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Dynamical system

Dynamical system: nonlinear dynamical flow and a linear
measurement equation.

Let M(t)
k : X → X and Mk : X → X be a true nonlinear

model operator and a modelled nonlinear model operator
respectively.

All operators are mapping a state x
(t)
k−1 ∈ X discretely onto its

state x
(t)
k for k ∈ N0 for the Hilbert space (X, ‖ · ‖X).

The operator Mk : X → X is modelled, such that

Mk

(

x
(t)
k

)

= M(t)
k

(

x
(t)
k

)

+ ζk+1, (1)

where ζk+1 is some additive noise which we call model error
and is bounded by some constant υ > 0 for all time tk for
k ∈ N0.
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Observations

Let H be an injective linear time-invariant compact
observation operator, such that H : X → Y, for Hilbert spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y).
Let y

(t)
k ∈ Y be the true observations (measurements) located

at discrete times tk linearly, such that

y
(t)
k = H(t)x

(t)
k = Hx

(t)
k = yk − ηk , (2)

where ηk is some additive noise that we call the observation
error and is bounded by some constant δ > 0 for all time tk
for k ∈ N0.

It is possible to carry through the same analysis using a noise
term on H modelled,

(

H − H(t)
)

x
(t)
k = ωk . (3)
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A couple of definitions

Definition (p.10 in Kress 1999)

An inner product space, which is complete with respect to the
norm

‖x‖ := 〈x, x〉1/2 , (4)

for all x ∈ X, is called a Hilbert space.

Definition (Definition 7.1 in Rynne and Youngson 2007)

Let X and Y be normed space. An operator H ∈ L(X,Y) is
compact if, for any bounded sequence (xn) in X, the sequence
(Hxn) in Y contains a convergent subsequence.
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Aim

Develop theory demonstrating the asymptotic stability of a
cycled data assimilation scheme with an ill-posed observation
operator in a nonlinear infinite dimensional setting.

Work within the framework of data assimilation scheme that
employ static covariances, such as three dimensional
variational data assimilation (3DVar).

Here we extend previous linear results from R W E Potthast,
A J F Moodey, A S Lawless and P J van Leeuwen 2012.
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Stability

We define the analysis error as the difference between the
analysis and the true state of the system, such that

ek := x
(a)
k − x

(t)
k , (5)

where x
(t)
k represents the true state of the system at time tk

for k ∈ N0.

We will call a data assimilation scheme stable if given some
constant C > 0

‖ek‖X ≤ C (6)

as k → ∞ with some appropriate norm ‖ · ‖X.
The analysis error in other fields is known as state
reconstruction error, observer error, estimation error, etc.
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Operator equation

Mathematically, we interpret the data assimilation task as

seeking x
(a)
k at every assimilation step tk , k ∈ N0 to solve an

operator equation of the first kind

Hx
(a)
k = yk . (7)

This operator equation represents a Fredholm integral
equation of the first kind and is ill-posed when the dimension
of the state space X is infinite.
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Ill-posedness

Hadamard defined that a well-posed problem must satisfy:
1 There exists a solution to the problem (existence).
2 There is at most one solution to the problem (uniqueness).
3 The solution depends continuously on the data (stability).

If a problem does not satisfy all three of these condition, it is
ill-posed in the sense of Hadamard.

Nashed defined that an operator equation is called well-posed
if

1 the set of observations is a closed set, that is if H(X) is closed.

If a problem does not satisfy this property, then it is ill-posed
in the sense of Nashed (Nashed 1981, Nashed 1987).
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Ill-posed observation operator

Theorem (Theorem 15.4 in Kress 1999)

Let X and Y be normed spaces and H ∈ L(X,Y) be a compact
operator. If X has infinite dimension then H cannot have a
bounded inverse and the operator equation of the first kind is
ill-posed.

Regularization methods exist to provide a stable approximate
solution to the ill-posed problem.

Tikhonov-Phillips regularization shifts the the eigenvalues of
the operator H∗H by a regularization parameter α, where H∗

is the adjoint to the operator H.
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Cycled Tikhonov-Phillips regularization

Definition

Given measurements yk ∈ Y for k ∈ N0 and an initial guess x
(b)
k ,

the objective of cycled Tikhonov-Phillips regularization is to seek

an estimate, x
(a)
k that minimises the functional,

J (CTP) (xk) := α
∥

∥

∥
xk − x

(b)
k

∥

∥

∥

2

`2
+ ‖yk − Hxk‖2`2 , (8)

with respect to xk for the `2 norm, where x
(b)
k = Mk−1(x

(a)
k−1) and

α > 0.
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Cycled Tikhonov-Phillips regularization

Theorem

If H is linear, the minimiser x
(a)
k to (8) is given by

x
(a)
k = Mk−1x

(a)
k−1 + Rα

(

yk − HMk−1

(

x
(a)
k−1

))

, (9)

given x
(b)
k = Mk−1(x

(a)
k−1), where

Rα = (αI + H∗H)−1H∗ (10)

is known as the Tikhonov-Phillips inverse, with an adjoint H∗ and
a regularization parameter α. Here (9) is what we characterise as
cycled Tikhonov-Phillips regularization.
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3DVar

Theorem

If H is linear then the minimiser x
(a)
k to

J (3D) (xk) =
〈

B−1
(

xk − x
(b)
k

)

, xk − x
(b)
k

〉

`2

+
〈

R−1 (yk − Hxk) , yk − Hxk
〉

`2
, (11)

is given by

x
(a)
k = x

(b)
k + K

(

yk − Hx
(b)
k

)

, (12)

where
K := BH ′(HBH ′ + R)−1 (13)

is the Kalman gain and H ′ is the adjoint with respect to the
Euclidean inner product.
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Equivalence

Theorem (Theorem 2.1 in Marx and Potthast 2012)

For the Euclidean inner product and the weighted norms

〈·, ·〉B−1 :=
〈

·,B−1·
〉

on X and 〈·, ·〉R−1 :=
〈

·,R−1·
〉

on Y (14)

for self-adjoint, positive definite operators B and R, the Kalman
gain K for 3DVar corresponds to the Tikhonov-Phillips inverse
Rα where its adjoint is given by

H∗ = αBH ′R−1 (15)

for α = 1.
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Full deterministic analysis update

From

x
(a)
k = Mk−1

(

x
(a)
k−1

)

+ Rα

(

yk − HMk−1

(

x
(a)
k−1

))

, (16)

we can derive

ek = N
(

Mk−1

(

x
(a)
k−1

)

−Mk−1

(

x
(t)
k−1

))

+ Nζk + Rαηk , (17)

where ek := x
(a)
k − x

(t)
k , N := I − RαH and ζk and ηk are the

noise terms.
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Full deterministic analysis update

As a first attempt,

‖ek‖ ≤ ‖N‖ ·
∥

∥

∥
Mk−1

(

x
(a)
k−1

)

−Mk−1

(

x
(t)
k−1

)∥

∥

∥
+ ‖N‖ υ+ ‖Rα‖ δ.

(18)

Assumption

The nonlinear mapping Mk : X → X is Lipschitz continuous with
a global Lipschitz constant such that given any a,b ∈ X,

‖Mk(a)−Mk(b)‖ ≤ Kk · ‖a− b‖ (19)

where Kk ≤ K, the global Lipschitz constant for all time tk , for
k ∈ N0.

Therefore we obtain

ek ≤ ν · ek−1 + ‖N‖ υ + ‖Rα‖ δ, (20)

where ν := K‖N‖ given the global Lipschitz constant K .
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Stability result

Theorem (Moodey et al. 2013)

For the Hilbert space (X, ‖ · ‖B−1), let the model error ζk , k ∈ N0

be bounded by υ > 0. Let the observation error ηk , k ∈ N0 be
bounded by δ > 0. If the nonlinear model operator Mk : X → X is
Lipschitz continuous and satisfies then the analysis error evolution
ek := ‖ek‖ is estimated by

ek ≤ νke0 +

k−1
∑

l=0

ν l (‖N‖ υ + ‖Rα‖ δ) , (21)

for k ∈ N0. If ν < 1 then

lim sup
k→∞

ek ≤ ‖N‖ υ + ‖Rα‖ δ
1− ν

. (22)
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Stability result

Lemma (Potthast et al. 2012)

Let X and Y be Hilbert spaces and let H ∈ L(X,Y) be an injective
compact linear operator, then the operator norm of the regularized
reconstruction error operator is given by

‖N‖ = ‖I − RαH‖ = 1. (23)

This means to obtain ν := K‖N‖ < 1, the model operator Mk

must be strictly damping, that is the global Lipschitz constant
K < 1.
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Stability result

Lemma (Potthast et al. 2012)

Let X and Y be Hilbert spaces and let H ∈ L(X,Y) be an injective
compact linear operator, then the operator norm of the regularized
reconstruction error operator is given by

‖N‖ = ‖I − RαH‖ = 1. (23)

This means to obtain ν := K‖N‖ < 1, the model operator Mk

must be strictly damping, that is the global Lipschitz constant
K < 1.

Question: Can we do better than this?
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State space decomposition

We use the singular system of the observation operator to split
the state space. Let (µi ,ϕi , gi ) be the singular system of H.

Let P(1) and P(2) be orthogonal projection operators, such
that

P(1) : X → span{ϕi , i ≤ n} and P(2) : X → span{ϕi , i > n},
(24)

for i , n ∈ N.

We define the following orthogonal subspaces

X(1) := span{ϕ1, . . . ,ϕn} and X(2) := span{ϕn+1, . . . ,ϕ∞
}.

(25)
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Nonlinear error evolution

Then we can expand our error evolution as follows,

ek = N
(

P(1) + P(2)
)(

Mk−1

(

x
(a)
k−1

)

−Mk−1

(

x
(t)
k−1

))

+ Nζk + Rαηk (26)

= N|X(1)

(

M(1)
k−1

(

x
(a)
k−1

)

−M(1)
k−1

(

x
(t)
k−1

))

+ Nζk

+ N|X(2)

(

M(2)
k−1

(

x
(a)
k−1

)

−M(2)
k−1

(

x
(t)
k−1

))

+ Rαηk , (27)

where

M(1)
k (·) := P(1) ◦Mk(·) and M(2)

k (·) := P(2) ◦Mk(·). (28)
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Nonlinear error evolution

Taking norms and rearranging we have,

‖ek‖ =
∥

∥

∥
N|X(1)

(

M(1)
k−1

(

x
(a)
k−1

)

−M(1)
k−1

(

x
(t)
k−1

))

+ Nζk

+ N|X(2)

(

M(2)
k−1

(

x
(a)
k−1

)

−M(2)
k−1

(

x
(t)
k−1

))

+ Rαηk

∥

∥

∥

(29)

≤
(

K
(1)
k−1 · ‖N|X(1)‖+ K

(2)
k−1 · ‖N|X(2)‖

)

·
∥

∥

∥
x
(a)
k−1 − x

(t)
k−1

∥

∥

∥

+ ‖Nζk‖+ ‖Rαηk‖ (30)

where we assume Lipschitz continuity,

∥

∥

∥
M(j)

k−1(x
(a)
k−1)−M(j)

k−1(x
(t)
k−1)

∥

∥

∥
≤ K

(j)
k−1

∥

∥

∥
x
(a)
k−1 − x

(t)
k−1

∥

∥

∥
(31)

for j = 1, 2, with restrictions according to the singular system of H.
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Norm estimates

Lemma (Potthast et al. 2012)

Let (X, ‖ · ‖B−1) be a Hilbert space with weighted norm and let H
be an injective linear compact observation operator. Then, by
choosing the regularization parameter α > 0 sufficiently small we
can find a parameter 0 < ρ < 1, such that ‖N|X(1)‖ ≤ ρ < 1.

Lemma (Potthast et al. 2012)

Let (X, ‖ · ‖B−1) be a Hilbert space with weighted norm and let H
be an injective linear compact observation operator, then the
operator norm of the regularized reconstruction error operator is
given by

‖N|X(2)‖ = 1. (32)
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Dissipation

We require that ν < 1. Applying our norm estimates we have
that

ν := K (1) · ‖N|X(1)‖+ K (2) · ‖N|X(2)‖ ≤ K (1) · ρ+ K (2). (33)

The nonlinear system Mk has to be damping in X(2) for all
time.

Definition

A nonlinear system Mk , k ∈ N0, is dissipative with respect to H if
it is Lipschitz continuous and damping with respect to higher

spectral modes of H, in the sense that M(2)
k satisfies

∥

∥

∥
M(2)

k (a)−M(2)
k (b)

∥

∥

∥
≤ K

(2)
k · ‖a− b‖ (34)

∀ a,b ∈ X, where K
(2)
k ≤ K (2) < 1 uniformly for k ∈ N0.
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Final result

Under this assumption that Mk is dissipative with respect to H,
we can choose the regularization parameter α > 0 small enough,
such that

ρ <
1− K (2)

K (1)
, (35)

to achieve a stable cycled scheme. We are now able to summarise
this result in the following theorem.

Theorem (Moodey et al. 2013)

Let (X, ‖ · ‖B−1) be a Hilbert space with weighted norm. Let the
nonlinear system Mk : X → X be Lipschitz continuous and
dissipative with respect to higher spectral modes of H. Then, for
regularization parameter α > 0 sufficiently small, we have
ν := K (1)‖N|X(1)‖+ K (2)‖N|X(2)‖ < 1. Then,

lim sup
k→∞

‖ek‖ ≤ ‖N‖ υ + ‖Rα‖ δ
1− ν

. (36)
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Lorenz ’63 equations

The Lorenz ‘63 equations are as follows,

dx

dt
= −σ(x − y), (37)

dy

dt
= ρx − y − xz , (38)

dz

dt
= xy − βz , (39)

where typically σ, ρ and β are known as the Prandtl number,
the Rayleigh number and a non-dimensional wave number
respectively.

We choose the classical parameters, σ = 10, ρ = 28 and β =
8/3 and discretise the system using a fourth order
Runge-Kutta approximation.
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Numerical experiment

We set up a twin experiment and begin with an initial
condition,

(

x
(t)
0 , y

(t)
0 , z

(t)
0

)

= (−5.8696,−6.7824, 22.3356), (40)

We produce a run of the system until time t = 100 with a
step-size h = 0.01, which we call a truth run.
Now we create observations at every tenth time-step from the
truth run by adding random normally distributed noise with
zero mean and standard deviation σ(o) =

√
2/40.

The background state is calculated in the same way at initial
time t0 with zero mean and standard deviation σ(b) = 1/400
such that,

(

x
(b)
0 , y

(b)
0 , z

(b)
0

)

= (−5.8674,−6.7860, 22.3338). (41)

Now we calculate

ek = (I − RαH)
(

Mk−1

(

x
(a)
k−1

)

−Mk−1

(

x
(t)
k−1

))

+ Rαηk .

(42)
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Numerical experiment

We calculate a sampled background error covariance between
the background state and true state over the whole trajectory
such that

B =





117.6325 117.6374 −2.3513
117.6374 152.6906 −2.0838
−2.3513 −2.0838 110.8491



 . (43)

We simulate the consequence of an ill-posed observation
operator H with a random 3× 3 matrix with its last singular
value µ3 = 10−8 such that

H =





0.4267 0.5220 0.5059
0.8384 −0.7453 1.6690
0.4105 1.6187 0.0610



 . (44)

Therefore, H is severely ill-conditioned with a condition
number, κ = 2.1051× 108.
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Numerical experiment
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Figure: (a) `2 norm of the analysis error ‖ek‖`2 integrated for all
assimilation time tk for k = 1, . . . , 1000, varying the regularization
parameter, α. (b) Weighted norm of the analysis error ‖ek‖B−1

integrated for all assimilation time tk for k = 1, . . . , 1000, varying the
regularization parameter, α.
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Numerical experiment
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Figure: (a) `2 norm of the analysis error ‖ek‖`2 as the scheme is cycled
for index k , with regularization parameter α = 200, which corresponds to
3DVar. (b) Trajectories in state space for t200:220.
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Numerical experiment
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Figure: (a) and (b) Trajectories in state space for t774:805 and t858:895
respectively.
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Numerical experiment
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Figure: (a) `2 norm of the analysis error ‖ek‖`2 as the scheme is cycled
for the index k , with regularization parameter α = 2, an inflation in the
background variance of 100%. (b) Trajectories in state space for t200:220.
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Numerical experiment
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Figure: (a) `2 norm of the analysis error ‖ek‖`2 as the scheme is cycled
for the index k , with regularization parameter α = 10−10, an inflation in
the background variance of 2× 1012%. (b) Trajectories in state space for
t200:220.

A Moodey et al. Nonlinear error dynamics for cycled data assimilation methods



Numerical experiment
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Figure: (a) `2 norm of the analysis error, ‖ek‖`2 as the scheme is cycled
for the index k with regularization parameter, α = 10−6. (b) Weighted
norm of the analysis error, ‖ek‖B−1 as the scheme is cycled for the index
k with regularization parameter, α = 10−6. Solid line: Nonlinear analysis
error. Dashed line: Linear bound. Dotted line: Asymptotic limit.
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Conclusion and future work

Conclusion

We have developed new stability results for cycled data
assimilation schemes with an ill-posed observation operator.

Under weighted norms, the choice of the α was crucial to
keep in the stable range.

Dissipation in the nonlinear model dynamics is necessary for
our stability result to hold.

Future work

Investigate the analysis error in data assimilation scheme that
employ an update in the background error covariance.
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