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Dynamical system

@ Dynamical system: nonlinear dynamical flow and a linear
measurement equation.

o Let Mgf) : X — X and M : X — X be a true nonlinear
model operator and a modelled nonlinear model operator

respectively.
@ All operators are mapping a state ngzl € X discretely onto its
state xf(t) for k € Ny for the Hilbert space (X, || - ||x)-

@ The operator My : X — X is modelled, such that
M (ng)) = Mgf) (Xff)> + Chr1s (1)

where {1 is some additive noise which we call model error
and is bounded by some constant v > 0 for all time ¢, for
k € Np.
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@ Let H be an injective linear time-invariant compact
observation operator, such that H : X — Y, for Hilbert spaces
(X, 1+ lIx) and (Y, [ - [lv)-

(t)

@ Lety,’ €Y be the true observations (measurements) located
at discrete times ti linearly, such that

v = HOXO = Hx(? =y, —m,, (2)

where n, is some additive noise that we call the observation
error and is bounded by some constant § > 0 for all time t;
for k € Np.

@ It is possible to carry through the same analysis using a noise
term on H modelled,

(H H(f)) xi) = wi. (3)
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A couple of definitions

Definition (p.10 in Kress 1999)

An inner product space, which is complete with respect to the
norm

x| = (x,)V2, (4)

for all x € X, is called a Hilbert space.

Definition (Definition 7.1 in Rynne and Youngson 2007)

Let X and Y be normed space. An operator H € L(X,Y) is
compact if, for any bounded sequence (x,) in X, the sequence
(Hx,) in Y contains a convergent subsequence.
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Aim

@ Develop theory demonstrating the asymptotic stability of a
cycled data assimilation scheme with an ill-posed observation
operator in a nonlinear infinite dimensional setting.

@ Work within the framework of data assimilation scheme that
employ static covariances, such as three dimensional
variational data assimilation (3DVar).

@ Here we extend previous linear results from R W E Potthast,
A J F Moodey, A’ S Lawless and P J van Leeuwen 2012.
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@ We define the analysis error as the difference between the
analysis and the true state of the system, such that

ey = xf) - ng), (5)

where xf(t) represents the true state of the system at time tj

for k € Np.

@ We will call a data assimilation scheme stable if given some
constant C >0
lexlx < C (6)

as k — oo with some appropriate norm || - ||x.

@ The analysis error in other fields is known as state
reconstruction error, observer error, estimation error, etc.
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© Data assimilation
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Operator equation

@ Mathematically, we interpret the data assimilation task as
seeking xS(a) at every assimilation step tx, k € Ny to solve an
operator equation of the first kind

Hx? = yi. (7)

@ This operator equation represents a Fredholm integral
equation of the first kind and is ill-posed when the dimension
of the state space X is infinite.
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lll-posedness

o Hadamard defined that a well-posed problem must satisfy:
© There exists a solution to the problem (existence).
© There is at most one solution to the problem (uniqueness).
© The solution depends continuously on the data (stability).
If a problem does not satisfy all three of these condition, it is
ill-posed in the sense of Hadamard.
@ Nashed defined that an operator equation is called well-posed
if
© the set of observations is a closed set, that is if H(X) is closed.
If a problem does not satisfy this property, then it is ill-posed
in the sense of Nashed (Nashed 1981, Nashed 1987).
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lll-posed observation operator

Theorem (Theorem 15.4 in Kress 1999)

Let X and Y be normed spaces and H € L(X,Y) be a compact
operator. If X has infinite dimension then H cannot have a
bounded inverse and the operator equation of the first kind is
ill-posed.

@ Regularization methods exist to provide a stable approximate
solution to the ill-posed problem.

o Tikhonov-Phillips regularization shifts the the eigenvalues of
the operator H*H by a regularization parameter c, where H*
is the adjoint to the operator H.
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Cycled Tikhonov-Phillips regularization

Definition

(b)

Given measurements y, € Y for k € Ng and an initial guess x; ",
the objective of cycled Tikhonov-Phillips regularization is to seek

(a)

an estimate, x,”’ that minimises the functional,

2
TP (xi) 1= || = x|+ llye = il (8)

with respect to x, for the £2 norm, where x( b) _ = My_1(x 5() ) and
a > 0.
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Cycled Tikhonov-Phillips regularization

If H is linear, the minimiser xk to (8) is given by

X = My + Za (v - M1 (X2,)). 9)

given x&( ) = My 1(xg< )1) where
R = (al + H*H) L H* (10)
is known as the Tikhonov-Phillips inverse, with an adjoint H* and

a regularization parameter o.. Here (9) is what we characterise as
cycled Tikhonov-Phillips regularization.
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3DVar

If H is linear then the minimiser xg(a) t

7(3D) (xx) = <Bfl (Xk _ XS{b)) X — Xs(b)>

o

02
+ (R (yk — Hxi) , Yk — HXi) o (11)
is given by
xs(a) = xib) +x (yk — Hxib)> , (12)
where
H = BH'(HBH' 4+ R)™! (13)

is the Kalman gain and H' is the adjoint with respect to the
Euclidean inner product.
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Equivalence

Theorem (Theorem 2.1 in Marx and Potthast 2012)

For the Euclidean inner product and the weighted norms

<'v '>B—1 = <'7 B_l'> on X and <'7'>R—1 = <'7 R_1'> on’Y (14)

for self-adjoint, positive definite operators B and R, the Kalman
gain & for 3DVar corresponds to the Tikhonov-Phillips inverse
X, where its adjoint is given by

H* = aBH'R™* (15)

fora =1.
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© Nonlinear error evolution
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Full deterministic analysis update

From
xg(a) = My (xgi)l) + Ry (yk — HM 4 (Xgi)1)) , (16)
we can derive

e, =N (Mk—l (XE(Z) — M1 (ngll» + NCy + Zami, (17)

where ey = xS{a) — xSf), N := 1 —%.H and ¢, and 1, are the
noise terms.
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Full deterministic analysis update

As a first attempt,
lewll < NI || M-z () = Micx (xE4) |+ Mo+ 18al 5
(18)

Assumption

The nonlinear mapping M : X — X is Lipschitz continuous with
a global Lipschitz constant such that given any a,b € X,

[My(a) = Mi(b)|| < Ki - [la —b]| (19)

where K, < K, the global Lipschitz constant for all time ty, for
k € Np.

Therefore we obtain
ek <v-ex_1+ ||N||v+ || Zal 9, (20)

where v := K||N|| given the global Lipschitz constant K.
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Stability result

Theorem (Moodey et al. 2013)

For the Hilbert space (X, || - ||g-1), let the model error ¢, k € Ny
be bounded by v > 0. Let the observation error n;., k € Ng be
bounded by > 0. If the nonlinear model operator My : X — X is
Lipschitz continuous and satisfies then the analysis error evolution
ex = |lex|| is estimated by

k—1
e < vieo + ) vV (IIN][v+ [|%al 6), (21)
1=0

for k € Ng. If v < 1 then

limsup e, < 1Nl v + H%‘IH(S

k—r00 1—v

(22)
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Stability result

Lemma (Potthast et al. 2012)

Let X and Y be Hilbert spaces and let H € L(X,Y) be an injective
compact linear operator, then the operator norm of the regularized
reconstruction error operator is given by

INI| = [l = ZaH|| = 1. (23)

This means to obtain v := K||N|| < 1, the model operator M
must be strictly damping, that is the global Lipschitz constant
K < 1.
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Stability result

Lemma (Potthast et al. 2012)

Let X and Y be Hilbert spaces and let H € L(X,Y) be an injective
compact linear operator, then the operator norm of the regularized
reconstruction error operator is given by

INI| = [l = ZaH|| = 1. (23)

This means to obtain v := K||N|| < 1, the model operator M
must be strictly damping, that is the global Lipschitz constant
K < 1.

Question: Can we do better than this?
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State space decomposition

@ We use the singular system of the observation operator to split
the state space. Let (i, ¥;,8i) be the singular system of H.

o Let P(M) and P(@ be orthogonal projection operators, such
that

P1) . X — span{ep;,i < n} and P :X — span{¢p;,i > n},
(24)
for i,n e N.

@ We define the following orthogonal subspaces

X = span{epy,...,¢,} and XO) .= span{®@, 1, Poo}-
(25)
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Nonlinear error evolution

Then we can expand our error evolution as follows,
ex = N (PV + PO (Myt (x7;) = Mit (x;))
+ NCg + Ry (26)
= Nlxw (Mil_)l (Xgl) - Mg—)l (ngzl>) + N¢y
Nk (M2, (x2) = M2, (x2,)) + B (27)
where

_/\/lg(l)(-) =P o My(-) and ./\/15(2)(') = PP o Mi(-). (28)
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Nonlinear error evolution

Taking norms and rearranging we have,
lexll = HN|x(1) (M(l,) (X(a,) ) - MY, (Xi!)) + NG,
+ Nlxe (M(z) ( (a)1> Miz—)l x/21>> "‘%oﬂ?kH
29)

(
1 2
< (KIE—)I NI || + K, - H’V!x@)ll) ka =Y 1H
+ NGkl + [|[Zamill

where we assume Lipschitz continuity,
[ 220 = M2 2 | < 2 o2 = o)

for j = 1,2, with restrictions according to the singular system of H.
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Norm estimates

Lemma (Potthast et al. 2012)

Let (X,|| - ||g-1) be a Hilbert space with weighted norm and let H
be an injective linear compact observation operator. Then, by
choosing the regularization parameter o > 0 sufficiently small we
can find a parameter 0 < p < 1, such that ||[N|xm| < p < 1.

Lemma (Potthast et al. 2012)

Let (X,|| - ||g-1) be a Hilbert space with weighted norm and let H
be an injective linear compact observation operator, then the
operator norm of the regularized reconstruction error operator is
given by

[N | = 1. (32)

-
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Dissipation

@ We require that v < 1. Applying our norm estimates we have
that

vi= KON | + K@ - [Ny || < KO- p+ K. (33)

@ The nonlinear system M has to be damping in X for all
time.

Definition

A nonlinear system My, k € Ny, is dissipative with respect to H if
it is Lipschitz continuous and damping with respect to higher
spectral modes of H, in the sense that Mf) satisfies

[MP@) - M) <K@ a bl (39

Va,b € X, where KIE2) < K@ < 1 uniformly for k € Np.
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Final result

Under this assumption that M is dissipative with respect to H,

we can choose the regularization parameter o > 0 small enough,

such that

1-K®@
K@)

to achieve a stable cycled scheme. We are now able to summarise

this result in the following theorem.

p < (35)

Theorem (Moodey et al. 2013)

Let (X, || - ||[g-1) be a Hilbert space with weighted norm. Let the
nonlinear system M, : X — X be Lipschitz continuous and
dissipative with respect to higher spectral modes of H. Then, for
regularization parameter o > 0 sufficiently small, we have
vi=KW|N|xo | + K@|[N|xe| < 1. Then,

k—o00 1-v

(36)
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O Numerical example
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Lorenz '63 equations

@ The Lorenz ‘63 equations are as follows,

d

= o=y, (37)
%:px—y—xz, (38)
¥y 2 (39)

where typically o, p and 3 are known as the Prandtl number,
the Rayleigh number and a non-dimensional wave number
respectively.

@ We choose the classical parameters, 0 = 10, p = 28 and =
8/3 and discretise the system using a fourth order
Runge-Kutta approximation.
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Numerical experiment

@ We set up a twin experiment and begin with an initial
condition,

(ng), ygt),zgt)> — (—5.8696, —6.7824,22.3356),  (40)

@ We produce a run of the system until time t = 100 with a
step-size h = 0.01, which we call a truth run.

@ Now we create observations at every tenth time-step from the
truth run by adding random normally distributed noise with
zero mean and standard deviation o(,) = V2/40.

@ The background state is calculated in the same way at initial
time to with zero mean and standard deviation o) = 1/400
such that,

(xéb),yéb),zéb)> — (~5.8674, 6.7860,22.3338).  (41)
@ Now we calculate

ex = (I — ZoH) (/\/lk_l (xf’_)l) — M1 (ngzl)) + Ramy-
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Numerical experiment

@ We calculate a sampled background error covariance between

the background state and true state over the whole trajectory
such that

117.6325 117.6374 —2.3513
117.6374 152.6006 —2.0838 |.  (43)
—2.3513 —2.0838 110.8491

B

@ We simulate the consequence of an ill-posed observation

operator H with a random 3 x 3 matrix with its last singular
value i3 = 1078 such that

0.4267  0.5220 0.5059
H=| 08384 —0.7453 1.6690 | . (44)
0.4105 1.6187 0.0610

Therefore, H is severely ill-conditioned with a condition
number, k = 2.1051 x 108.
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Numerical experiment
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a a
(a) (b)
Figure: (a) £2 norm of the analysis error ||e||s integrated for all
assimilation time t, for k = 1,...,1000, varying the regularization
parameter, a. (b) Weighted norm of the analysis error ||ex||g-1
integrated for all assimilation time t, for k = 1,...,1000, varying the

regularization parameter, a.
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Numerical experiment
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Figure: (a) £2 norm of the analysis error ||ex||;> as the scheme is cycled
for index k, with regularization parameter o = 200, which corresponds to
3DVar. (b) Trajectories in state space for txg0:220-
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Numerical experiment
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20

Figure: (a) and (b) Trajectories in state space for t774.805 and tgss.gos5
respectively.
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Numerical experiment
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Figure: (a) £2 norm of the analysis error ||ex||;> as the scheme is cycled
for the index k, with regularization parameter o = 2, an inflation in the
background variance of 100%. (b) Trajectories in state space for tpp0:220-
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Numerical experiment

10° 50
10" 40
.

10° 30
S N
T 20

1079 10

10°° L a— -

0 200 400 } 600 800 1000 0 20 10 < 0 10 20
(a) (b)

Figure: (a) £2 norm of the analysis error ||ex||;> as the scheme is cycled
for the index k, with regularization parameter o = 10710, an inflation in
the background variance of 2 x 1012%. (b) Trajectories in state space for
t200:220-
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Numerical experiment
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Figure: (a) £2 norm of the analysis error, |lex|| as the scheme is cycled
for the index k with regularization parameter, o = 107°. (b) Weighted
norm of the analysis error, ||ex||g-1 as the scheme is cycled for the index
k with regularization parameter, o = 107°. Solid line: Nonlinear analysis
error. Dashed line: Linear bound. Dotted line: Asymptotic limit.
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© Final remarks
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Conclusion and future work

Conclusion
@ We have developed new stability results for cycled data
assimilation schemes with an ill-posed observation operator.

@ Under weighted norms, the choice of the o was crucial to
keep in the stable range.

@ Dissipation in the nonlinear model dynamics is necessary for
our stability result to hold.

Future work

@ Investigate the analysis error in data assimilation scheme that
employ an update in the background error covariance.
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