

We Data Assimilation in terrestrial carbon cycle modelling

Sarah Kemp, Marko Scholze, Arjen Terwisscha van Scheltinga

sarah.kemp@bristol.ac.uk

NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

- Background to the carbon cycle
- CCDAS
- Particle filter method
- Results
- Comparison of particle filter and CCDAS
- Conclusions and future work

The Global Carbon Cycle

Č.

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Updated from Raupach et al. 2007, PNAS; Data: Gregg Marland, Thomas Boden-CDIAC 2010; International Monetary Fund 2010

Fate of Anthropogenic CO₂ Emissions (2002-2011 average) 8.3±0.4 PgC/yr 90%

1.0±0.5 PgC/yr 10%

4.3±0.1 PgC/yr 46% 2.6±0.8 PgC/yr 28% Calculated as the residual of all other flux components 26% 2.5±0.5 PgC/yr

Source: Le Quéré et al. 2012; Global Carbon Project 2012

Key Diagnostic of the Carbon Cycle

Airborne Fraction of total emissions

Modelled Natural CO₂ Sinks

Updated from Le Quéré et al. 2009, Nature Geoscience

Carbon Cycle-Climate feedback

Carbon Cycle-Climate feedback: breakdown of uncertainties

Uncertainties in Carbon Cycle Feedbacks

IPCC Climate Change 2007: The Physical Science Basis

The atm. CO₂ Station Network

Atmospheric CO₂ Measurements

Need for Parameter Estimation

- Advanced models for coupled systems (e.g. land-atmosphere or ocean-atmosphere models) involve the coupling of many biological, chemical and physical processes
- Increase in the complexity of those models also leads to an increase in the number of parameters
- Prior parameter values usually based on "expert knowledge"
- If no reliable estimates can be provided for a parameter, it remains highly uncertain
- Uncertainty of the parameter might substantially contribute to the overall model output uncertainty
- Parameter optimisation methods can be used to constrain the parameters against observations

Assimilation of CO₂ with an inverse modelling system

KCCDAS

- Further simplification of step 2
- 13 plant functional types
- 6 process parameters

≻5 global

>1 plant functional type dependent

Process parameters

Parameter	Description	Global	By PFT
<i>Q</i> _{10,f}	Soil respiration temperature factor, fast pool	Х	
<i>Q</i> _{10,s}	Soil respiration temperature factor, slow pool	Х	
T_f	Fast pool soil carbon turnover time	Х	
К	Soil moisture dependence parameter	Х	
f _s	Fraction of fast soil decomposition	Х	
β	Net CO ₂ sink factor		Х

BETHY Plant Functional Types

K CCDAS

Iterative minimisation of the cost function

$$J(x) = \left((x - x_0)^T C_{x_0}^{-1} (x - x_0) \right) + \left(M(x) - c \right)^T C_c^{-1} \left(M(x) - c \right)$$

- Optimisation uses the gradient of J(x) with respect to the parameters
- Second order derivatives (Hessian) at minimum provide approximation of parameter uncertainties (a posteriori): C_{po}⁻¹ = ∂²J(x_{po}) / ∂x²
- Uncertainties on target quantities (e.g. net flux, NEP) via linearisation of model (Jacobian matrix):

 $\mathbf{C}_{\mathsf{NEP}} = \partial \mathbf{M} / \partial \mathbf{x} \ \mathbf{C}_{\mathsf{po}} \ \partial \mathbf{M} / \partial \mathbf{x}^{\mathsf{T}}$

 All derivatives provided via automatic differentiation of model code (TAF)

2. Evaluation:

Cost function is evaluated for each parameter

$$J(x) = (M(x) - c)^{T} C_{c}^{-1} (M(x) - c)$$

Parameter estimation using a particle filter Weighting

- 3. <u>Weighting</u>:
 - Gaussian: $w = \exp\left(\frac{-cf}{cf_0}\right)$ 1
 - 2 Lorenz:

$$W = \frac{1}{1 + cf}$$

Initial selection Initial parameter

Evaluation vector's cost function is

Redraw parameters New parameter

weighting based on

cost function value

vectors drawn from **PDFs**

- 4. Create parameter pdfs:
 - 1 Gaussian pdf
 - Weighted mean and weighted standard deviation
 - Constructed pdf 2
 - tricky \geq

5. Redraw parameters:

Create parameter PDFs

PDF created for each

parameter based on

vector's weighting

KResults

Č.

2

ISTOI

- 64 particles
- 40 iterations
- Gaussian initial sampling
- Gaussian resampling

- 64 particles
- 40 iterations
- Gaussian initial sampling
- Gaussian resampling

Parameter transformations

Perform the optimisation in a transformed parameter space, thus ensuring that when back-transformed the optimal parameter values are within the physically meaningful domain

Different transformations:

- Log: limits parameters above a specified value
- Double bounded log: limits parameters between two values

KResults

Comparison to CCDAS

	CCDAS	Particle Filter
Cost function Value	9667	17572

Parameter	Initial Value	CCDAS optimised value	Particle Filter optimised value	Initial uncertainty	CCDAS optimised uncertainty	Particle Filter weighted standard deviation
1 Q _{10,f}	1.5	1.069	1.40357865	0.75	0.016	0.063
2 Q _{10,s}	1.5	1.817	2.0419128	0.75	0.019	0.080
<i>3</i> τ _f	1.5	3.435	12.8101455	3.0	0.120	1.146
4 к	1	0.571	0.3050932	9.0	0.011	0.091
$5f_s$	0.2	0.735	0.55894275	0.2	0.004	0.033

Comparison to CCDAS

Particle Filter

KConclusions

Have set up a particle filter to estimate terrestrial carbon cycle parameters

Have included parameter transformations to ensure physically meaningful optimal parameter values

Still need to

- Determine which set up provides the most consistent results
- Would like to have results closer to that of CCDAS

