus, in this chapter, | shall write the assumptions used in the Met Officelrimide high
resolution 1D model, which studies Evaporation Level Physics and NurhieecEransport (ELe-
PhANT). In particular, the same mass-size and fall speed assumptions EetlOffice model
are used, but in addition, the particle size distribution is resolved. A déseripf the physics
used in the ELePhANT model is given in section 4.2 and experiments to exargiserkitivity
of the evaporation depth scale are described in section 4.3. Sondeatatth& Larkhill station
are inserted into the ELePhANT model in section 4.4, to see how well the meglelsents the
evaporation zone observed in the radar, using nearby sonde datapériant aspect in the study
to to ensure the model has the correct parameterization of capacitaces; werk in this field is

discussed in section 4.5. Conclusions are drawn in section 4.6 and fuitkénisection 4.7.

4.2 Description of the Model

The evaporation rate equation is given in Wilson and Ballard (1999), foikpthe work of Mason

(1953):

dm _ , 4.1
&) b

wherem is the mass of an individual ice particleis time, C' is the capacitance of the particle,
which for spheres i%, whereD is the particle diametef; is the saturation rati %) T is the
temperature (K)R is the gas constant for water vapour (461.5 K& 1), L, is the latent heat
of sublimation of ice to vapourX is the diffusivity, esqsice IS the saturation vapour pressure with
respect to ice andl, is the thermal conductivity of airF’ is the ventilation coefficient, given for
spheres as

F = 0.65 + 0.44Sc"/*Re'/?, (4.2)

where Sc is the Schmidt number, equal to 0.6 and Re is the Reynolds néﬁﬂﬁ%@%, wherep
is the air densityp(D) is the fall velocity of the crystal and is the dynamic viscosity of the
air. The physical meaning of the ventilation coefficient is the effect of theuahing past the
evaporating ice particle and hence increasing the rate of evaporati@oMa971; Pruppacher

and Klett, 1978). The more turbulent the air, the higher the Reynolds nuimleguation 4.2
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Ventillation coefficient
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Figure 4.1: The variation of ventilation coefficient from Wilson and Ballard (1999) wittrtizle diameter and

temperature. The ice particles are assumed to be spherical.

and the faster the evaporation rate. Figure 4.1 shows the variation of tienttaefficient with

diameter and temperature. As can be seen, the ventilation for the largigdepapproaches 10,
hence the rate of evaporation for these largest particles is much gi®iates.ice water content is
dominated by these largest particles, it is important that the ventilation coeffisieepresented

accurately to ensure the correct evaporation depth occurs.

Although equation 4.1 may look complicated, the terims X, esqtice, ka are functions of
temperature and pressure. With the exceptioagf.., all these variables are weak functions of
temperature and pressure. The capacitafids,a function of diameter) and F' is a function of
D, temperature and pressure. Thus, the evaporation equation couldressed as a function of

just a few variables, as in equation 4.3.

dm

In section 4.3, this expression shall be evaluated to see which of thesef@ables the evapora-

tion rate, and hence evaporation zone depth, is most sensitive to.

The mass of an ice crystal (kg) and its fall speed (rh) $n the Met Office model is given as
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a function of its diameter in metres as follows:
m(D) = 0.069D?, (4.4)

v(D) = 25.2D%527, (4.5)

These equations are based on Cox (1988) and Locatelli and Hobb4)(1Bhe values used in
equation 4.4 were selected by Cox (1988) to give a sensible variationrtidl@alensity with
size. This results in a roughly double the mass and double the density tharotine &1d Francis
(1995) relationship, which was used to accurately measure ice watentantdouds. Despite
the difference, this study retained the Met Office model values to try ane mn@kELePhANT
model as close to the Met Office model parameterization scheme as possibleallies used in

equation 4.5 are larger than those given by Cox (1988), whouigeyl = 16.8 D527,

In order to obtain the distance an individual particle falls before it completedporates, we
must first convert equation 4.1 to an expression for the change in diaofieigarticle over time
and then use the fall speed to convert this to a fall distancelhis can be done using equations

4.4 and 4.5 and the chain rule:

d_D_dm 1 1

dz _ dt ~dmJdD "~ dzjdi

(4.6)

Once this information is known, the survival distance of an individual dartian be calculated
numerically by integration. It is difficult to find an analytical solution to equatidhdue to the
nature of the ventilation term, which cannot be integrated analytically whempoated into

equation 4.6. The number concentration of ice particles in the Met Office Inodgven as

follows:

N(D) = Noe(~0-122T)(AD) (4.7)

whereT is the temperature in degrees Celsius ané- 31')—6;)7, where Dy is the equivolumetric
mean diameter andVy is 2 x10° m~*. This expression can be used to determine ice water

content (IWC) at the start of evaporation and at any layer in the model.
IWC = /m(D)N(D)dD, (4.8)
0

wherem/(D) is the obtained from equation 4.4. The Met Office model resets the distrithaiti

to the form in equation 4.7 at every vertical step, but in this explicit model,rialast particles
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evaporate first. As the Met Office model resets the distribution to its initial farmutomatically
adds more small particles in place of a few large ones. Since evaporafitnaipends on ice
water content, which is proportional to the cube of diameter, this will mean thiatiMet Office
scheme the IWC will artificially reduce and the evaporation zone depth witkdse. However,
the Met Office model vertical resolution at ice cloud altitudes ranges fi@@m&o 750m, so this
resetting process will have little effect on the evaporation depth, if thecbhumidity gradient

were maintained.

4.2.1 Model Constraints and Simplifications

The 1D ELePhANT model was set up with a vertical grid with a 5 m resolutiolhakim domain.
In the first experiment, a simple linear humidity gradient was used. In alscdshumidity was
set as 100% at the top of the domain and was not allowed to fall below 208ty gioént in the

profile.

In a similar nature, the temperature profile was set to be dry adiabatic witheditfstarting
temperatures at the top of the domain. Unrealistic runs, where the tempéenai@ased above

273 K and therefore the ice would melt, rather than evaporate were rerfronethe study.

The profile of pressure decreased with height using a simple exponéistidbution with a
scale height of 8 km. As with temperature, the user is able to define the predghe top of the

profile. The pressure in each profile is capped at 1040 mb.

The initial value of Ice Water Content (IWC) is a function of temperature thiedparticle
median diameterlf,) as expressed in equation 4.8. However, once the temperature at tHe top o
the profile is known, equations 4.7 and 4.8 can be inverted to obtaiB® the user can decide on
a particular IWC to use at the top of the profile. This is then converted totlgéveorresponding
value of Dy at that temperature, which the model then uses to set up the particle sizeutlmtrib

as given in equation 4.7.
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4.3 Evaporation Depth Sensitivity to Temperature, Pressure, Hu-

midity and Initial lce Water Content

With the model set up, a simple sensitivity study was performed to see howaperation depth
changed with relative humidity gradient and one of the other variables (iff@perature and
pressure). The model was initially run with a control experiment where tineidity gradient
was altered over a range of values from 0.001 to 0.08%, ut the values of the other variables
remained fixed as follows: Initial temperatur0°C, initial pressure 850 mb, and an initi&

of 0.5 mm (which at this temperature is equivalent to an initial IWC of>7.20~2 g m~3). The
model was used to calculate a series of evaporation zone depths usiegl#tas Then a set of

four experiments were run to test the sensitivity of the model to variousnedieas as follows:

1. Sensitivity to initial temperature. The ELePhANT model was run exactly as the control
run, but with the initial temperature being varied fren30°C to —5°C. This range spans

the profiles of temperature in the Met Office model at ice cloud altitudes abloigolton.

2. Sensitivity to initial IWC. The value ofD, was altered within the model, from 0.25 mm
to 1.5 mm. This represented a change in IWC betweeni® 4 g m~3 and 0.21 g m?
at this temperature, which is representative of the range of valuessetiswrer Chilbolton
during the studies made in chapter 3. No changes were made to the ice wdtart diy
altering the number concentration of the particles, as in the ELePhANT maslaksumed
that all particles of the same size evaporate at the same rate and take thastanee do
evaporate. Therefore increasing the number of particles of any gizerwould not have

any effect on the evaporation zone depth.

3. Sensitivity to initial pressure. The model was run with variations made in initial pressure,
ranging from 500 mb to 1000 mb, but with the other parameters exactly as imh®ic
run. The range of pressures used spanned the observed presels at which evaporation

started in the radiosonde profiles.

4. Sensitivity to temperature gradient. Lastly, we ran the model with constant tempera-
ture throughout the domain to see how this would affect the evaporatidh.dép this
experiment, the ELePhANT model was set as the control run, with the teepf the

temperature gradient being replaced with an isothermal layer with tempeoatu®°C.
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Figure 4.2: Changes in evaporation zone depth with changes in initial temperature, Ixtiahitial pressure and
when the linear temperature gradient in the model is replaced with an is@hlewer. The circles represent the points
taken from model data and the crosses represent the evaporatitis ékeyn the radar data and humidity gradients
from sonde measurements. Although the model was run on a domairkraf 6nly realistic solutions (where the

temperature remains below zero degrees Celsius) are shown.

The results of all four experiments are shown in figure 4.2. From thess, ple can see that
the evaporation depth changes quite rapidly as humidity gradient incréasdiscases. Hence,
humidity gradient is the single most important variable that we need to consideténmining

the evaporation depth. In section 3.8.1, it was noted that sonde profid®caeasured to an ac-
curacy of around 5%, after examining work by Ferratral.(1995), Heymsfield and Miloshevich
(1995) and Milosheviclet al. (2004). Hence we can conclude that the humidity gradients derived

from sondes are reasonably accurate.
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However, the top left plot of figure 4.2 shows that the sensitivity to eatjmor zone temper-
ature is also an important factor in determining evaporation zone depth. fiperature fields
within the model are accurate to within a couple of degrees Celsius and so tluslikely to
be the cause of the model's deep evaporation zone, but nonethelesspdal which wants to
accurately measure evaporation depth scales must include a temperfaicireldie bottom right
plot shows the effect of including a humidity gradient, but no temperatadignt in the model.
This isothermal layer means that although the relative humidity decreases thighpmofile, the
specific humidity is much greater at each individual point in the profile. Sawvegoration is
sensitive to specific humidity, this means that deeper evaporation zonesuuill. oThe overall
conclusion from this study is that the variable controlling evaporation rateeaporation depth
is specific humidity and that whenever a gradient in relative humidity is presgnadient in tem-
perature should also be used to ensure accurate evaporation within teé moelious studies
(Hall and Pruppacher, 1976; Harris, 1977) did not make this assumptmmever, if we want to
know what is causing the deep evaporation zone within the Met Office medehust deal with

the sensitivity to each variable individually.

The top right plot shows the effect of changing the valu®gfon the evaporation depth, over
a sensible range of values. The results show that changing the valugetads a large effect on
the ice evaporation depth and therefore it is important that the model hat@epsize and ice
water content reasonably accurate, but if we examine the top right pligiuoé 4.2, we can see
that to cause a doubling in evaporation zone depth, the mobglisould have to be double the
value seen in nature, which would mean an ice water content of aboutrdeead magnitude
larger. If such an error were present in the mean particle size, we wauklseen a much larger

radar reflectivity factor when we examined this in chapter 3.

The bottom left plot shows the sensitivity to pressure variations within the mGamerally
pressure is measured quite accurately within the model and as can bemseéahd plot, evapo-
ration depth is not sensitive to significant pressure changes. Chamgissure only changes the
ventilation coefficient by a small amount and this is not enough to changeaipertion depth
by more than a few metres and hence we can conclude that incorrestirés not a cause of a

deep evaporation zone within the model.

There may also be effects due to the particle shape and distribution used thighMet

Office model. However, the Met Office model follows an exponential distidim, which is used
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by many other general circulation models. The evaporation depth may asembigive to the fall
speed parameterization. However, for the purposes of this experimeritave not decided to
show any changes in particle size or distribution in order to try and provdvibaOffice model

could accurately represent evaporation with the present scheme &tugridd resolution.

4.4 Evaporation Depth Experiments Using Radiosonde Data

Once we know that the ELePhANT model works well with the profiles of teatpee, relative hu-
midity and pressure of an idealised atmosphere, the next step is to findvoutdiidthe model can
represent an accurate profile of lce Water Content derived frorfidieHz radar at Chilbolton,

using sonde temperature, pressure and humidity data from the nearby atdtarkhill.

The ELePhANT model was initiated with data from the sonde profiles in ch&ptker each
case, the start of the evaporation was defined by examining the humidithe profn each sonde
and locating the sharpest drop in humidity closest to the height at which diae data showed
maximum values of ice water content. In practice, it was not too difficult to pidijectively
the sharpest drop in humidity for each case. The top of the evaporatienveas defined as the
maximum point in humidity immediately above the sharp drop in humidity. The sondiepro
from the ground to this evaporation start point was used. The ELePh#bdel was run on
each of the 12 sonde cases in turn, along with the corresponding Me¢ @ftidel data for these
cases. Figure 4.3 shows the results for the best case study, 4 M@4hwdtere the ELePhANT
and radar profiles agreed through most of the evaporation zone.a@lbedata for this case can
be seen in figure 3.13, which shows an almost constant cloud base with tihibeaefore the
sonde data from the 13 UTC sonde was quite likely to be representative cddar data above
Chilbolton. The start of the evaporation, defined by the start of the fallénottserved sonde
humidity profile, does not always occur at the same height as the maximurmandarived ice
water content, which was used to define the start of the evaporation&onie.figure 4.3, the ice
water content profiles have been shifted vertically upwards by 280 mstareithe evaporation
started at the same point in each profile and a fair comparison can be meidall dases agree
as well as the one presented in figure 4.3, but it shows that the ELePh#dd&l can produce an

accurate estimate of evaporation depth given a good sample of data.

Figure 4.4 shows one of the cases where the ELePhANT model doesfotmequite as
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Figure 4.4: Case study of 14 April 2003 at 05 UTC, where the ELePhANT modesuaio@erform too well. On
the left, we see a plot of evaporation set with the ELePhANT model ea#iparstarting at the same point as the

maximum IWC observed by the radar. The right hand plot shows thit keen the IWC profiles are adjusted so that

the evaporation starts at the same point in each profile.

well. From the plot on the right, it is obvious that the ELePhANT model has tieagvhumidity

gradient and the evaporation decreases much shallower with heightdbected and hence the
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evaporation zone is 200m deeper in the ELePhANT model than in the aliseis: It appears
that the modelled evaporation follows the decrease in ice water content eliitbut that further
down the profile, the humidity gradient changes and is much steeper, tlenegaporation is
much greater and the overall evaporation depth is decreased in realgyEJ6PhANT model
takes the radiosonde data to calculate the evaporation, but if the sudalegean humidity was
not represented in the sonde data, for example if it passed througteredtfsection of cloud as
it had drifted away from the location of the radar, then the model would iectly represent the

humidity gradient and the evaporation depth.

The results for all 12 sonde cases used are shown in figure 4.5. Tdvis shat the points
generated for each of the twelve runs of the ELePhANT model with radaesdata and each
of the twelve runs of the ELePhANT model with Met Office model data appede ton the
same line. When the ELePhANT model is initiated with radar and sonde dat&sihesrpredict
evaporation zone depths on the same scale as those observed by th& h&danplies that the
Met Office model is obeying the same evaporation physics as in natutbginputs of humidity
into the Met Office model are wrong, causing deeper evaporation zepis within the Met

Office model.

It should also be noted that not all points lie perfectly on the straight line umefig.5. There
is a random difference in both model and radar data which may be due tureeent noise.
This is particularly true for radar-derived values of ice water contehiclivhas been observed
by Hoganet al. (2006) to have as much as a 55% error when calculated from radarrapérte
ature measurements. It should also be noted that there are slight differi@nparameterization
between the ELePhANT and Met Office models. The ELePhANT model moieset its distribu-
tion back to the form of equation 4.7 at each time step but the Met Office moésl d’he grid
spacing of the ELePhANT model is much finer than the Met Office model, wiiailid create
a systematic difference in the evaporation depth. The Met Office modééagpcorrection on
the fall speed due to variations in the air density, but the ELePhANT mods dot have this
correction. This would mean that the fall speed within the ELePhANT modebifats at lower
pressures. Also, there is the possibility of a lag in the sonde’s humidity mezasuts as it passes
from dry air to saturated air as discussed in Miloshedtlal. (2004). They found that at the
temperatures evaporation was observed to start at in this study, typisaldveadiosonde lags

in humidity are at maximum twenty seconds. Unfortunately, the sonde data didchade the
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Figure 4.5: Scatter plot of evaporation depths for the ELePhANT model using thedityrprofiles generated for
each of the twelve sonde (crosses) and model (circles) cases aadttia¢ radar or Met Office model evaporation

depth.

ascent rate, but for the Vaisala RS80 radiosonde used, the aseeistmaughly 5 m s! (Milo-
shevichet al., 2004), which would lead to a vertical lag of 100 m and roughly 20% ®tenate

in evaporation depth.

4.5 Issues with Modelled Capacitance

So far, all experiments with the Met Office model have assumed that theitzapze of the par-
ticle, C'is correct. Currently, the models use the value of sphetes-(D/2), which has been
adopted for use in the ELePhANT model. However, this assumption shouédebed in light of
evidence (Field and Heymsfield, 2003; Westbrebkl.,, 2007b) that aggregates are the dominant
particle habit in thick non-precipitating ice clouds such as those studied ptestza Numerical
experiments by Westbroait al. (2007a) have shown that for aggregates, the value of capacitance

is roughly half the value for sphereB(4), which will lead to a reduction of the evaporation rate.

In order to test how the Met Office model would respond if the capacitamce lowered,
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Figure 4.6: Rerun of the Case of 4 March 2004 (as in figure 4.3) with the previouk displayed and the reduced
capacitance (assuming particles are aggregates and after the woesthirdlet al, 2007a) shown as a black dashed

line. The ventilation is assumed to be the same as for spheres.

a value ofC = D/4 was inserted into the ELePhANT model and the case study of 4 March
2004 repeated. All other factors, including the ventilation coefficienewept constant. Figure
4.6 shows the results. It should be noted that the evaporation depth zdme BLePhANT
model when run with the reduced capacitance increases for this cas&4fm to 805 m. From
this short experiment it should be noted that firstly the Met Office modelnagson of spheres
combined with the correct humidity profile will produce an accurate evéipordepth. However,
concerns must be raised if the particles being observed at the basaporating ice are indeed
aggregates; the reduce capacitance would lead to an increasedaticapdepth within the Met
Office model and could suggest that the model still has problems accurafglysenting the
humidity profile properly. However, in this simple experiment, the ventilationfooent has
remained the same as for spheres. An accurate value of ventilation iemeffior aggregates
has yet to be determined (Westbrook, personal communication). Shouldltieeof ventilation
coefficient be greater for aggregates than for spheres, then theeadapacitance evaporation

curve in figure 4.6 will move closer to the sonde-and-radar deriveeecufurther work should
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be done to assess the sensitivity to different capacitances and howatadtie humidity profile is

within a number of cases of capacitance and ventilation coefficient.

4.6 Conclusions and Summary

This chapter has introduced the ELePhANT model which has tested th&hegmomade in chap-
ter 3, that the deeper evaporation zone depth in the operational modelslweste the models
incorrectly representing the sharp drop in humidity within the evaporatioe.Zbme ELePhANT
model is a simple numerical model which has also been used to examine thevigrditihe
evaporation zone depth to several different atmospheric variablesollbwing conclusions can

be drawn:

e The evaporation zone depth is most sensitive to changes in the humidityrdgraidithe
humidity gradient increases from 0.02 % Ithen the evaporation zone depth decreases
from 1 km to 500 m. Evaporation depth is also sensitive to changes in the taomger
profile. A change in temperature froml10 to —20°C increases the evaporation depth by
200 m. Changes in the initial ice water content, made by changing the equitdlume
mean diameter of the ice particles are also important. Doubling the valDg lefads to an

increase in the evaporation depth by 200 m.

e The evaporation zone depth is not sensitive to changes in pressurarges in ice water
content made by changing particle number concentration. Changing thiegstaessure

from 500 to 1000 mb changed the depth of the evaporation zone by lessGfan.

e The ELePhANT model can predict evaporation depths for both raghmedel profiles of
ice water content to within 200 m of those observed by the radar. Systemetuiacies
occur from the differences in grid spacing between the models, the pa@@aton scheme
differences and that the sonde may have a lag when it passes frommoystioair. Random
inaccuracies may occur when the profiles of humidity may not be from the clane the
radar is seeing over Chilbolton, depending on the direction of the wind @&sbtide drift.
Random measurement noise, particularly from radar measurements oétiee aontent

may create random errors in the results.

e The results from the ELePhANT model shows that if the Met Office modglha correct
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humidity gradient it could accurately represent evaporation zone depligsevaporation
zone depth is more sensitive to humidity gradient changes than changssathanvari-

able and hence the results from the ELePhANT model give strong eédeatthe shallow
humidity gradient within the evaporation zone in the Met Office model causedeaper

evaporation zone in this model.

4.7 Future Work

Although this chapter has shown that the Met Office model could potentighgsent the correct
evaporation depth scale, given enough grid resolution to represdmirthieity profile accurately,
there is still further work that could be done in this field. Firstly, the paranzetgon schemes of
other models could be used to simulate evaporation and examine whether théyhgnaidient

is also a factor in their deeper evaporation depths and it would be interéstieg whether the
schemes which incorporate two cloud water phases (e.g. Met Office,Wélsth Ballard, 1999)
would perform better than the schemes which diagnose cloud phasmiiagfine water content
(e.g. ECMWEF, Tiedtke, 1993, modified by Jakob, 1994). It would bethvahile to see if the

diagnostic Meteo France model would represent the humidity drop accurately.

In addition, particle size should be examined with the model. Results in this chapter
shown that using the capacitance proposed for aggregates (Wésthalp2007a) would reduce
the evaporation rate and lead to an even deeper evaporation zone withilettl@ffice model.
Work needs to be continued to see if this really is the case that the aggrsgatepgions should
be made and if so, is there a larger problem than previously thought with ¢h®RWce model,

or would a ventilation coefficient for aggregates cancel out this effect?

Finally, the issue of wind drift should be considered with sonde profilesemadiosondes
should be launched and a critical distance away from Chilbolton shoulethesisng the synoptic
situation and satellite pictures to include only sondes for evaluation of the ntbdetso not drift
too far away. This is of particular relevance to a frontal system, wherédiné may only be
tens of kilometres thick, a fast moving sonde could drift into clearer air andyze misleading

results.
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CHAPTER FIVE

A Lidar Forward Model for
Comparisons Between ICESat and the

ECMWF Model

5.1 Introduction

In chapter 1, it was noted that clouds are an important component of thaelystem and that
it is important for clouds to be accurately represented in both generalaticm models (GCMs)
for forecasts of future climate, and operational numerical weatheigbi@d (NWP) models for
precipitation and surface temperature forecasts. The ECMWF modedd$arsgperational NWP

forecasts and is capable of forecasting cloud and precipitation acegotte.

There have been a number of previous studies assessing the cloudsvatB@MWF model.
Jakob (1999) compared ECMWEF reanalysis (ERA) data to data from temational Satellite
Cloud Climatology Project (ISCCP) for the period July 1983 to Decembe®.19Be reanalysis
used the prognostic ECMWF cloud scheme (Tiedtke, 1993, modified by JaR64) and found
that the ERA data tended to have underestimates of cloud cover in the exticatroceans, the
trade wind cumulus, the stratocumulus sheets off the west coast of sohtropntinents and
the summertime convective cloud over Eurasia. Similarly, Karlsson (1996paed ECMWF
model cloud cover with 2 months of advanced very high resolution radior(®##tRR) data
over Scandinavia, and found that the ECMWF model had an underestifrdteid by as much
as 13%. However, these techniques are based only on passiveatissey and can give very
little information on the vertical distribution of cloud. As noted in chapters 1 aratve remote
sensing techniques are necessary to evaluate a model cloud schenghdltdhe depth of the

atmosphere.

Previous active ground-based studies have also assessed thenpade of clouds in the

ECMWF model. In chapter 2, we examined results from a number of radduwagions of the
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ECMWF model (Maceet al,, 1998; Beeslet al., 2000; Hogaret al, 2001; lllingworthet al,,
2007). In general, these showed that model cloud layers were @grieadeep, with the ice
cloud occurring more often than in the radar observations. Hegah (2001) found there was
a tendency for the ECMWF model to produce low cloud features up to SHmfore they were
observed. Itis unknown why this effect occurs, but Hogaal. (2001) suggested it may be due to
an incorrect represented diurnal cycle. The boundary layer withimtiael was hypothesised to
change from a nocturnal, stable profile to a daytime, well-mixed stratocumuydpeddooundary
layer too rapidly after sunrise. In addition, an assessment of ECMWF Inotmlel and surface
radiation fields by Morcrette (2002) showed that above the ARM soutlyerat plains site, the
ECMWEF model was able to get the position of ice and liquid water clouds rowmginhgct. Esti-
mates of the reflectivity of ice and liquid clouds showed that the ice clouds vititeimodel had
roughly the correct reflectivity values, but liquid water clouds gave teodaeflectivity. How-
ever, power law relations were used to determine LWC from reflectivitipfeand as shown in

chapter 2, these may be unreliable.

The use of active instruments in space was discussed in section 2.5, witthuicttoms to
the Lidar In-space Technology Experiment (LITE; McCormétlal., 1993), and ICESat (Zwally
et al, 2002). LITE data was used by Milleat al. (1999) to evaluate the ECMWF model and
ICESat data was used in a similar ECMWF model evaluation study by Bahbh (2005). In
this chapter, we shall use ICESat data to evaluate the cloud parameterscdteme within the
ECMWF model. The data from ICESat have been available long enougbriwe cloud studies to
already have been undertaken. In particular, the satellite lidar data caeté observe clouds in
locations where passive instruments have difficulty making observatipnshiSeet al. (2005)
showed that ICESat lidar measurements get around the problem of theurighbe reflectance
of ice and snow that causes a positive bias in passive retrievals of friactcbn. Comparing
data from MODIS (MODerate resolution Imaging Spectrometer) to the |Chfat they found
that ICESat lidar measurements recorded cloud fractions around 0.4d@b-086° latitude while
MODIS gave a cloud fraction close to 0.9. Although there may be some attemdiatio thick
ice clouds at these latitudes, the ICESat measurements are likely closer tatthagrunlike
the MODIS observations, they are not contaminated by the large albede gbtar surface.
Comparisons of cloud top height made between MODIS and SEVIRI (Sgjritihanced Visible
and Infra-Red Imager) data and ICESat were also made by Biaald(2005). They found that
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MODIS and SEVIRI overestimated the cloud top heights by 300—400 m wiessiahds were low
and opaque, but overestimated the cloud top height for high and thinnadsclBor low cloud,
Naudet al. (2005) state that this is most likely to be due to contributions of water vapamweab
the cloud-top contaminating the MODIS retrieval or to poorly resolved teryeranversions
in reanalysis profiles. For high clouds, it is suggested that the part @iabd where the most
interactions with radiation take place is closer to cloud base and that thissatffieccloud top

retrievals.

Palmet al. (2005), took one orbit of ICESat data and compared it to the cloud frafroon
the ECMWF model. By making direct comparisons between cloud fractionsingd skill scores
from Miller et al. (1999), they deduced that the ECMWF model was capable of repregéntin
clouds quite well, but often produced too much high cloud, particularly etittem long (48
hour) forecasts. Model skill scores also decreased with increasing kim@ever, one must be
very careful when comparing observations made by lidar instrumentsigditeclouds as there
will be a loss of signal power (attenuation) as the beam passes througtscknd often there
will be a total extinction of the signal in liquid water clouds. Pahal. (2005) estimated that this
occurs around 10% of the time. However, to achieve a fair comparisorebatlidar and model,

a method of accounting for the attenuation of the signal must be found.

This study attempts to make a fair comparison between the ICESat lidar and M&/EC
model. We follow a similar method to that used by Chiri@t@l. (2006), where model variables
are used to predict the lidar signal, rather than try and use the lidar alises/to retrieve model
variables. This means that we account for the attenuation that occurs ladathpasses through

thick cloud, allowing a much fairer comparison with the model.

Section 5.2 describes the methodology used to derive the lidar signal feda@ikl\WF model
variables. Processing of the ICESat lidar signal is necessary to rem@meand to place the data
upon the ECMWF model grid; this is described in section 5.3. Once progesstomplete,
various statistical tests can be performed to judge the model’'s performarass ahe globe.
These are described in section 5.4, with the associated results. A sumntaey foidings is

presented in section 5.5.
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5.2 Processing of Model Data

In this section we shall use a lidar forward model to predict the backscatteived by the ICESat
lidar, given model variables of liquid water content and ice water contdns. fiethod is able to

account for the attenuation of the ICESat signal as it passes througt clo

Following the method of Platt (1973), and using equation 2.11, the lidar equaidy be

written as follows:
Zlid

B(z) = a?exp —277/04(2’)dz/ , (5.1)

z

where'(z) is the attenuated backscatter at altitudabove the Earth’s surface ang,; is the

orbit altitude of the ICESat. The extinction-to-backscatter ratio or “lidar tasishown by s

and multiple-scattering is approximately representeg.byhe visible extinction coefficient is.
Collectively thea(z)/s term represents the unattenuated backscatter while the terms within the
exponential represent the attenuation of the lidar signal, sometimes deiegthe ‘transmission

term’.

The principle of the lidar forward model is to first use ECMWF model varigltidepredict
the value of the visible extinction coefficient, at each vertical grid box within the model; this
is explained below. If we can obtain an estimate of the lidar ratiand the multiple-scattering
factor, n, then the attenuated backscatter can be predicted at each level of theamddbken

compared to ICESat data.

5.2.1 Converting Model Variables to Extinction Coefficient

To calculate the value of the visible extinction coefficiemtfrom model variables at each indi-
vidual grid box, we use the following expression (after Foot, 1988):

3IWC 3LWC
o= — + — s
2 TeiPi 2 rapr

(5.2)

where IWC is the model ice water content and LWC is the model liquid water exbatethat
particular grid box. The calculation uses the ECMWF model's parameterigatithe effective
radius of ice,r.;, which is taken as a function of temperature following Ou and Liou (1995),
but setting the constraint that; can only vary between 30 and 60n. Liquid water effective
radius,r.;, follows the parameterization of Martit al. (1994), with the concentration of cloud

condensation nuclei over the ocean held constant at 50 c@ver the land, this value is again

103




CHAPTER 5: A Lidar Forward Model for Comparisons Between ICES&dtthe ECMWF Model

constant, but this time at 900 crh The valuesy; and p; are the densities of liquid water and
solid ice, respectively. Once the profiles of extinction coefficient haenlralculated, the lidar
forward model can be run but it is important that it takes account of thedabwerlap scheme

used within the ECMWF model. This is discussed further in section 5.2.6.

5.2.2 Calculation of the Multiple-Scattering Factor

An important factor in equation 5.1 is the inclusion of the multiple-scattering fagtsuggested
by Platt (1973). This can vary between 0.5 and 1 depending on the altifute satellite, the
wavelength of the radiation and the size of the particles the radiation encauitenultiple-
scattering factor of 1 is the single scattering limit, often appropriate for angrtvased lidar,
where all the scattered photons are lost, except for those directlydadtthgd to the instrument.
The value of 0.5 is the wide field-of-view limit, often more appropriate for epatne lidars,

where narrowly forward scattered photons remain within the telescopeofiefiw.

The multiple scattering factor can be calculated accurately using a metho@stbranta
(1998). However, this method is too computationally expensive to run onga Emount of

ICESat data, so quicker yet accurate solutions had to be found.

Hogan (2006) developed a faster method for calculagitigan that of Eloranta, by separat-
ing the outgoing photons into distributions that have had zero, one or mareotftemultiple
scattering event. However, this method would still be too computationally exetosrun in
operational data, so it was decided to use Hogan (2006) to estimate sudhi#s vfy through
various different idealised stratocumulus cases that were similar to thesenpthroughout the

period of study.

Equation 3 of Hogaret al. (2003b) state that for an optically thick stratocumulus layer, the

integrated backscatteft,() is given as

1

= 5.3
s’ (5:3)

Yw

hence given the value afof 18 (a typical value for liquid water droplets, see section 5.2.3) and
the integrated backscatter from the Hogan (2006) code it is possible tm @btacan value of
the multiple-scattering factor,. Eight different experiments were run by changing the effective
radius values and liquid water contents of the clouds, using the propefti€E8at listed in

table 5.1. In each case, the thickness of the stratocumulus cloud was ddjusteat it was at the
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minimum vertical thickness to allow it to be optically thick. A demonstration of the deattker
generated is shown in figure 5.1. This shows that the backscatter usinguthple-scattering
limit (n = 0.5) gives similar results to the code of Hogan (2006). The same is true foesés
of all eight experiments, which are shown in table 5.2. Using the single-sogttenit (n = 1,

shown as the blue line in figure 5.1) would give incorrect values of luattes for this profile.

Using table 5.2, the values gffor the eight experiments were found to ®&00 for 532—
nm backscatter data. Hence the valuendbr all forward model calculations was chosen to
be 0.500. As we are at the wide field-of-view limit, this method should be adedoathis
work, but a sensitivity ta; will be included in the error analysis in section 5.4. Inclusion of a
small estimated experimental error (e:§.02) on the measurement should not vary the results
of model backscatter more than a few percent. It should also be notedithadte clouds, the
forward scattering is even more peaked and so these should be eventoltise wide field-of-
view limit. It should be noted that Platt (1973), Eloranta (1998) and Hog@a@8) only consider
narrow forward scattering and not wide angle forward scattering. cerigesult in apparent pulse
stretching (Winker and Poole, 1995). There is no fast method to includevithi;n a forward
model at present, so this effect has not been included here. Hqwetlercurrently available

codes this is the limit of what can be achieved.

5.2.3 Lidar Ratio

The other unknown variable within equation 5.1 is the value of the lidar ratidhis takes the
values of 18.8+ 0.8 sr for liquid water (O’Connoet al,, 2005) but can vary between 10 and 40
sr for ice particles (Platt al, 1999; Cheret al,, 2002). For the purposes of this experiment, we
shall be taking the value of the lidar ratio to be 20 (close to the constant fad licater), but shall
examine the sensitivity of changing the lidar ratio between the extreme valubae €inal result

incorporating in the error estimation in section 5.4.

5.2.4 Interpolation of model data on to an ICESat height grid

Due to the relatively low resolution of the model height grid, sharp transitiemdd occur in
water contents, producing an unrealistic profile of the lidar backscattsorhe cases, this could

mean the attenuation of the simulated lidar signal would be too great. For exahvaéehad
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Property Value
Orbit Altitude 600 km
Wavelength 532 nm
Sampling Frequency 5Hz
Latitude Range +86°
Repeat Orbit Cycle 8 days
Orbit Speed 7kms!
Footprint Size 70m
Minimum Detectable Backscatter at 10 knl.6 x10=6 sr—! m~!
Laser Divergence Angle 75 prad
Telescope field-of-view 375urad

Table 5.1: ICESat characteristics relevant to this study, from Zwahyal. (2002). The minimum detectable

backscatter is the lowest value observed from molecular scatteringhevgb-day study period.

LWC | R | 7
(@m?) | (um)
0.025 | 7.5 | 0.5
0.025 | 5.0 | 0.5
0.025 | 10.0 | 0.5
0.025 | 15.0 | 0.5
0.010 | 7.5 | 0.5
0.050 | 7.5 | 0.5
0.100 | 7.5 | 0.5
0.500 | 7.5 | 0.5
1.000 | 7.5 |05

Table 5.2: Results of experiments to determine the value of the multiple-scattering, factdihe control run is

shown in bold.
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Figure 5.1: An example of the process to calculate the value of the multiple-scatteritay {a$ using code by
Hogan (2006). Plot (a) shows a profile of extinction coefficierjtywhich shows the location of the cloud from 5.9—-7
km altitude, with a liquid water content roughly equivalent to 0.05 ¢ mPlot (b) shows the attenuated backscatter
generated by the method of Hogan (2006) as a black line, with the estim&@teouated backscatter withset to

0.5 (maximum multiple-scattering) shown as red crosses. The blue pnesents the attenuated backscatter profile if

the value of) was set to 1 (single scattering limit).

a large ice water content in one model level, the attenuation could potentiallyaggerated
through a depth of the atmosphere of several hundred metres. To allowathstransition in
the lidar forward model output, a linear interpolation was used for the mat@hles of ice
water content and liquid water content. However, the cloud fraction wagoitged using a
nearest-neighbour interpolation method. This was because the amolouafsvery important
to the forward model calculations. Consider a cloud with high ice water cootdow liquid

water content, represented in the vertical over two model grid boxescldbd fraction in the

highest grid box is 0.5 while the one immediately beneath has a cloud fraction @§d of a

107




CHAPTER 5: A Lidar Forward Model for Comparisons Between ICES&dtthe ECMWF Model

linear interpolation would increase the cloud fraction on the lidar forwardaingdd between
the two ECMWF model grid points and hence would result in less clear skyessdadiation
unaffected by cloud in the depth of atmosphere between the two grid pointsar&st-neighbour

interpolation would be more accurate in these circumstances.

However, this higher resolution is only used to run the lidar forward modesettion 5.2.7
we shall see how the cloud fraction is recalculated on the model grid, all@dirgct comparison
between the ICESat lidar and the ECMWF model before and after runfiting didar forward

model.

5.2.5 Selecting Model Grid Points

Since the aim of using a lidar forward model is to enable a fair comparisorebatthe ECMWF
model and ICESat, it is vital that the model and the ICESat data are on thegsiahte be com-
pared accurately. To analyse one day of ICESat data, the time and lo¢atitrie and longitude)
of the satellite are extracted from the orbit files. The ECMWF analysewvailalale at 0000 UTC
and 1200 UTC, with intervening forecasts available in 3-hour intervals. ITESat track points
are grouped into nine time groups corresponding to the closest ECMWTFadatable. ICESat
points between 0000 UTC and 0130 UTC are associated with the 0000 UTé&l aradysis and
similarly, the ICESat points between 0130 UTC and 0430 UTC are assouidtetthe 0300 UTC
model forecast. This process continues in three hour groups, un@l 2Z2& points between 2230

UTC and 00 UTC are associated with the relevant 0000 UTC analysis ablitbeving day.

Once the ICESat points have been grouped, ECMWF model grid profiissst to the ICE-
Sat ground track containing a vertical profile of the model's cloud fractielative humidity,
temperature, wind speed, ice and liquid water contents are extracted feoBCIMI\WF model

output.

5.2.6 Cloud Overlap

An important factor in the lidar forward model calculations is the use of maximamdem over-
lap as currently implemented in the ECMWF model (Morcrette and Jakob, 20@Oachieve
maximum-random overlap, each model grid box is first divided into a set auailsub-columns

horizontally. The choice of the number of sub-columns is a trade-off l@twemputer run time
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Figure 5.2: An example of the high-resolution backscatter simulated from model daB8 Geptember 2003. The
thin vertical black lines show the ECMWF model horizontal grid spacing.ek&tihere is cloud cover of one (e.g.
latitudes—77.5° to —77.0° and altitudes 2—6 km), the model grid points totally overlap those abovere/ithere is
a cloud-free gap between two cloudy layers, the overlap is randongeasas latitudes-80° to —77° and altitudes

above 8 km. For adjacent cloudy layers, the overlap is maximised withytbed#ove.

and accuracy. For these experiments, 10 sub-columns were usednddms that the cloud frac-
tion in each model grid box was rounded to the nearest 10%, giving a lg@ladce between

computer run-time and accuracy.

The lidar forward model follows the ECMWF model in using a maximum-randoerlag
method, as shown in figure 2.7. The backscatter that results from thisgsracshown in figure
5.2. Although looking at this figure, there appears to be an artefact im#pef the clouds, this
is entirely due to the nature of the overlap scheme and no attempt has beetormgaad get the
cloud structure realistic, simply to represent what would actually happer iE@MWF model.
The cloud in each grid box is aligned so as to achieve maximum overlap with thatliately
above it, as the cloud fraction gets larger, this can mean that the cloud alemaligns itself to

the left or the right hand side of the grid box. The values of interest@rtaby only the cloud
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fraction on the model grid, and not the location of individual clouds in thegnd displayed in
figure 5.2. If the position of the overlapped cloud were altered within thetgnid say by moving
the cloud that is aligned on the right hand side of the grid box to the left Hdada&the grid box,
without changing the maximum-random overlap assumption, there would Beenban the final

result.

Once the details of the maximum-random overlap are known and the valuethefariables
in equation 5.1 are known, the lidar forward model can be applied to e&clager to calculate

backscatter using the model variables interpolated on to the ICESat haiht g

5.2.7 Cloud Fraction Resampling

In order to compare the cloud fraction from the lidar forward model withafoaction from ICE-
Sat, cloud fraction data are ‘resampled’. At this stage, the ECMWF lidaraia model values
are on a high-resolution grid with 10 sub-columns to each model grid box ihdheontal and
the data lie on an ICESat height grid in the vertical. To resample the cloutbfiaa model grid
is superimposed on to the high resolution data and the percentage of paoitatisicey backscatter
data above the sensitivity threshold of ICESat (minimum detectable backssatdable 5.1) is

counted.

Figure 5.3 shows an example of backscatter from the lidar forward maodéleoECMWF
model grid along with the raw ECMWF mean cloud fraction and the lidar forwaodel cloud
fraction. The length of this swath is approximately 5000 km. From the lidardaiwnodel cloud
fraction, it can be seen that the cloud fraction has reduced both alvbeeq the cloud would be
too tenuous for the lidar to detect) and below (where attenuation would meahehawould be

no cloud observed).

5.3 Processing of Lidar Data

In addition to running the lidar forward model, processing of the ICESat lildéa must take
place to remove any return that is not cloud. The properties of the IdE&ags used in these

experiments are shown in table 5.1.
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Figure 5.3: Demonstration of the processing of ECMWF model data from 30th Sejete2@®3, from 0117-0137
UTC (a) Lidar forward model backscatter im$rm~* on a model grid. (b) ECMWF model cloud fraction in its raw
state. (c) The model cloud fraction after the lidar forward model has ben. The backscatter data from figure 5.2

forms part of the left hand side of plot (a).

5.3.1 Rejection of Unwanted (Non-Cloud) Signal

To clean molecular return and instrument noise from the data, the datavaleddinto 4 minute
sections (equivalent to 1680 km) and the mean backscatter above 15 #mnsfperiod is used to
remove the molecular noise from the lower levels for the whole of the periaslaksumed that
at this level, there is no cloud and all the signal received is molecular tattés or instrument
noise. The mean and standard deviation of the linear backscatter at #ightslare obtained.
These values are only just above the minimum detectable backscatter gitadierb.1 and is
due to molecular backscatter. The mean and standard deviation are uséd twsse threshold

for the rest of the profile. The threshold at which a signal is accepted sodioud signal rather
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than molecular or noise is 2 standard deviations above the mean, choseicaiyplf a higher

threshold is set, then the clouds start to be removed. With a lower thresheldus molecular
data still remains within the data. Although the return due to molecular scatteriregges with
decreasing altitude, the threshold of 2 standard deviations is sufficieaintove the molecular
signal down to ground level. A speckle filter is then used to remove any iqubets that may

remain within the data.

In addition to the removal of noise outlined above, aerosol has also taie/ee from the
data. Since aerosol data have similar values of backscatter as thin iceasoosol pixels would
be above the noise threshold defined for the 4 minutes period. Aerosd$ pend to exist as
small groups of adjacent data points with backscatter high enough to allowtthexist after the

single pixels have been removed from the data.

To remove the aerosol data, the lowest 3 km of the data is divided into a séged boxes.

As aerosol tends to have quite low backscatter values, all points within heitiolow backscat-

ter (values less than & 107° m~—! sr!) are located and the standard deviation of these points

is calculated. Since aerosol has a low standard deviation and cloud a kighdard deviation,
the points with a very low standard deviation (less tharn 306 m~! sr—!) are assumed to be

aerosol and removed.

Naturally, the choice of aerosol removal box size is important to the dewsoval process.
If the grid boxes are too large, a lot of low backscatter will be removetif bive grid boxes are
too small then there will be insufficient data to provide a good sample of tlenear of the low
backscatter used to remove the aerosol. Best results occurred wihdoxgs of 50 by 20 pixels
were used. This gives 1000 data points in total in each grid box which ige ¢éarough sample

for variance measurements.

Another obvious issue with the aerosol removal method is the removal ébaryackscatter
cloud data that occurred in the same box as aerosol we were trying to eerlrogome cases,
the edges of the clouds were actually removed from grid boxes contaiatag However, upon
closer examination, this would only lead to the removal of a few points whicHdveguate to

less than a 4% error in the cloud fraction calculated.

A digital elevation model was used to remove the high backscatter returntfrerground
up to and including 75 metres above the surface. Figure 5.4 shows thesping of ICESat

lidar data to remove noise and to average on to a model grid to give mearcatiekand cloud
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fraction.

5.3.2 Averaging of ICESat Backscatter Data

To compare backscatter from the ECMWF model and backscatter fronCE®dt lidar, ICESat
profiles which correspond to the same ECMWF model grid box were as@riaghe horizontal

while maintaining the ICESat vertical resolution.

Figure 5.4 shows the averaging process for a selection of ICESat @atahe Arctic, cor-
responding to the ECMWF values shown in figure 5.3. The ICESat data averaged on to
the model grid, selecting and averaging ICESat track points to the n&aE&4tVF model grid
point. It can be seen that the data neatly averages on to the ECMWF mateOgrcasionally
observed is apparent horizontal stretching and squashing of theadrigita as it is transformed
on to the model horizontal grid. This phenomena is due to the grouping @aCtEack points to
individual ECMWF model grid points, which was described in section 5.2dnemodel grid
points will be the average of many ICESat track points while some will only bexkeage of a
few. For this reason, any model grid point that corresponded to lesSth@ESat track points
was rejected from the analysis. Cloud fraction was then calculated on thel gratiby using the
same method as used for the lidar forward model cloud fraction resamglerjtul in section
5.2.7, with the number of ICESat profiles replacing the sub-columns usee iddr forward

model.

5.4 Results

The lidar forward model has been run on 15 days of ICESat and maedlftom 30 Septem-
ber 2003 to 14 October 2003 inclusive. This has generated a data sst thie length of the
ICESat track is over 9 million kilometres. This is equivalent to over 14 yebesmatinuous ob-
servations at a mid-latitude ground-based station, assuming a mean wirttleseation of 20 m
s~1. Although one of the possibilities of the data is to examine the seasonal vasiatictoud

climatology, this study is restricted to a short data period only due to the commatagixpense
of processing the data and the availability of ICESat data at the time of gingdgkat was of the
same release version and of good quality. Data was specifically selemted fseriod just after a

new laser was switched on, to avoid the problems caused by laser signadld&on.
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Figure 5.4: Demonstration of the processing of ICESat lidar data, for the same tirfueifzes the model data in fig-
ure 5.3. (a) Raw attenuated backscatter dataih ar*. (b) After processing to remove noise (molecular backscatter,
aerosol and ground layers). (c) After averaging the backscattemtode! grid. (d) cloud fraction calculated on the

model grid, (dimensionless).

5.4.1 The Effect of the Lidar Forward Model

As we saw in figure 5.3, there was a reduction of model cloud fraction dihe forocessing of the
lidar forward model. Cloud fraction is reduced at high altitudes due to thksbatter it would
produce being lower than the sensitivity of the ICESat lidar. These clagdsometimes referred
to as “ghost clouds” as they have ice water contentsdof g m=3 or less and cannot be easily
detected. Cloud fraction is also reduced at lower altitudes due to attenuatimnlmar beam as

it passes through thick cloud.

Figure 5.5 shows the effect of running the lidar forward model on the BEMnodel mean

cloud fraction over the whole globe. There is a reduction of model claaatiém in the tropics,
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at heights above 14 km. In mid and high-latitudes and at high altitudes, the ftamiidn after

running the lidar forward model almost matches the original model cloutldradut there is an
obvious reduction of cloud at lower altitudes and all latitudes. At the lowlésides over the
poles, mean cloud fraction is reduced from around 0.3 to around 0.08 isTimportant for any
comparison between model and lidar that are made; comparing the ICE®&adddoud fraction

directly with the model would be rather unfair to the model, as can be seemigyacimg figures
5.5 and 5.6, the latter of which represents the cloud data obtained from B&at@nalyses in

this study.

Although figure 5.6 is an average over 15 days, it shows the geneatidnof global mean
cloud during early October. The location of ice cloud outflow from the IT€&hown at a height
of roughly 15 km. Thicker ice clouds are observed over both poles =iehe over the mid-
latitude storm track regions, where the cloud extends down to 2 km. Boutelgr cloud is
noted over much of the globe. There is a large amount of boundary &yt around—60°,
and as this corresponds to the area of the Southern Hemisphere whrerésthe land, this is
most likely to be marine stratocumulus. There appears to be very little cloud withinapical
mid-troposphere. One possible explanation is that cloud in these regioesyishvn, and the
attenuation of the lidar signal in the thickest ice clouds of the ITCZ has meanthé signal

sensitivity has dropped so these clouds cannot easily be detected.

5.4.2 Location of Cloud with Latitude

In order to examine the performance of the ECMWF model over sevefatelit latitude bands
and different altitudes, each hemisphere was divided into three latitugisedn each region,
following the work of Hogaret al. (2001), the mean frequency of cloud occurrence and mean
cloud amount when present was calculated for altitudes up to 20 km. Fregoéoccurrence

for a particular region, or model grid box, is defined as the fraction of tithascloud fraction
exceeds a threshold value of 0.05 within the model or observations. Amdwant present is the
mean cloud fraction over the grid boxes of interest when cloud fractioeesls 0.05. To a rough
approximation, the two variables can then be multiplied together to give the meahfcation

with altitude for each of these six regions. Each region is an average of tinamsands of lidar

forward model and ICESat profiles, once averaged on to a model grid.

To examine the errors on the lidar forward model, the sensitivity of the multga&esing
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Figure 5.5: (a) Latitude and height variation of ECMWF model cloud fraction for 1gsdaom 30/09/2003 0000
UTC to 14/10/2003 2359 UTC under the ICESat track. (b) Cloud fractiomfthe ECMWF model from the same

time period as (a) but after the lidar forward model had been run andahd fraction resampled.
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Figure 5.6: Mean Cloud Fraction from ICESat lidar observations from 30/09/06-Q1@61

factor and the lidar ratio only are allowed to vary. However, as can he fse table 5.2, the
values of the multiple-scattering factor are around the minimum value sugdssidtt (1973)
and a solution lower that 0.5 would be unphysical. So the multiple-scatteritay faithin these
experiments was allowed to vary between 0.5 and 0.6. The lidar ratio carfreamyl0—-40 as
noted earlier in section 5.2.3. Examining equation 5.1, it can be seen that adhighof the

multiple-scattering factor causes the most attenuation and the smallest valie aifethuated
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backscatter and vice-versa. The highest value of the lidar ratio cthesasnallest value of at-
tenuated backscatter and vice-versa. Hence to assess the errcegdidartforward model, three
experiments were performed on one day of ECMWF model data (10 O@6b8&; chosen as the
ICESat latitude-altitude analysis showed cloud in many different regiotheaflobe and more so
than any other day). The first experiment was run with lidar ratio of 20,ranltiple-scattering
factor of 0.5 (as the lidar forward model); the second had a value of latar to be 40, and

multiple-scattering factor 0.6; the third had lidar ratio of 10, and multiple-scadiéaictor 0.5.

The results of this analysis are displayed in figure 5.7. The errors d@eyting the multiple-
scattering factor and the lidar ratio are included in this figure. The most gfrikiference is the
reduction in model quantities following the processing of the lidar forwardehaod the polar
regions the low-altitude cloud fraction and frequency of occurreneeabpstantially reduced by
the model processing. In the equatorial regions there is a reduction of clead fraction and
amount when present at high altitudes, caused by very low ice watem¢emtéhin the model
that would not be detected by ICESat. At these low latitudes, there is a kdlgetion in cloud
frequency of occurrence within the lower and mid-troposphere. Thiglisad by a combination
of clouds beneath the ICESat sensitivity threshold and reduction in tiséigity of the ICESat
lidar as it is attenuated through the thick ice clouds that are associated wittatrognvection in

this region of the atmosphere that occurs in some of the model data.

After processing of the lidar forward model has taken place, the reséts Isy comparing
figure 5.5 to figure 5.6 and examining figure 5.7 show that the ECMWF modelksgha rea-
sonable job of representing the mean cloud fraction, with a few exceptibhere is a slight
underestimate of mean cloud fraction in tropical low clouds. This is most likedytduhe lack
of shallow cumulus convection within the model and poor representation @irtoesses caus-
ing convection within the model. In the mid-latitudes and polar regions, the madeblo large
a mean cloud fraction within the mid-troposphere and in the vicinity of the equh®icloud
fraction for high altitude ice cloud is too great by up to 0.15. Within these sagieng the
frequency of occurrence is slightly too high, by around 5%. The modaleaunt when present
is also too high for these areas. Both the mean cloud fraction and amountprdsent for the
cloud in these locations is too large even when the errors on the lidar fomade! are taken

into consideration.

The most likely explanation for too large amounts of cloud in these regionsrisbéem with
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Figure 5.7: Mean cloud fraction (top row), mean frequency of cloud occurré¢naddle row) and mean amount
when present (bottom row) for the equatorial latitudes, subtropics alad yegions in each hemisphere. The red solid
line indicates the ICESat lidar measurements, the blue solid line shows this &fsthe lidar forward model and the
black dashed line shows the ECMWF model cloud fraction before pgsoaesf the lidar forward model took place.
The grey regions show the extent of the errors likely on the lidar forwerdel (see text for error estimation method).

The latitude bands to which each column of plots are referring to is givéreaop of each column.

the ice scheme within the model. Most of the regions where the mean cloud firectimh are
regions in which we would expect to find ice clouds. Matel. (1998) in the Southern great
plains, Beeslegt al. (2000) in the polar regions and Hoganal. (2001) in the mid-latitudes all
noticed instances where the ECMWF model had too much ice cloud. The restdtshow that
there is is often too much ice present within the higher altitudes. This is mostyctean by the

higher amount when present in the mid-latitudes above 7 km.

Although the ECMWF frequency of occurrence and amount when ptese accurate to
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within 0.05 for most of the lower troposphere beneath 5 km, around theadha amount when
present is often slightly underestimated by the model. This could be due tdf tme reasons,
either the model underestimates the amount of low cloud around the equdtat dhe large
amount of ice cloud is attenuating the lidar forward model backscatterisaffic that some of
the lowest clouds are not detected by the lidar forward model. Although ie tleggons the re-
trievals have low error in the frequency of occurrence, the resultsimeusterpreted with caution
for these regions of the globe. For any region where the lidar forwactems overestimating the
amount of cloud we can be confident that the ECMWF model has a gervenestimate. How-
ever, where the lidar forward model underestimates cloud, we canrasitlvely certain, unless
there is little cloud detected above it, and therefore the effects of the attemaatismall. In the

majority of cases the model is overestimating cloud, so we can be confidins oésult.

5.4.3 Land and Sea Comparisons

In order to test how the performance of the model varies over land andrssdel grid boxes
were divided into those over the land surface and those above thermaesr heoretically the
model may perform better over the land surface close to where therdseevations which it
has assimilated, but there are other factors such as the orograpkis eff¢he land surface, the
heterogeneous variation of the land surface making weather more difficimbulate. Also, more
satellite data can be assimilated over the sea surface, so the model cout@alhpierform better

here.

Results from performing the analysis over land surface are shown irefig8 and the results
over the sea are shown in figure 5.9. In both sets of plots the ECMWF lidaafd model
accurately represents the location of most of the features seen by tiCH&ae are noticeable
errors in the ECMWEF-lidar forward model representation of the cloudtitva, frequency of
occurrence and amount when present over Antarctica; the mean cimtiof is 0.4 in the model
where the lidar measurements show it to be closer to 0.25 and the frequeocyuorence is
similarly at 0.35 when in reality it is measured to be closer to 0.3. The amount presant is
again too large, in the ECMWEF it is shown to be 0.75 but in the ICESat measntgihis closer
to 0.5. This again is most likely due to the ECMWF model having difficulty in regmmésg the
ice cloud. Similar results can also be seen in the northern hemisphere midet&C, although

the amount of cloud detected by both ICESat and the ECMWF model is much &ivieese
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Figure 5.8: Data from the ECMWF model and ICESat lidar over the 15 day compagsainod, where the only
points are selected are those above the land surface. (a) ICESat édaratoud fraction; (b) ICESat lidar frequency
of occurrence; (c) ICESat lidar amount when present; (d) ECMIdé&- forward model mean cloud fraction; (e)
ECMWEF-lidar forward model frequency of occurrence; (f) ECMMifar forward model amount when present. The

lowest contour interval in the cloud fraction plots is 0.01.
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Figure 5.9: As for figure 5.8, but for grid point selected that were over the séa on

latitudes. Observed mean cloud fraction peaks at around 0.15 while th&\EQ#bdel through
the lidar forward model is showing a mean cloud fraction peaking at 0. @émecy of occurrence
shows the same bias. However, the amount when present at these lasitadlsoverestimated

by a very slight amount— the error here is closer to 0.2.

In the tropics and between 10-15 km, the ECMWEF lidar forward model ovel $hows

a large mean cloud fraction that although appears fairly correct, thestacfpaid fraction and
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associated frequency of occurrence covers too large an area.rAmban present in this region
is slightly too low by around 0.15, so again cloud can be seen to be modelledrezaliéy at
these regions than observed in nature. Finally, mean cloud fractionginey of occurrence and
amount when present are all overestimated by up to 0.15 by the lidar fbmaatel in the region

betweer25°S and50°S and at most altitudes cloud is present.

Over the sea surface, a similar picture emerges. Tropical ice cloud withumpiber tropo-
sphere is too frequent; in the ICESat measurements the frequencywferome is around 0.1
between 8 and 20N and above 10 km, yet in the ECMWF lidar forward model the frequency of
occurrence is closer to 0.4, which reflects in the mean cloud fraction theVEENar forward
model is showing at these latitudes and altitudes. The amount when preseetéstimated,
but only slightly. In both hemispheres, polewards of 4 frequency of occurrence is overesti-
mated by as much as 0.2 and this causes the mean cloud fraction to be overddiyraatemilar
amount. Over much of the region betweeri 20d the pole in each hemisphere, the amount when
present is too high by 0.1-0.15, which is again most likely a problem with the srobice cloud

given within the model.

Some of the lowest clouds are represented quite accurately within the EGWOMIE. Look-
ing at the boundary layer and marine stratocumulus which exists bet@e8rto40°N, it can be
seen that although the mean cloud fraction is too low, the amount when piesaty underes-
timated by 0.05, although the frequency of occurrence is again too low ia thgsns by 0.15,
meaning that the ECMWF model is having some difficulties in representing thedboplayer

clouds that exist over the ocean.

Generally, the performance of the model appears from these plots topbexapately the
same over both locations. However, in section 5.4.5 we shall examine the skidl nfodel over
each location as well as the overall skill and give different skill sctaelsoth land and sea, which

will help determine whether the model is more accurate over land or over sea.

5.4.4 Backscatter Comparison

In addition to assessing the ECMWF model’s performance with mean cloufratequency of
occurrence and amount when present, the analysis can be extendechtmswell the ECMWF
model predicts the backscatter that would be observed by the ICEShtesat@is can be done by

comparing the mean backscatter over time for different locations arourgliahe. In addition, a
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new variable, ‘backscatter when present’ (represented by the sy#Bl) can be derived. This
is analogous to the amount when present variable used earlier; theatieksvhen present vari-
able consists of the mean backscatter of all the detected cloud pixels, whiteettrebackscatter
includes all pixels, including those which have no cloud. Hence, for tlasam, it should be
noted that mean backscatter can drop beneath the ICESat sensitivityoldrdsit 5WP should

remain above the sensitivity threshold.

Analysis of the mean backscatter afitWV P has been completed for the same 15-day study
period as the cloud fraction climatology analysis. The results have beeeddinto six latitude
bands as before and are shown in figure 5.10. Errors in the lidarfdmwadel have been included
on the plots and are useful in determining the validity of the results. In getleesbackscatter
when present derived from the ECMWEF lidar forward model is closerdamikasurements from
ICESat than the mean backscatter; this is most noticeable equatorwart ai@@bove 10 km
in altitude. A likely explanation is that this effect is due to the ECMWF model stanating the

frequency of occurrence of the clouds in these regions, noted in 8e&id.2 and 5.4.3.

In different regions the lidar forward model results show better agreewi¢h the measure-
ments from ICESat, yet in other regions there are noticeable differefd¢es high-altitude ice
cloud equatorward of 30in the lidar forward model results shows a higher backscatter than
expected, which is too high even when the errors on the lidar forward Iracgléaken into con-
sideration. The3WP in these regions is again too high, although within the bounds of error,
this is in agreement with the ICESat measurements. Poleward§@f, it appears that the lidar
forward model is actually underestimating the backscatter from ICESatetweferring back
to figures 5.8 and 5.9, it can be seen that there is litle model cloud above b2tkooud ex-
ists within the ICESat measurements to 15 km over the land. When backsca#empnesent is
examined, there is a better agreement, only a slight underestimate most likebddauthe ice

cloud being too thin in the model, while ICESat is detecting a thicker ice cloud.

In addition to the high backscatter in the ice cloud equatorward QftB@re is also too large
a backscatter and backscatter when present at lower altitudes berleath This implies that
although the model cloud due to convection and the boundary layer hasitaoftequency of
occurrence in the land and sea comparison (section 5.4.3), where ibdnasthe backscatter is
actually too high. As we have seen from earlier comparisons, the amowmt present in these

regions is roughly correct (possibly slightly too large over the ocedacely, so this result could
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Figure 5.10: Plots of mean backscatter (top row) and backscatter when preséongrow) taken from ICESat and
the ECMWF model over the 15 day study period. The latitude region of paxtte is denoted at the top of the plot.
The blue dashed lines on each plot show the error in the backscattexditsim the error analysis, corresponding to

the edges of the grey region in figure 5.7.

be due to a higher value of effective radius for liquid water clouds in theetndthe sensitivity
to effective radius will be examined later in section 5.4.6. Elsewhere in thefbdaard model,
the backscatter and backscatter when present is a fair representatierobservations from the
ICESat lidar.

5.4.5 Skill Scores

The comparisons of mean cloud fraction, frequency of occurrendeasrount when present
evaluates the climatology of the model. In addition, we can evaluate the qualitglividinal

forecasts using skill scores. This is done simply by comparing each madebax of cloud
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fraction data with each point of ICESat data averaged on to the modelggidg a cloud fraction
threshold of 0.05, that grid box can then be determined as a “hit”, a “miséd/se alarm” or a

“correct rejection” as shown in Table 5.3.

Many different skill scores have been developed for cloud fractatuation within models.
Maceet al. (1998) and Milleret al. (1999) used hit rate, threat score, false alarm rate and proba-
bility of detection. Palrret al. (2005) defined their own skill score by subtracting the misses from
the hits and dividing by the total pixels. However, a good skill score wiletaiow dependence
on the frequency of occurrence and a random (no skill) forecasaimiflys get a low score, close
to zero. Hence, this study will concentrate on two more useful skill sctiiesequitable threat

score, (ETS), used by lllingwortkt al. (2007) and the odds ratidf;(Stephenson, 2000), defined

as follows:
B A—(A+B)(A+C)/N
S = I BT c_ A+ BA+ )N &4
AD

The equitable threat score removes any points that might have occuread dhance, with
random forecasts having a score of zero and one where the ECMWHditlaard model agrees
perfectly with ICESat having a score of 1. The odds ratio is also usetwever it is more
common to take the natural log of the odds ratio for each point, as the linearaiild can vary
over several orders of magnitude. The log of odds ratio gives a zere $or random noise, but
tends to break down where N is small, as large variations can occur Tihe equitable threat
score should therefore be more reliable at showing model performarareds where there are
only a few points. However, for a random forecast where equal eusntf A, B, C and D are

recorded, the odds ratio will be one and the log of odds ratio will also ke zer

Figure 5.11 shows both skill scores for the different latitude regiong rékults from both
skill scores show that the ECMWF model is most skillful within the southern h@mig mid-
latitude storm tracks and is least skillful within the equatorial low-altitude reggidhis is because
the equatorial regions have strong convection which is not accuratelgast within the model.
The earth’s surface within the southern hemisphere storm tracks is mostly upaof sea and
is more uniform in nature and hence doesn't suffer from the same pnshile representing the

small-scale convection observed over the land.

Both sets of scores show an increase in skill as we progress fromrfaeesof the Earth to
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ICESat grid point full| ICESat grid point empty
Model grid point full Hit False Alarm
(4) (B)
Model grid point empty Miss Correct Rejection
(©) (D)

Table 5.3: Definition of skill score parameters, the letters denote the symbols usegresent these variables in

the skill score equations. An extra variahlé, is the sum ofA, B, C' & D. This follows table 2.2, but is repeated here

for clarity.
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Figure 5.11: Figures showing the latitude (grouped into bands &f 8@ith) and height variation of the equitable
threat (top row) and log of odds ratio (bottom row) scores for the ECMWdEel, after the lidar forward model has
been run. The black line represents all data; the blue line shows the $opdata above the sea surface only and the

red line shows scores for the data above the land surface only.
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mid-altitude regions around 5-10 km. This is most likely due to the model beingablescess-
fully produce higher cloud, which is generally associated with large-dealeires, but having
difficulty in resolving the small-scale boundary layer and convective cltuldwer altitudes.
This could also be a sampling feature where high, thick ice clouds obsautevibr clouds and

in order to get good skill in a profile, both the low and high ice clouds neeé tahbt.

At mid-altitudes (5—-10 km) there are more larger-scale features presentpd lot of the
cloud being associated with transient weather systems or large-scale$eatience the skill
score is better. From this altitude upwards, the log of odds ratio scoresstmoincrease in the

skill of the model.

The equitable threat score gradually tends to fall as we pass througighiestcloud bands—
the gradually thinner ice clouds. Skill scores are generally low within the mbpends (equa-
torward of 30) above 12.5 km and for polar clouds tend to drop off sharply aboveniOTkis
is most likely due to the model incorrectly representing cloud, which is not inliservations as
discussed earlier. However, due to the smaller number of points includeia Withstudy from
these regions, these results are less robust. At higher altitudes, asntbernof cloud points
within both ICESat and the ECMWEF lidar forward model decrease, the taesgroduce dif-
ferent values of skill which may be hard to interpret, but at altitudes freff®&m, the results of

the skill scores should be fairly robust.

5.4.6 Sensitivity to Effective Radius

The results of equation 5.1 are sensitive to the values of the water contengnd liquid), the
effective radii of liquid and ice particles assumed, the lidar ratio and the musiialiéering value
assumed. As mentioned earlier, the water contents and effective radétarenined directly from
the ECMWF model assumptions; as this study intends to compare this model tatilGES8uld
the values of effective radius and water content be wrong, it is a problgh the ECMWF
model parameterizations and not the lidar forward model. However, it is adritapce to test the
sensitivity of the results to changes in effective radius as a reductiofeictigé radius may lead
to less ice cloud in the model, which was noted in sections 5.4.2 and 5.4.3 orciioedn the

backscatter of tropical clouds below 3 km, which was seen to be too higletios®.4.4.

In order to test the lidar forward model response to changes in effectius, two simple

experiments were performed: one with both liquid and ice effective radiubldd and the other
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with liquid and ice effective radius halved. Results from both experimesptstaown in two fig-
ures; figure 5.12 shows the changes to mean cloud fraction, freqoéoncgurrence and amount
when present, while figure 5.13 shows the sensitivity in the backscattelbakdcatter when

present.

Changing the effective radius makes changes to ice phase in a diffeagnto the liquid

phase. Referring back to equation 5.1 we can see that the equation is pafisvo forms, the

« within the exponential reducing the backscatter anddthautside the exponential increasing
the backscatter. For ice clouds, the attenuation term is small when compdhedatienuation
by liquid clouds and the terms outside the exponential. Hence a decreadeditivefradius
will lead to an increase in (following equation 5.2) and as the term within the exponential is
small, the backscatter will increase and more cloud will be detected within tHedCiensitivity
threshold. In the liquid water case, the value of extinction coefficieist large with respect to
other phases and the exponential term will dominate. A decrease in\effeatiius will lead to
more attenuation and a smaller backscatter, meaning less cloud is detected tltesensitivity

lines in each plot cross at some altitude within the profile.

From the backscatter plot shown in figure 5.13, the sensitivity to effecdidiels is greatest
within the ice cloud phase towards the top of the atmosphere. However,slgaerally more
sensitivity to the ice phase; this is probably due to the larger uncertaintyectie# radius of ice
when compared to liquid water. If we were to assume that most of the clowdvalosbetween
—60° and—90° latitude was ice it can be seen that the sensitivity to backscatter is large at 5 km.
In the polar regions in th&WP measurements, where there is little sensitivity variation with
altitude. Small backscatter afidVP sensitivity is noted equatorward of 3tatitude within the
boundary layer and small convective cloud, which suggests that thd itidhese regions could
have too high a backscatter noted in section 5.4.4 due to an incorrect Valifiective radius, but

an incorrect value of liquid water content cannot be ruled out in thesssar

In figure 5.12, the changes in the extinction fed back into the amount of ;ckyain the
sensitivity lines cross in the middle of each profile as a decrease in iceiadfeadius leads to
more ice cloud coming within the ICESat sensitivity threshold and in the liquidepledfective
radius decrease leads to more attenuation and less cloud being detensitiviyedo mean cloud
fraction and amount when present is generally greater in the ice phagks chpart from within

the storm tracks, where the greatest sensitivity is within the mixed phaseselotlus is likely
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Figure 5.12: Plots of mean cloud fraction (top row), Frequency of occurrence qi@icow) and amount when
present (bottom row) from the ECMWF model after running the lidar &sdvmodel (blue line) and showing the
sensitivity to changes in effective radius. The points where the eftedlius is halved are shown as red dashed lines

and those where the effective radius is doubled are shown as bldvéclazes.

to be due to the thickness of the ice cloud in these regions, and increasfesiive radius lead
to decreases in the amount of attenuation by the thick ice clouds and henedéomer cloud is
visible. Apart from above the antarctic, frequency of occurrencesiig insensitive to changes
in effective radius. Over the antarctic, the frequency of occurrémedfected as the changes
in effective radius allow more or less cloud to fall within the ICESat sensitihitgshold and be
detected. Elsewhere, changes in frequency of occurrence wilt ad¢w@n the cloud is so optically
thick that it totally extinguishes the lidar signal. Reducing the optical thickngsadans of a
change in effective radius will increase the frequency of occue@ficome low clouds. In all

cases, the changes in effective radius do not alter mean cloud frac&omonint when present by
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Figure 5.13: Plots of backscatter (top row) and backscatter when present (bottertaken from the ECMWF
model (blue line) and showing the sensitivity to effective radii. The poirttere the effective radius is halved are

shown in red dashed lines and those where the effective radius is darblehown as black dashed lines .

more than 0.05, which is less than many of the errors noted in cloud fracttbaranunt when
present in section 5.4.2; so it can be concluded that the water contertaidrfiactions of the

ice and liquid clouds are the largest contributors to the apparent overtstmwoud fraction.

5.5 Conclusions

This study has developed techniques to compare a forecast model withadttebackscatter
from global lidar observations from space and demonstrated their uéé days of ECMWF
model data. The method of using model output to derive the quantities elseyvthe instru-
ments are in this case far more satisfactory than trying to use the instrumemiveotde model
variables. It is important for any study which compares radar or lidan fspace to remove any
clouds from the model which would not be seen by the instruments making skeevaltions. Pre-
vious studies using lidar to model comparisons did not take account of thextieéauation may

have produced misleading results.

Comparison has been made between the ECMWF global model and obsefadio the
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ICESat lidar. They have shown that the model has a tendency to get eabstds of the mid-
latitude storm tracks correct, although there is too much ice cloud within the mlieh will
reduce the skill score of the model as well as affecting the way the moldaVes towards incom-
ing and outgoing radiation. If the model does not have the correct anobio#, this could lead
to incorrect representation of the radiation budget of the model and ghttbe ECMWF model
is not a climate model, these problems within a climate model could potentially lead togotcor

estimates of temperature in future climate.

The model also has problems in representing the low-altitude clouds in thevgglegions.
This is probably a combination of two reasons, the model incorrectly reptieg the shallow
convection which is taking place, particularly due to its stochastic nature, this@rocessing of
the lidar forward model data will remove some of the low equatorial cloud dagtioction of the
lidar signal by the large amount of ice present within the model. Later vexrsibthe ECMWF
model have reduced the amount of ice (A. Tompkins, Personal Communicatid hence once
the data for this period is available, it should be possible to rerun the lidaafdrmodel to give
a more accurate prediction of the representation of the lower clouds thahawvaypreviously
been obscured by the attenuation from the high altitude ice clouds. Resmkigisht the model
performs in a similar manner over the oceans to over the land, but the praliflertne increased
amount of ice cloud is more prevalent over the ocean. Tests have alsa et the model has
only a 10% error due to the largest unknowns within the lidar forward mdkdeltidar ratio and

the multiple-scattering factor.

The performance of the model has been examined over land and seasre@iomparison
of cloud fraction indicate that there is too much ice cloud over both surfadé® tropics, that
the model has too high a frequency of occurrence within the ice cloudnggioost notably
around the poles and the upper-level tropical ice clouds. Over theaeadary layer and marine
stratocumulus clouds have too low a frequency of occurrence, particuahe tropics. Over the
land surface, model amount when present is too large, particularly inolhe rggions, possibly
due to thick ice cloud. Skill scores indicate that the model performs the bestte land surface,
but the skill of the model reduces as altitude decreases. The equitalaieskitescore is a robust
method suitable for cloud fraction comparisons and is not particularly sengitthe number of
points included in the calculation of the score; log of odds ratio is generdilystpbut has no

upper bound and is not as accurate when only a few data points aider@as
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Backscatter and backscatter-when-present comparisons havedréamed. In most cases
the backscatter produced by the lidar forward model is accurate withinrtbel®unds of the
model; however, the backscatter is too high within the tropical high-altituddocels and within
the tropical and sub-tropical marine and boundary layer stratocumuludsclubserved around

the equator.

Sensitivity studies show that doubling or halving the ice cloud effectivieisadakes a change
of up to 5% in the cloud fraction and amount when present. Since this is paghrto change
the amount of ice cloud within the model to values equivalent to those olusbyw#CESat, it
is likely that the model is producing too much ice cloud, rather than an errdfectige radius.
These sensitivity studies also reveal that the backscatter in the tropigadéy layer and lower
free atmosphere liquid clouds is too high and this could be due to a high effeatdius within

the liquid cloud phase.

Comparison of the ECMWF model to lidar observations is an essential gardorsystems
involving the data assimilation of lidar data into a forecast model. In this casedbel can be
used to predict backscatter from the laser and then inaccuracies isch#tek can be satisfied by
changing the liquid or ice water contents or cloud fraction to allow the two loaties signals to
agree. This method can also be used for testing new cloud physics sclvbiok@ppear within

the model.

5.6 Future Work

Although this study has shown the value of active remote sensing frore,Sphas concentrated
on only a few days of data. Longer periods of lidar data is now availabhe the CALIPSO lidar,
which is part of the A-Train of satellites (Vaughanal, 2004). This data will be over longer time
periods and hopefully should not suffer from the laser deterioratiohlpms that have affected
long-term measurements with the ICESat satellite. However, due to the stitengadion of
liquid water clouds from the lidar, measurements by radar from spade asuCloudSat will be
more suited to model evaluation for the thicker ice clouds. However, sheaezlength radars
or lidars could be used to sense the thin ice clouds. Working together witkrlovaeyelength
radars (Hogan and lllingworth, 1999), the vast majority of clouds withiratheosphere could be

detected, allowing for fairer evaluation of models of the earth’s climate syatelrin principle
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leading to fewer inaccuracies of forecasts of future climate. This warkezad on to assimilation
of cloud properties into numerical weather prediction models, which shouleiraphe quality of
cloud forecasts. Further radar measurements will improve our undeéirsgast future climate and
the cloud feedbacks on future climate. Simulators are currently being gedely the Met Office
and elsewhere for CloudSat (for example Bony-Lena (2006) anch&bsp(2006), discussed at
the ECMWF workshop on cloud parameterizations) and this work has ghtbe¢ the simulation

method works and will be useful in these future studies.
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CHAPTER SIX

Summary, Conclusions and Future

Work

Clouds are an important part of the radiation budget of the Earth, yetéhegin one of the largest
uncertainties within the climate system, with many numerical models disagreeing sigrhend

magnitude of the change in cloud radiative forcing in the future climate systéis.tflesis has
examined use of the simulation (or model-to-observations) method for evajdéferent aspects

of how clouds are represented within numerical models.

6.1 Summary of Findings and Conclusions

As part of this thesis, simulation has been used for two separate experinférgtly, it has
been used to convert the cloud scheme output from the Met Office madeDwppler radar
observations of the clouds above Chilbolton, to examine where the modelawaehrors in the
evaporation of ice. In the case of the Doppler velocity, it would have egndifficult to derive
the model parameterized ice patrticle fall speeds and hence simulation kasd pfause in this

area.

Secondly and arguably the most useful application of the simulation methdebbasnade in
developing a lidar forward model to predict observations from the ICEk&a using the ECMWF
model. This allows a fair comparison between the ECMWF model and the IQE8atand
the findings will be looked at in detail in section 6.1.2. Although a comparatinely field
for cloud studies, simulation has applications in the data assimilation of radabbes; which
are different in nature from the variables of cloud fraction and watetests used by models to
represent clouds. It also has practical applications in evaluating méaletsample the change of
a parameterized ice particle spectrum within the model can be evaluated bar@oggimulated

radar or lidar data to the corresponding observations.
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6.1.1 Evaporating Ice within Operational Models

In chapters, 3 and 4, 94-GHz Doppler cloud radar measurements kaveused to see how
well the evaporation zone beneath ice cloud is represented in operatiodals. The work was
inspired by Forbes (2002) who found in his thesis (subsequently peblisforbes and Hogan,
2006) that the depth of the evaporation of ice (defined as the changewateecontent from the
maximum within the profile to 10% of this maximum value in the area beneath the maximum)
was 2-3 times the depth of that in radar observations. Observations madBapiter radar
(not available at the time of Forbes’ thesis) has shown that the depth ofdperation zone in
the Met Office model is on average, 2.55 times that observed by IWC nezasnts calculated
using radar reflectivity and model temperature. This feature is not un@tee Met Office
model, with several operational models from the Cloudnet programme allisfpancreased
evaporation depth of 2—3 times the radar observations. Various carglidatke increased depth
of the evaporation zone within the Met Office model have been considereddition, a simple
numerical model of ice evaporation has been constructed, allowing aie@@esentation of ice
evaporation within the Met Office model, but with a high resolution grid. Follgwire results of

these two chapters, the following possible causes of the error aredisicar

e The model parametrized fall velocity being too high. Simulations of model pdesined
fall velocity show that in the middle of the cloud (where the effects of the \adraar

velocity are small), the modelled particle fall speed is around 30% too low.

e The lack of turbulence in the model at ice cloud altitudes. Measurement$ofdéuce and

evaporation zone depth show no evidence of any correlation.

e The parametrized density of the ice particles. When simulating radar measiisamning
a wide variety of ice particle density functions suggested by recent sttiadkedepth of the

evaporation zone within the Met Office model is found to change by lesslib#n

The humidity gradient within the evaporation zone or immediately beneath the i islo
much smaller in model profiles than in radiosonde ascents from Larkhill. fidpeadf from moist
air with 100% relative humidity to dry air with 20-30% relative humidity within the radiade
observations takes place in a shallow layer with depths of around 500 mieSufdthe layer

mean evaporation rate show that the model's parametrized evaporationabtaitone third of
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that derived using radar observations and model temperature. Té@gtaized evaporation rate
equation used in the parameterization scheme is based on well-establisieglyysics and is
dependent on the temperature, humidity, particle diameter and presseretrrdhin evaporation
rate is thought to be due to incorrect humidity as unrealistic changes in threpatiagneters would
be required. The sharp drop in humidity would take place over the spameeahodel grid box
and would be represented as a step function, but the numerics of the anegekesumably too

diffusive and so the sharp humidity gradient cannot be maintained.

As it is difficult to test the problems within the Met Office model, this thesis hasdoted
the ELePhANT model, an explicit microphysics model which has tested thethgge that the
deeper evaporation zone depth in the operational models were due to thksimadrrectly rep-
resenting the sharp drop in humidity within the evaporation zone. This contersarameteri-
zations of the Met Office model but with high resolution (5 m grid spacinglltaw any sharp
changes in humidity gradient that take place over a few hundred metresaiccbeately repre-
sented. It has been used both to examine the sensitivity of the Met Officel teodioud and
thermodynamic variables relevant to cloud formation, and to represepbrten from radar

and radiosonde case studies.

The evaporation zone depth is most sensitive to changes in the humidity rgradfiehe
humidity gradient increases from 0.02% then the evaporation zone depth decreases from 1
km to 500 m. Evaporation depth is also sensitive to changes in the temperaifile, plue to
the effect on the specific humidity within the evaporation zone. Changes initia ice water
content, made by changing the equivolumetric mean diaméigr ¢f the ice particles are also

important. Doubling the value dP, leads to an increase in the evaporation depth by 200 m.

The evaporation zone depth is not sensitive to changes in pressuhargges in ice water
content made by changing particle number concentration. Changing thiagsfaessure from

500 to 1000 mb changed the depth of the evaporation zone by less than 100 m.

The ELePhANT model can predict evaporation depths for both radhnmeadel profiles of
ice water content to within 200 m of those observed by the radar. Systematitiiaaies occur
from the differences in grid spacing between the models, the parameterigelieme differences
and that the sonde may have a lag of a few seconds when it passesyrtombist air. Random
inaccuracies may occur when the profiles of humidity may not be from the slmme the radar

is seeing over Chilbolton, depending on the direction of the wind and theestniidl
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The results from the ELePhANT model show that if the Met Office modelthadcorrect
humidity gradient it could accurately represent evaporation zone depties evaporation zone
depth is more sensitive to humidity gradient changes than changes in anyanilable and hence
the results from the ELePhANT model give strong evidence that the shhllowdity gradient
within the evaporation zone in the Met Office model causes the deepesratiap zone in this

model.

There has been some consideration (Westbei@d., 2007a) that the Met Office model may
(by assuming all particles are spheres) be underestimating the capadfatheeevaporating
ice and hence affecting the evaporation rate. This needs to be testethier studies with the
ELePhANT model, but experiments show that using a lower capacitanckegping all other
factors the same, would actually increase the depth of the evaporatiomzbeanodel to greater
depths than with the present scheme, and that humidity gradient is still the bvizi® cause of

the deep layer within the Met Office model.

6.1.2 Assessment of the Performance of the ECMWF model using ICEat

Chapter 5 has developed techniques to compare models with attenuatechbizcksom global
lidar observations from space and demonstrated their use on 15 daySMVE model data.
Although previous authors (Millezt al., 1999; Palnet al,, 2005) have examined the performance
of the cloud scheme within the ECMWF model using spacebourne lidar, tiveyrwd accounted
for the attenuation of the lidar signal when making their comparisons. While thidbegood for
thin ice clouds, where extinction of the lidar signal takes place, an unfaipadson of the model
may result. Comparison has been made between the ECMWF global modélsamdations from
the ICESat lidar. Fifteen days of ICESat and model data have been eedymihich is equivalent
to over 9 million kilometres of ground-based radar data and assuming a measpégad of 20
m s~!, is around 14 years of observations made at a mid-latitude ground-btedinh such as

Chilbolton. Using the lidar forward model, the following conclusions can lbevdr

The method of simulation (in the form of a lidar forward model) is in this case faemor
satisfactory than trying to use the lidar data to derive the model variablesrtiamtly, the com-
parison removes any clouds from the model which would not be seen liystinements making

the observations.
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e Results of mean cloud fraction, frequency of occurrence and amoduen wresent have
shown that in general the model has a tendency to get most features midHatitude
storm track resulting in an error in the frequency of occurrence in thie aitfude ice
cloud in the tropics of 10-15% and over the polar regions of up to 15%.lditgje amount
of ice will change the model behaviour towards incoming and outgoing radiatid could

potentially affect surface temperature forecasts.

e The model also has problems in representing the low-altitude clouds in thestrofiis
is probably a combination of two reasons, the model being able to accurapegsent the
shallow convection which is taking place, and the processing of the lidasafdrmodel
data removing some of the low equatorial cloud due to extinction of the lidarldigribe
large amount of ice present within the model. It is likely that only one of thesgseis

present, but the at this stage it is not possible to say which one.

e Tests have also shown only a 10% error in the comparison due to the lardesiwns
within the lidar forward model: the lidar ratio and the multiple-scattering factoreithe
effects of a reasonable range of values of the forward model araleat|there is very little

change in the results.

e Comparisons into the performance of the model have been carried autaodeand sea
regions, and results for each region have been derived sepaltaig fraction evaluations
indicate that there is too much ice cloud over both surfaces above the tampi¢ee model
has too high a frequency of occurrence within the ice cloud regions, madably around

the poles and the upper-level tropical ice clouds.

e Over the sea, boundary layer and marine stratocumulus clouds have tadrieguency of
occurrence, particularly in the tropics. There is evidence that mismpeson of mountain
ranges affect boundary layer clouds (Btual, 2004) and it could be that this is the case
with the ECMWF model. Over the land surface, model amount when prestrt large,
particularly over the polar regions, possibly due to thick ice cloud that maydsent in the
model. Evidence from Beesley al.(2000) produces similar results and it can be concluded
that generally, the ice cloud scheme within the model needs revision as ihtoadudget
of the polar regions, an area of importance to climate due to the melting of thepisevih

not be accurately represented within the ECMWF model.
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e Skill scores of equitable threat score and log of odds ratio have bdematad for the
model performance and indicate that the model performs the best ovemthsu&ace,
but in general the skill of the model reduces as altitude decreases. qliitalde threat
skill score is suitable for cloud fraction comparisons and is not particusargitive to the
number of points included in the calculation of the score; log of odds ratioriergly
robust, but has no upper bound and is not as accurate when only datewpoints are

considered.

e Backscatter and backscatter-when-present comparisons havenbderusing model data.
In most cases the backscatter produced by the lidar forward modelusateavithin the
error bounds of the model; however, the backscatter is too high within thieatdigh-
altitude ice clouds and within the marine and boundary layer stratocumulusabsdrved
around the equator to 3torth and south. These comparisons prove useful in validating

the way the model will behave to short wave radiation.

e Sensitivity studies show that doubling or halving the ice cloud effectiveusachakes a
change of up to 5% in the cloud fraction and amount when present. Sinces thig
enough to change the amount of ice cloud within the model to ICESat leveldjkielg
that the model is producing too much ice cloud. These sensitivity studieseaisal that
the backscatter in the equatorial boundary layer and lower free atnredjghéd clouds is

too high and this could be due to a high effective radius within the liquid cloagdgh

Comparison of the ECMWF model to lidar observations is an essential gadorsystems
involving the data assimilation of lidar data into a forecast model. In this casendldel can
be used to predict backscatter from the laser and then inaccuraciesksthter can be satisfied
by changing the ice water contents. This method can also be used for testirdaud physics

schemes which are being considered for inclusion within the model.

6.1.3 Spacebourne Radar and Lidar Cloud Climatology

In chapter 5, 15 days of ICESat data were used to obtain global asddgloud location and
amounts. With the launch of the CALIPSO lidar in 2006, this study could potenkealgxtended
to provide long-term climatologies of clouds for use in validating climate modelsyedisas

advancing our knowledge of global clouds where current obsenstice not always available.
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However, one of the key issues raised in chapter 5 was that the lidat sigti@nuated (and
in some cases extinguished) as it passes through thick cloud. Althougtudydss made efforts
to account for attenuation to be fair to the model, one obvious shortfall babspacebourne lidar

measurements will be that low altitude clouds are not always detected.

However, CALIPSO is part of the A-train of satellites along with the Cloud&aar, which
orbit the Earth along the same track, a few minutes apart. Hence, combilsecral lidar obser-
vations of the same cloud profiles are now available. The synergy of thesivaments allows
both the detection of liquid cloud by the radar, (which the lidar will not detestyall as very
thin ice cloud (which the radar will not always detect). So although on its, didar measure-
ments will not be able to validate every type of model cloud, the two sets ofvaigms coupled
together will allow very powerful evaluations of cloud climatology and mo@efgrmance in the

future.

6.2 Future Work

Work in this thesis and climate science has shown the need to improve the wdg el@urepre-
sented within GCMs, to constrain the error on estimates of future temperateite goor cloud

representation.

The first step is to see which GCMs are performing well and which have kangrs. Al-
though the Cloudnet programme (lllingworthal., 2007) has gone some way towards evaluating
European models and is undergoing expansion to include ARM (Atmosgtediation Measure-
ment) data from the USA; the inclusion of further models to this programme slheutthcour-
aged. Using data from multiple ground-based studies, the operationalswadebe evaluated to

examine which ones perform well over a long period of time at individualtioos.

In addition, global profiles of clouds have been made from space b8&Ca&nd are currently
being made by the CALIPSO lidar and the CloudSat radar (Stepdtesls 2002), which form
part of the A-train of satellites. In future more such satellites are planned taumnched, such
as the EarthCare satellite (Beeyal., 2002), which will have radar and lidar on board the same
platform and is scheduled for launch in 2012. This will be of particularinsgxamining the
performance of GCMs in the areas where radar and lidar observatierficult, such as the

polar regions, tropical upper troposphere and over the oceaneg ¥awecloud observations exist.
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With the extra measurements, the extraction of observation and model pobfilesd properties,
similar to that with the ECMWF model in chapter 5 can be used and a Cloudnepstgemme
on model evaluation from space can be set-up. This should include adllgk@Ms available for

evaluation, in order to reduce the error in how clouds are represented.

In addition, conclusions may be drawn for the short-term developmengdittidies in this
thesis. Section 6.2.1 at the ice evaporation problem, section 6.2.2 examinaghiee develop-
ments in the ECMWF model evaluation and section 6.2.3 looks at how simulation melpge

in the future.

6.2.1 Ice Evaporation

As noted in chapter 4, Westbroekal. (2007a) have found that the Met Office may underestimate
the capacitance of ice particles. The spherical assumption could bedelaken the ELePhANT
model and using the work of Westbroekal. (2007a), a re-run of the ELePhANT model can be

attempted with the new particle shapes to see how the results are affected.

In addition, tests using the ELePhANT model can be made to determine a criiitakg-
olution threshold, where any grid spacing greater than this threshold wesidt in the model
being unable to represent the humidity gradient properly. The resulld,éoyrinciple be used

to change the grid resolution of the Met Office model in future versions.

Although evaporation has been studied using four models from acroepécin chapter 3,
only the Met Office parameterization has been studied in detail. The ELePAddiel could be
run with the ECMWEF or Mteo-France parameterization scheme to assess where these models

may have problems in representing evaporation.

6.2.2 ICESat and the ECMWF model

More recently, the ECMWF model has reduced the amount of ice in its cldwehse (A. Tomp-
kins, personal communication) and therefore a rerun of the analysie &@@MWF model on a
later time period (from early 2005 onwards) would be of use. Howeverethave been problems
with the availability of good quality ICESat data from a later period; the sigimahgth of the
lasers has reduced somewhat while the satellite has been in orbit. If gabiy §0ESat data is

available, this comparison should be possible. However, as an alterrste@uated backscatter
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data of good quality is now available from CALIPSO and could be used ®etlaluation. It
would be particularly of use to see how the ECMWF model represents lewelr¢clouds once

the amount of ice and hence the amount of attenuation is reduced at wadsr le

In addition, the work can easily be extended to include other operationat¢lsyaglich as
the Met Office global model. As the ECMWF model is not specifically a climate mdtdis
difficult to specifically use the results from chapter 5 to show how climate madelserforming.
Instead, the ECMWF model cloud scheme can be improved and then usedmasikas a cloud
scheme for a climate model, such as the RACMO model examined in chapter &/lecige of
the major pitfalls in cloud schemes can then be used to write better cloud schedhsrace
this methodology can directly affect the predictions of future climate andceethe uncertainty

caused by clouds.

6.2.3 Simulation

This thesis has undoubtedly proved the use of simulation in future work asdiseful to de-
velop the method for future spacebourne missions. This is currently beimg fdr CloudSat
(Bony-Lena, 2006; Stephens, 2006; Haynes and Stephens, @8€@mnent in preparation) and
CALIPSO (Bony-Lena, 2006) and should be attempted for EarthCAR&dés 2012 launch.
They are valuable in model evaluation studies, particularly for lidar studiesersignal attenua-
tion takes place and for high-frequency radar studies (e.g. 94-Ghimarsome signal attenuation

takes place in thicker water clouds.

In addition, simulation of ground-based radar signals should continaetfre methods devel-
oped by Chiriacet al. (2006) and applied to the Cloudnet programme. This will enable accurate
comparisons of models in a similar way to the methods of Haah. (2001), who removed ice
cloud that could not be seen by the radar. Simulation would offer an ditexmaethod to this, as
well as testing the model parameterization schemes in their effectiveneggaducing the ob-
servations. This would give additional insight to the cloud model comparialbeady undertaken

(MMingworth et al., 2007).

In addition, simulation can be used for data assimilation purposes. Workiativaal re-
trievals are already being done in the radar group at Reading using $bddta (Delariand
Hogan, 2007, document in preparation) and could potentially be extdandedombination of

CALIPSO and CloudSat data, EarthCARE after its 2012 launch and f@iowdnet work. The
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simulated radar and lidar signals can be used to make a comparison with tieatibas and
the results applied into model cloud schemes. This should allow more acepatsentations of

clouds for NWP models.

Due to the increasing number and complexity of data assimilation methods, miatdesare
set to be assimilated into operational models and hence simulation has a pagitiak dor the
future. As we continuously wish to examine model performance, simulationda® scientists
the only way to represent radar and lidar signal attenuation, and hemcedst accurate tests
of model performance. This study has barely scratched the surfdbe simulation technique,
which can be adapted for many different instruments, but is especiallyl iseradar and lidar.
Simulation methods should be used in many future studies and would be espetdatynt within
the Cloudnet programme, as it expands to evaluate more models with mordagalarhe results

of further published simulation experiments are eagerly anticipated.
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ACTIVE REMOTE SENSING  The detection of an object’s properties at a distance
by sending out electromagnetic or sound waves from a transmitter

and receiving them some time later.

AEROSOL Anairbourne solid or liquid particle which may be of natural or an-
thropogenic origin and of size of the order of micrometres. These

can be detected by sorfidar wavelengths.

AMOUNT WHEN PRESENT  The mearcloud fraction detected byadar or lidar
or observed in a model grid box, with the condition that the mean
grid box cloud fraction is above a certain threshold (usually 5%,

but sometimes 50%).

ATTENUATED BACKSCATTER The backscatter observed by a lidar, including a
transmission term for thattenuation of the lidar signal:
B = Lexp [-2n [ adr], wheres' is the attenuated backscatter,
« Is theextinction coefficient r is the range from the lidar ang

is themultiple-scattering factor.

ATTENUATION The loss of aradar or lidar signal as they pass through a dense

medium, such as cloud, atmospheric constituents or rain.

BACKSCATTER  Similar to Reflectivity factor, the backscatter is a measure of the
signal returned to &#dar and can be expressed in linear or loga-
rithmic form. It contains information about the target and is related

to properties of the target.

BACKSCATTER WHEN PRESENT (SWP) Analogous to Amount When
Present backscatter when present is the mean attenuated

backscatter, ignoring zero values from the calculation.

BINARY SKILL SCORE  SeeSkill Score
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CALIPSO

CAPACITANCE

CLOUD FRACTION

CLOUDNET

CLOUD PHASE

CLOUDSAT

DEPTH FACTOR

Acronym for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation, launched in April 2006. This is a 2 year spacebourne

lidar mission, with one of its aims to monitor clouds.

Making an electrostatics analogy, capacitance is a variable which
refers to the ability of a particle shape to allow diffusion and evap-
oration of water vapour on to its surface. The highest values are for

spheres, with capacitance decreasing for different particle habits.

The fraction of cloud filling a model grid box, defined in terms
of its volume or area in 3 dimensions. This is different from cloud
cover, which is the fraction of a model grid box filled with cloud

when observed from beneath.

A European experiment using ground-based claatér andlidar

to evaluate properties of clouds in operational models.

Referring to whether clouds are composed of liquid water, ice or
a combination of the two. Cloud phase of 1 is totally liquid; O is

totally solid ice.

Launched on 28 April 2006, this is a satellite with a cloud profiling
radar on board, which is making orbits of the Earth and able to

observe snapshots of clouds.

A variable introduced for comparing model aratlar evapora-
tion zonedepth. It is simply the ratio of modelvaporation zone
depth toradar evaporation zone depth, so that a model having
a depth factor of 2 has agvaporation zonedepth of double the

radar.

DIAGNOSTIC VARIABLE A variable in the model which is not carried between

timesteps, yet insteadBagnosedrom relations withPrognostic
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Variables.

DOPPLER RADAR A radar which in addition to measuringeflectivity factor, is
Dopplerised enabling it to obtain information on the Doppler shift
of scatterers in its beam. When thedar is vertically pointing,
Doppler shift is useful to obtain estimates of particle terminal ve-

locity and turbulence at cloud baserisphologicalresearch.

DUAL WAVELENGTH RADAR Use of two (or morefadars simultaneously to re-
motely sense objects. Imephologicalstudies it has applications

in determining cloud patrticle size.

EARTHCARE A planned spacebourmadar andlidar mission, due for launch in

2012.

EFFECTIVE RADIUS A measure of the radius of a particle from the point of view of

J n(r)rddr
it's interaction with radiation. This is defined as = &*——,

J n(r)r2dr
0
wherer is the radius of the particles andr) is the number of

particles of size-.

ELEPHANT  Evaporation LEvel PHysics and Numerical ice Transport. A model

created for this thesis to simulaggaporation zones

EVAPORATION ZONE  Coined by Forbes (2002), an evaporation zone is the area
close to the base of ice clouds in which the particles evaporate
(strictly sublimate, sekee Evaporation). It is defined as the depth
of atmosphere between the maximuece Water Content in the
profile to 10% of this maximum value at some altitude between the

maximum value and the Earth’s surface.

EXTINCTION COEFFICIENT For a particular substance, the extinction coefficient

is a measure of how well it absorbs electromagnetic radiation. Sub-
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stances with higher extinction coefficients absorb more radiation.
In this thesis, extinction coefficient represents the reduction in a
lidar signal as it interacts with atmospheric constituents. A high
extinction coefficient leads to a weaker lidar signal further away
from the instrument, yet a higher attenuated backscatter from the

particles interacting with the radiation.

EXTINCTION-TO-BACKSCATTER RATIO Seelidar Ratio .

FREQUENCY OF OCCURRENCE A measure of cloud climatology, being the frac-
tion of times cloud is above a detection threshold in a particular lo-
cation. See alsémount When PresentandMean Cloud Frac-

tion.

GENERAL CIRCULATION MODEL (GCM) A model with large grid resolution
which is concerned with representing the general circulation of the

earth’s atmosphere rather than small-scale variations in weather.

GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) SeelCESat.

ICE EVAPORATION  Strictly, the sublimation of ice to vapour bypassing the liquid
phase. Termed evaporation in this thesis to avoid confusion with

sublimation from vapour to ice.

ICESAT  Acronym for Ice, Cloud and Land Elevation Satellite. It was
launched in 2003, which carries ldar platform on board
(GLAS), which is capable of making profiles of clouds as one of

the secondary aims of the mission.

ICE WATER CONTENT (IWC) A measure of the amount of ice contained within a
cloud or model grid box. Ice water content is the mass of ice per

unit volume.
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INTEGRATED BACKSCATTER The lidarbackscattersummed over a profile. This
may be done to calibrate the lidar (O’Conradral, 2004), to de-
termine themultiple scattering factor through a cloud of which
the properties are known, to predict thélar Ratio , or to estimate

the cloud optical depth.

LIDAR  Acronym for Light Detection and RangingActive remote sens-
ing instrument which operates at wavelengths centred around the

visible, ultraviolet and infrared wavelengths.

LIDAR IN-SPACE TECHNOLOGY EXPERIMENT (LITE) Experiment where a
lidar flew on board the space shuttle “Discovery” in 1996 to deter-
mine whether future spacebourligar missions would be possi-
ble.

LIDAR RATIO The ratio ofextinction to backscatterobserved by a lidar instru-
ment. For liquid water, it is nearly constant at1&.8 sr, however

it varies within ice clouds, largely due to variable habits.

LIQUID WATER CONTENT (LWC) See alsdce Water Content. A measure of
the amount of liquid water contained within a cloud or model grid

box, defined as the mass of liquid water per unit volume.

MAXIMUM OVERLAP SeeOverlap.

MAXIMUM-RANDOM OVERLAP SeeOverlap

MEAN CLOUD FRACTION The average cloud fraction for one particular model

grid box or location; hence a measure of cloud climatology.

MULTIPLE SCATTERING FACTOR Defined by Platt (1973), the multiple scatter-
ing factor is a scaling factor for optical depth due to the amount of

radiation from a lidar that is scattered out of the beam. It has an up-
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NEPHOLOGY

per limit of one, where there is only single scattering and a lot of ra-
diation is scattered outside of the lidar field-of-view. This is proba-
bly most suitable for ground-based instruments. The lower limit is
0.5, which represents the maximum amount of multiple scattering
and all scattered radiation remaining within the lidar field-of-view.

This value is particularly suitable for spacebourne instruments.

Term for the scientific study of clouds.

NUMERICAL WEATHER PREDICTION (NWP) A model or models usually with

OVERLAP

smaller grid spacing and timesteps thaB@M, used for forecast-

ing of the weather up to a few days in the future.

SpecificallyCloud overlap a term that is applied to an assump-
tion of how clouds from different model grid boxes in the vertical
overlap each other, which is important for cloud radiation calcula-
tions. Usually there are three main types that are used in models:
Random, where the clouds are overlapped randomly; maximum,
where at all times maximum extent of overlap is maintained and
maximum-random overlap, where clouds with vertical extent over
one or more grid boxes are maximumly overlapped or otherwise

randomly overlapped.

PARAMETERIZATION In a numerical weather model, parameterization is the rep-

resentation of small-scale processes (with scales of less than the
model grid), yet important for the model large-scale physics which
are represented in terms of a series of expressions allowing their ef-
fects to be felt on the large-scale grid. For example, cloud conden-
sation is parameterized to form cloud and to modify the model’s

large-scale humidity.

PARTICLE SPECTRUM  Another name for size distribution of particles. This refers
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to the number of particles available for a specific size of cloud
droplet or ice particle and the variation of number of particles with

particle size.

PASSIVE REMOTE SENSING  Remote sensing technique where distant information
about an object is determined by observing radiation that is re-

ceived from the object.

PROGNOSTIC VARIABLE A model variable that is carried from timestep to

timestep with a equation for its time derivative.

RADAR  Acronym for RAdio Detection And RangingActive Remote
Sensinginstrument that works at radio and microwave wave-
lengths. For cloud studies, wavelengths are on the order of cen-

timetres or millimetres.

RANDOM OVERLAP  SeeOverlap.

REFLECTIVITY Also known asReflectivity Factor it is the variable measured by
aradar: Z = [ N(D)D%D, whereN (D) is the number of
particles of sizeD. It can be expressed in logarithmic (dB) or

linear (mn¥ m—3) form.

SIMULATION Using model variables to predict (or simulate) measurements made
by an instrument, where the model variables are not directly mea-

sured by the instrument.

SKILL SCORE A binary score of determining model performance when compared
to the observations. Used in this thesis for examining how well
clouds are forecast in models. Each model grid box is compared
to theradar or lidar measurements and each model grid box is
categorized as either a hit, a miss, a correct rejection or a false

alarm (see table 2.2). A skill score uses this categorization to judge
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the skill of the model’s forecast cloud.

TROPICAL RAINFALL MEASURING MISSION (TRMM) An early space-
bourne radar that was launched in 1997 for the purpose of

measuring rainfall in the tropics.

VENTILATION COEFFICIENT A variable used in evaporation growth and diffu-
sion calculations to model the airflow around the particle, which

can lead to increased vapour diffusion or evaporation.
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Symbols

Chapter Two

Using Radar and Lidar for Model Evaluation

C’rad

AV

=2 = > 9

Kwater
Kice

Power returned to the radar receiver

Range of the targets from the radar

Radar constant; dependent on radar hardware
Power transmitted from the radar

Radar pulse volume

Backscatter cross section of particles detected
Radar or lidar wavelength

Dielectric factor

Number of particles of a specified diameter or within a spegifliam-
eter bin

Particle Diameter

Complex refractive index

Mie-to-Rayleigh ratio

Dielectric factor of liquid water

Dielectric factor of ice

Complex dielectric constant of ice

Attenuation of radar signal due to atmospheric gases
Attenuation of radar signal due to cloud liquid water.
Attenuation of radar signal due to cloud ice.

Lidar constant; dependent on lidar hardware
Attenuated lidar backscatter

Lidar backscatter

Dummy variable of range,

Multiple scattering factor

Lidar extinction coefficient

Lidar (or extinction-to-backscatter) ratio

152




SYMBOLS

q
a
di
Qsat

ADV

DIFF

TM

ST

cv

EV

Gcp

RHepit
Cr
LWC
Iwc

Q>
9>
SN

O Q% »

HR

Specific humidity of a model grid box

Total cloud water content of a model grid box

Cloud liquid water fraction of a model grid box

Ice water fraction of a model grid box

Saturation specific humidity of a model grid box

Subscript to denote change in cloud prognostic variablesaadvec-
tion

Subscript to denote change in cloud prognostic variablestalwliffu-

sion

Subscript to denote change in cloud prognostic variablestalturbu-
lent mixing from the boundary layer

Subscript to denote change in cloud prognostic variablestolstrati-
form cloud formation or dissipation processes.

Subscript to denote change in cloud prognostic variablesalprecip-
itation

Subscript to denote change in cloud prognostic variablestdicon-
vective activity

Subscript to denote change in cloud prognostic variablestaeloud
evaporation

Cloud phase function, where a phase of 1 is entirely liquid @nsl
entirely ice.

Critical value of relative humidity, at which cloud formati@an begin
Cloud fraction

Liquid water content

Ice water content

Coefficients in the Hogaet al. (2006) relation of ice water content to

radar reflectivity

Skill score hit

Skill score false alarm

Skill score miss

Skill score correct rejection

Skill score of hit rate (Wilks, 1995)
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POD  Skill score of probability of detection (Wilks, 1995)
TS  Skill score of threat score Wilks (1995)
FAR  Skill score of false alarm rate Wilks (1995)
PSS Skill score developed by Palet al. (2005)
ETS Equitable threat skill score
E  Component of equitable threat score which removes randa@ires
the score
Chapter Three

Doppler Radar Evaluation of the Representation of Evapogaice in Operational

Models

Pi
IwcC

Ice crystal concentration

Maximum crystal diameter

Number concentration at zero particle diameter

Temperature

Parameter used to express the exponential decay of theritegaize
spectrum.

Equivolumetric median diameter of the ice particle speutru
Coefficient of mass-diameter as used in the Met Office model
Exponent of mass-diameter as used in the Met Office model
Ice particle density

Ice water content

Mass of an individual ice particle

Radar Reflectivity

Indicates that a quantity is measured in decibels

Radar measured vertical Doppler velocity

Dielectric factor of ice

Mie to Rayleigh ratio

Ice crystal terminal velocity
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SYMBOLS

Chapter Four

Coefficient of velocity-diameter as used in the Met Office nfode
Exponent of velocity-diameter as used in the Met Office model
Density of 1 kg n13

Density of air

Gas constant for dry air

Atmospheric pressure

Ice water mixing ratio

Turbulent kinetic energy dissipation rate
Standard deviation of mean Doppler velocity
Vertical air velocity

Reflectivity-weighted particle terminal velocity
Area averaged particle diameter

Relative humidity

Time

Capacitance of an ice crystal

The ventilation coefficient

Saturation ratio

Diffusivity

Saturation vapour pressure

Latent heat of sublimation of ice

Thermal conductivity of air

Dynamic viscosity of air

Air density

Altitude

Adjusted altitude

The Schmidt number, equal to 0.6

The Reynolds number

Simple Numerical Model Studies of Ice Evaporation
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SYMBOLS

m  Mass of an individual ice particle
t Time
C'  Capacitance of an ice crystal
S;  Saturation ratio
F  The ventilation coefficient
L, Latent heat of sublimation of ice
k.,  Thermal conductivity of air
i Dynamic viscosity of air
X  Diffusivity
esatice  SAturation vapour pressure
Sc¢  The Schmidt number, equal to 0.6
Re  The Reynolds number
T  Temperature
p Air density
D Maximum crystal diameter
v(D) Ice particle terminal fall velocity, expressed as a functid D.
RH Relative humidity
R Gas constant for dry air
p Atmospheric pressure
pi Ice particle density
IWC  Ice water content
N Ice crystal concentration
Ny  Number concentration at zero particle diameter

Chapter Five

Use of a Lidar Forward model for comparisons between ICESat hadECMWF model

' Lidar attenuated backscatter
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SYMBOLS

Zlid

wc
LWC

Tel

Pi

Pl

Yw
W P
ETS

2 009 = <

Lidar extinction coefficient

Altitude

Lidar (or extinction-to-backscatter) ratio
Multiple scatting factor

ICESat orbit altitude (altitude of the lidar)
Dummy variable for:

Ice water content

Liquid water content

Ice particle effective radius

Cloud droplet effective radius

Density of solid ice

Density of liquid water

Integrated backscatter

Backscatter when present

Equitable threat skill score

Odds ratio skill score

Skill score hit

Skill score false alarm

Skill score miss

Skill score correct rejection

Total number of points used to calculate a skill scere+ B+C+D).
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