Recent developments in Monte Carlo methods

Richard Everitt

University of Reading

February 27th, 2013

Richard Everitt Recent developments in Monte Carlo methods

Э

Relevance to data assimilation

- I'm going to take for granted that we want to quantify uncertainty about unknowns, which we represent using random variables.
- We have some parameters θ and a probabilistic model for $l(.|\theta)$ data y given the parameters.
- We want to infer something about θ this is the starting point for a Bayesian statistician working on any application.
- What is special about data assimilation?
 - $I(.|\theta)$ is usually a computer model?
- Monte Carlo methods are central to solving this type of problem in the presence of non-linearities and/or non-standard distributions, i.e. real situations!

イロト イポト イヨト イヨト

Framework

- We want to estimate parameters θ through observing data y.
- The distribution *I*(*y*|θ) is not directly available, but it is easy to see how the data arises via considering latent variables *x*:
 - $g(y|x, \theta)$ is available and easy to evaluate.
- Encountered in many different situations, e.g.
 - in data assimilation when the data y is an observed time series, x is a latent time series of which the data are noisy observations and θ are some parameters of either the dynamic model or the measurement model.

・ロット (雪) (日) (日)

Framework

- We want to estimate parameters θ through observing data y.
- The distribution *I*(*y*|θ) is not directly available, but it is easy to see how the data arises via considering latent variables *x*:
 - $g(y|x, \theta)$ is available and easy to evaluate.
- Encountered in many different situations, e.g.
 - in data assimilation when the data y is an observed time series, x is a latent time series of which the data are noisy observations and θ are some parameters of either the dynamic model or the measurement model.

Approximate Bayesian computation Pseudo-marginal approach Discussion

Noisy images

- y is the observed image (log expression of 72 genes on a particular chromosome over 46 hours).
- θ relates to the interactions between genes.
- x is a binary variable for each gene at each time, whose states represent up or down regulation.

Approximate Bayesian computation Pseudo-marginal approach Discussion

Epidemiology

- y is information about the number of individuals infected at a number of discrete time points.
- θ is the infection and recovery rates.
- x are the unobserved times at which individual are actually infected.

Approximate Bayesian computation Pseudo-marginal approach Discussion

Social network

- y are observed connections between actors.
- θ is the degree of transitivity, clustering, etc.
- x are unobserved connections between actors.

Approximate Bayesian computation Pseudo-marginal approach Discussion

Bayesian framework

- Use a joint distribution on:
 - θ (parameters of the model);
 - x (the unobserved variables);
 - y (the observed variables).
- With factorisation:

$$p(\theta, x, y) = p(\theta)f(x|\theta)g(y|\theta, x).$$
(1)

• Use a simple prior for $p(\theta)$ that we can both evaluate and simulate from.

(D) (A) (A)

Pairwise Markov random fields

(日) (部) (E) (E) (E)

Ising models

- Originally used as a model for ferromagnetism in statistical physics.
- Generalisations (including the *Potts model*) are frequently used in analysing spatially structured data, especially images.
- A pairwise factorisation on a grid, where each variable can take on either the value -1 or 1.
- Each potential is:

$$\Phi(x_i, x_j | \theta_x) = \exp(\theta_x x_i x_j), \qquad (2)$$

so that the joint distribution is:

$$f(x|\theta_x) = \frac{1}{Z(\theta_x)} \exp\left(\theta_x \sum_{i,j} (x_{i,j} x_{i,j+1} + x_{i,j} x_{i+1,j})\right). \quad (3)$$

• So a larger parameter results in neighbouring variables being likely to be similar.

Ising models

• Models undergo a phase transition as θ_x increases:

Figure : θ_x just lower than the critical value.

Ising models

• Models undergo a phase transition as θ_x increases:

Figure : θ_x just greater than the critical value.

Latent pairwise Markov random fields

Bayesian parameter estimation

• Observe y and use Bayesian inference:

$$p(\theta|y) \propto \int_{x} p(\theta) f(x|\theta) g(y|\theta, x) dx.$$

• Common approach is to use MCMC to simulate from:

 $p(\theta, x|y) \propto p(\theta) f(x|\theta) g(y|\theta, x).$ (4)

beamer-icsi-

Bayesian parameter estimation

• Observe y and use Bayesian inference:

$$p(\theta|y) \propto \int_{X} p(\theta) f(x|\theta) g(y|\theta, x) dx.$$

• Common approach is to use MCMC to simulate from:

$$p(\theta, x|y) \propto p(\theta) f(x|\theta) g(y|\theta, x).$$
 (4)

The Metropolis-Hastings algorithm

A method for constructing an MCMC algorithm for simulating from a given target $p(\theta, x|y)$.

The Metropolis-Hastings algorithm

Returns a dependent sample $\{(\theta_i, x_i) \mid 1 \le i \le N\}$ from $p(\theta, x|y)$.

• For i=1:N

• Simulate
$$\theta^*, x^* \sim q(.|\theta_{i-1}, x_{t-1})$$

• Simulate $u \sim \mathscr{U}[0,1]$

• if
$$u < \min\left\{1, \frac{p(\theta^*, x^*|y)q(\theta_{i-1}, x_{i-1}|\theta^*, x^*)}{p(\theta_{i-1}, x_{i-1}|y)q(\theta^*, x^*|\theta_{i-1}, x_{i-1})}\right\}$$

•
$$\theta_i, x_i = \theta^*, x^*$$

• else

•
$$\theta_i, x_i = \theta_{i-1}, x_{i-1}$$

(Example)

イロト イポト イヨト イヨト

MCMC on multi-dimensional spaces

- When we have a posterior distribution over many variables, the algorithm is the same.
- However, choosing a proposal that moves all variables at once can be difficult.
- Most people would update θ and x separately ("Gibbs"):
 - sample from $p(x|\theta, y)$ using Metropolis-Hastings;
 - sample from $p(\theta|x, y)$ using Metropolis-Hastings.

・ロト ・ 一下 ・ ・ コト・・ ・ コト・

Three problems

- Every step is a problem!
 - **Sampling from** $p(\theta|x, y)$ can be hard. Requires the evaluation of an *intractable normalising constant*

$$Z(\theta_x) = \int_x \exp\left(\theta_x \sum_{i,j} (x_{i,j} x_{i,j+1} + x_{i,j} x_{i+1,j})\right) dx.$$

- Sampling from p(x|θ, y) is hard. A density on a large, complicated space.
- Opdating like this may be a bad idea anyway! If x and θ are quite dependent in the posterior, the sampler will be poor.
- Problem 1 can be addressed by using the "exchange algorithm" (Murray et al., 2006)
 - requires exact simulation from $f(x|\theta)$.

Three problems

- Every step is a problem!
 - **Sampling from** $p(\theta|x, y)$ can be hard. Requires the evaluation of an *intractable normalising constant*

$$Z(\theta_{x}) = \int_{x} \exp\left(\theta_{x} \sum_{i,j} (x_{i,j} x_{i,j+1} + x_{i,j} x_{i+1,j})\right) dx.$$

- **3** Sampling from $p(x|\theta, y)$ is hard. A density on a large, complicated space.
- Opdating like this may be a bad idea anyway! If x and θ are quite dependent in the posterior, the sampler will be poor.
- Problem 1 can be addressed by using the "exchange algorithm" (Murray et al., 2006)
 - requires exact simulation from $f(x|\theta)$.

Example: Ising model data $(\theta_x = 0.1, \theta_y = 0.1)$

beamer-icsi-

æ

Example: Ising model using Gibbs

Figure : Points from the posterior using Gibbs.

Approximate Bayesian computation Pseudo-marginal approach Discussion

2 Approximate Bayesian computation

Beudo-marginal approach

beamer-icsi-

æ

イロン イヨン イヨン イヨン

Approximate Bayesian computation Pseudo-marginal approach Discussion

2 Approximate Bayesian computation

3 Pseudo-marginal approach

beamer-icsi-

E

Approximate Bayesian computation Pseudo-marginal approach Discussion

- 2 Approximate Bayesian computation
- 3 Pseudo-marginal approach

beamer-icsi-

臣

Approximate Bayesian computation Pseudo-marginal approach Discussion

- 2 Approximate Bayesian computation
- 3 Pseudo-marginal approach

beamer-icsi-

э

What is ABC?

• Directly approximate a complicated or intractable likelihood with:

$$I_{arepsilon}(y| heta) = \int_{y'} I(y'| heta) \pi_{arepsilon}(y'|y) \mathrm{d}y' pprox rac{1}{R} \sum_{r=1}^R \pi_{arepsilon}(y'^{(r)}|y)$$

where $y'^{(r)} \sim l(.|\theta)$.

• In the original work R = 1 and $\pi_{\varepsilon}(S_{y'^{(r)}}|S_y) \propto \delta\left(\left|S_{y'^{(r)}} - S_y\right| < \varepsilon\right).$

 Can use rejection sampling, importance sampling, MCMC or SMC samplers to simulate from this approximate posterior.

What is ABC?

• Directly approximate a complicated or intractable likelihood with:

$$I_{arepsilon}(y| heta) = \int_{y'} I(y'| heta) \pi_{arepsilon}(y'|y) \mathrm{d}y' pprox rac{1}{R} \sum_{r=1}^R \pi_{arepsilon}(y'^{(r)}|y)$$

where $y'^{(r)} \sim l(.|\theta)$.

• In the original work R = 1 and $\pi_{\varepsilon}(S_{y'^{(r)}}|S_y) \propto \delta\left(\left|S_{y'^{(r)}} - S_y\right| < \varepsilon\right).$

 Can use rejection sampling, importance sampling, MCMC or SMC samplers to simulate from this approximate posterior.

What is ABC?

• Directly approximate a complicated or intractable likelihood with:

$$I_{arepsilon}(y| heta) = \int_{y'} I(y'| heta) \pi_{arepsilon}(y'|y) \mathrm{d}y' pprox rac{1}{R} \sum_{r=1}^R \pi_{arepsilon}(y'^{(r)}|y)$$

where $y'^{(r)} \sim l(.|\theta)$.

- In the original work R = 1 and $\pi_{\varepsilon}(S_{y'^{(r)}}|S_y) \propto \delta\left(\left|S_{y'^{(r)}} S_y\right| < \varepsilon\right).$
- Can use rejection sampling, importance sampling, MCMC or SMC samplers to simulate from this approximate posterior.

(D) (A) (A)

Applied to Ising models

- For our Ising model example:
 - $x^*|\theta^* \sim f(.|\theta^*);$
 - $y^*|x^*, \theta^* \sim g(.|\theta^*, x^*);$
 - compare S_{y^*} to S_y .
- Statistics of the data:
 - $S_y^1 = \sum_{(i,j) \in \mathbb{N}} y_i y_j$ (the number of neighbours in the same state);
 - $S_y^2 = \sum_i y_i$ (the magnetisation).

Richard Everitt Recent developments in Monte Carlo methods

Applied to Ising models

- For our Ising model example:
 - $x^*|\theta^* \sim f(.|\theta^*);$
 - $y^*|x^*, \theta^* \sim g(.|\theta^*, x^*);$
 - compare S_{y^*} to S_y .
- Statistics of the data:
 - $S_y^1 = \sum_{(i,j) \in \mathbb{N}} y_i y_j$ (the number of neighbours in the same state);
 - $S_y^2 = \sum_i y_i$ (the magnetisation).

Are our problems solved?

- Intractable normalising constant when sampling from $p(\theta|x, y)$: yes! (Grelaud et al., 2009)
- **2** Sampling from $p(x|\theta, y)$ is hard: yes!
- **③** Posterior dependance between x and θ : yes!

However:

- Several approximations are introduced.
- Inefficient when $I(.|\theta)$ is "vague".
- Sampling from $f(x|\theta)$ is difficult for MRFs, so problem 2 is not really avoided.

Are our problems solved?

- Intractable normalising constant when sampling from $p(\theta|x, y)$: yes! (Grelaud et al., 2009)
- **2** Sampling from $p(x|\theta, y)$ is hard: yes!
- **③** Posterior dependance between x and θ : yes!

However:

- Several approximations are introduced.
- Inefficient when $I(.|\theta)$ is "vague".
- Sampling from $f(x|\theta)$ is difficult for MRFs, so problem 2 is not really avoided.

Are our problems solved?

- Intractable normalising constant when sampling from $p(\theta|x, y)$: yes! (Grelaud et al., 2009)
- **2** Sampling from $p(x|\theta, y)$ is hard: yes!
- **③** Posterior dependance between x and θ : yes!

However:

- Several approximations are introduced.
- Inefficient when $I(.|\theta)$ is "vague".
- Sampling from $f(x|\theta)$ is difficult for MRFs, so problem 2 is not really avoided.

Are our problems solved?

- Intractable normalising constant when sampling from $p(\theta|x, y)$: yes! (Grelaud et al., 2009)
- **2** Sampling from $p(x|\theta, y)$ is hard: yes!
- **③** Posterior dependance between x and θ : yes!

However:

- Several approximations are introduced.
- Inefficient when $I(.|\theta)$ is "vague".
- Sampling from $f(x|\theta)$ is difficult for MRFs, so problem 2 is not really avoided.

Are our problems solved?

- Intractable normalising constant when sampling from $p(\theta|x, y)$: yes! (Grelaud et al., 2009)
- **2** Sampling from $p(x|\theta, y)$ is hard: yes!
- **③** Posterior dependance between x and θ : yes!

However:

- Several approximations are introduced.
- Inefficient when $I(.|\theta)$ is "vague".
- Sampling from $f(x|\theta)$ is difficult for MRFs, so problem 2 is not really avoided.

"Approximate ABC"

- Grelaud et al. (2009) use MCMC to sample from f(x|θ) for MRFs - introduces a further approximation.
- Let K be the MCMC kernel targeting the ABC posterior (if f(x|θ) could be simulated from exactly), L be the MCMC kernel actually used to sample from f(x|θ). If:
 - K is uniformly ergodic;
 - *L* is geometrically ergodic.

• Then:

- the approximate ABC posterior gets closer to the true ABC posterior the more iterations of *L* are run;
- the MCMC kernel *K_L* targeting the approximate ABC posterior is uniformly ergodic.
- The same result can be used to justify the "approximate exchange algorithm".

"Approximate ABC"

- Grelaud et al. (2009) use MCMC to sample from f(x|θ) for MRFs - introduces a further approximation.
- Let K be the MCMC kernel targeting the ABC posterior (if f(x|θ) could be simulated from exactly), L be the MCMC kernel actually used to sample from f(x|θ). If:
 - *K* is uniformly ergodic;
 - *L* is geometrically ergodic.
- Then:
 - the approximate ABC posterior gets closer to the true ABC posterior the more iterations of *L* are run;
 - the MCMC kernel K_L targeting the approximate ABC posterior is uniformly ergodic.
- The same result can be used to justify the "approximate exchange algorithm".

Example: Ising model posterior using ABC

Figure : Points from the posterior of θ_x and θ_y .

Pseudo-marginal approach

- Ideally, we would target $p(\theta|y)$.
- Beaumont (2003) and Andrieu and Roberts (2009) describe the idea of targeting instead an importance sampling approximation to this idealised situation:

$$\widetilde{\rho}^{N}(\theta|y) = \frac{1}{N} \sum_{k=1}^{N} \frac{p(\theta, x^{(k)}|y)}{q(x^{(k)}|\theta)},$$
(5)

where $x^{(k)} \sim q(.|\theta)$.

• In general, an MCMC algorithm that targets an unbiased estimator of $p(\theta|y)$ will give points from $p(\theta|y)$ itself.

Example: Ising model using the pseudo-marginal approach

Figure : Points from the posterior using the pseudo-marginal approach.

SMC samplers

- SMC sampler:
 - choose a sequence of target distributions $\pi_1, ..., \pi_T$, where π_1 is easy to sample from, π_T is the distribution of interest and π_{t+1} is not too different from π_t ;
 - perform importance sampling sequentially on this sequence of targets, using a kernel to move the points at each step.

イロト イポト イヨト イヨト

SMC samplers for Ising models

- Begin with $\pi_1 = \gamma_{\text{tree}}(x|\theta, y)$.
 - can be sampled from exactly, and the normalising constant can be calculated exactly.
- Add an arc to make each new target, with the final target being a grid (known as "hot coupling" Hamze and De Freitas, 2004).

Hot coupling

Hot coupling

Hot coupling

Hot coupling

Particle MCMC

- Sequential Monte Carlo (SMC) samplers are particularly suited to sampling from some spaces.
- Andrieu et al. (2010) formalise the idea of using an SMC sampler as a proposal within an MCMC algorithm known as *particle MCMC*:
 - simulate $heta^* \sim q(.| heta)$;
 - run an SMC sampler targeting $p(x|y,\theta^*)$ to find approximations $\hat{p}(x|y,\theta^*)$ to $p(x|y,\theta^*)$ and $\hat{\phi}(y,\theta^*)$ to the normalising constant $\int_{x} p(x|y,\theta^*) dx$;
 - simulate $x^* \sim \widehat{p}(x|y, \theta^*)$ and accept (θ^*, x^*) with probability:

$$1^{\hat{}}\frac{p(\theta^{*})}{p(\theta)}\frac{\widehat{\phi}(\theta^{*},y)}{\widehat{\phi}(\theta,y)}\frac{q(\theta|\theta^{*})}{q(\theta^{*}|\theta)}.$$
(6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Does this solve our problems?

- Intractable normalising constant when sampling from $p(\theta|x,y)$: require merging PMCMC with the exchange algorithm.
- **2** Sampling from $p(x|\theta, y)$ is hard: SMC samplers can help a lot.
- **Output Posterior dependance between** x and θ : no longer an issue.

However:

• PMCMC can be computationally expensive.

Does this solve our problems?

- Intractable normalising constant when sampling from $p(\theta|x,y)$: require merging PMCMC with the exchange algorithm.
- **2** Sampling from $p(x|\theta, y)$ is hard: SMC samplers can help a lot.
- **Output Posterior dependance between** x **and** θ **:** no longer an issue.

However:

• PMCMC can be computationally expensive.

イロト イポト イヨト イヨト

Example: Ising model using PMCMC

Figure : Points from the posterior using the PMCMC.

Discussion

• Have considered two alternatives to the standard approach.

• ABC:

- superficially easy to use;
- justification of use of MCMC for simulating from $I(.|\theta)$;
- approximations can be hard to quantify.

• PMCMC:

- targets the correct distribution (almost!);
- requires the design of an effective SMC sampler;
- would benefit from parallelisation.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Discussion

- Have considered two alternatives to the standard approach.
- ABC:
 - superficially easy to use;
 - justification of use of MCMC for simulating from $I(.|\theta)$;
 - approximations can be hard to quantify.

• PMCMC:

- targets the correct distribution (almost!);
- requires the design of an effective SMC sampler;
- would benefit from parallelisation.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

Discussion

- Have considered two alternatives to the standard approach.
- ABC:
 - superficially easy to use;
 - justification of use of MCMC for simulating from $I(.|\theta)$;
 - approximations can be hard to quantify.
- PMCMC:
 - targets the correct distribution (almost!);
 - requires the design of an effective SMC sampler;
 - would benefit from parallelisation.

イロト イポト イヨト イヨト

Paper and acknowledgements

- Everitt, R. G. (2012) Bayesian parameter estimation for latent Markov random fields and social networks, JCGS.
 - includes full description of exchange PMCMC algorithm;
 - additional application to exponential random graphs (social networks);
 - proof of result about approximate algorithms.
- Thanks to Christophe Andrieu, SuSTaIn at the University of Bristol, and the University of Oxford.
- Also, for more on ABC, see Didelot, X., Everitt, R. G., Johansen, A. M. and Lawson, D. J. (2011) Likelihood-free estimation of model evidence, Bayesian Analysis.

イロト イポト イヨト イヨト