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Motivation of this work

Observations in geosciences are sometimes nonlinear or non-Gaussian.

Many filtering algorithms such as the ensemble Kalman filter and the
ensemble transform Kalman filter are based on a linear Gaussian
observation model.

Even if such algorithms are applied to a case with nonlinear or
non-Gaussian observation, they would provide some errors or biased
estimates.

In order to allow nonlinear or non-Gaussian observation, the
importance sampling approach is employed.
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Importance sampling

The particle filter algorithm is based on the importance sampling
method, which represents the posterior PDF by weighted sample.
In the importance sampling, the proposal distribution should be chosen
as similar to the target distribution.
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Particle filter

Particle filters are based on the importance sampling approach.
There are two ways to derive the most basic particle filter (so-called the
bootstrap filter).

From the joint distribution of the whole sequence x0:k

p(x0:k |y1:k) ≈
N∑

i=1

p(xq,(i)
0:k |y1:k)

q(xq,(i)
0:k |y1:k)

δ(x0:k − xq,(i)
0:k ),

From the marginal

p(xk |y1:k) ≈
N∑

i=1

p(xπ,(i)k |y1:k)

π(xπ,(i)k |y1:k)
δ(xk − xπ,(i)k ).
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Particle filter
If we start with the joint distribution:

p(x0:k |y1:k) ≈
N∑

i=1

p(xq,(i)
0:k |y1:k)

q(xq,(i)
0:k |y1:k)

δ(x0:k − xq,(i)
0:k ),

Assuming p(xk |x0:k−1, y1:k−1) = p(xk |xk−1) and p(yk |x0:k, y1:k−1) = p(yk |xk),

p(x0:k |y1:k) ≈ 1
Z′

N∑
i=1

p(yk |xq,(i)
k ) p(xq,(i)

k |x
q,(i)
k−1 ) p(xq,(i)

0:k−1|y1:k−1)

q(xq,(i)
k |x

q,(i)
k−1 , y1:k) q(xq,(i)

0:k−1|y1:k−1)
δ(x0:k − xq,(i)

0:k ),

If p(x0:k−1|y1:k−1) is represented by equally weighted particles {x(i)
0:k−1}Ni=1,

p(x0:k |y1:k) ≈ 1
Z′

N∑
i=1

p(yk |xq,(i)
k ) p(xq,(i)

k |x
(i)
k−1)

q(xq,(i)
k |x

(i)
k−1, y1:k)

δ(x0:k − xq,(i)
0:k ).

If p(xk |x(i)
k−1) is chosen as q(xk |x(i)

0:k−1, y1:k),

p(x0:k |y1:k) ≈ 1
Z′

N∑
i=1

p(yk |xq,(i)
k )δ(x0:k − xq,(i)

0:k ).
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Particle filter
If we consider the marginal:

p(xk |y1:k) ≈
N∑

i=1

p(xπ,(i)k |y1:k)

π(xπ,(i)k |y1:k)
δ(xk − xπ,(i)k ).

Assuming that p(yk |x0:k, y1:k−1) = p(yk |xk),

p(xk |y1:k) ≈ 1
Z

N∑
i=1

p(yk |xπ,(i)k ) p(xπ,(i)k |y1:k−1)

π(xπ,(i)k |y1:k)
δ(xk − xπ,(i)k ).

If p(xk |y1:k−1) is chosen as π(xk |y1:k),

p(xk |y1:k) ≈ 1
Z

N∑
i=1

p(yk |xπ,(i)k )δ(xk − xπ,(i)k ).

Sampling from

p(xk |y1:k−1) =
∫

p(xk |xk−1) p(xk−1|y1:k−1) dxk−1

is done via a Markov chain sampling.



Introduction Particle filter Forecast Proposed algorithm Experiment Summary

Particle filter

According to the joint distribution formula

p(x0:k |y1:k) ≈ 1
Z′

N∑
i=1

p(yk |xq,(i)
k ) p(xq,(i)

k |x
q,(i)
k−1 ) p(xq,(i)

0:k−1|y1:k−1)

q(xq,(i)
k |x

q,(i)
k−1 , y1:k) q(xq,(i)

0:k−1|y1:k−1)
δ(x0:k − xq,(i)

0:k ),

the transition proposal q(xk |xk−1, y1:k) should be designed such that
q(xk |xk−1, y1:k) q(x0:k−1|y1:k−1) is similar to p(x0:k |y1:k).
According to the marginal distribution formula

p(xk |y1:k) ≈ 1
Z

N∑
i=1

p(yk |xπ,(i)k ) p(xπ,(i)k |y1:k−1)

π(xπ,(i)k |y1:k)
δ(xk − xπ,(i)k ),

π(xπ,(i)k |y1:k) should be designed as similar to p(xk |yk).
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Particle filter

Joint distribution formula:
The transition proposal q(xk |xk−1, y1:k) is designed such that
q(xk |xk−1, y1:k) q(x0:k−1|y1:k−1) becomes similar to p(x0:k |y1:k).

Marginal distribution formula:
The proposal π(xπ,(i)k |y1:k) is designed as similar to p(xk |yk).
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Particle filter

Joint distribution formula:
It is inevitable that a part of particles become ineffective.
(It is normally impossible to satisfy
q(xk |xk−1, y1:k) p(x0:k−1|y1:k−1) = p(x0:k |y1:k). )
But, the assumption for the transition density p(xk |xk−1) is usually more
acceptable than the assumption for the forecast density p(xk |y1:k−1).

Marginal distribution formula
Sampling from p(xk |y1:k−1) does not matter.
But, it is required to evaluate p(xk |y1:k−1) for all the particles. It is usually
impossible to evaluate the forecast density p(xk |y1:k−1).
In this work, p(xk |y1:k−1) is assumed to be Gaussian.
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Forecast

Suppose that the posterior PDF at the time step tk−1, p(xk−1|y1:k−1), is
given, the forecast PDF p(xk |y1:k−1) can be obtained by the following
integral:

p(xk |y1:k−1) =
∫

p(xk |xk−1) p(xk−1|y1:k−1)dxk−1.

We assume that the system dynamics is deterministic and fully known;
that is, the system model is written in the following form:

xk =M(xk−1),

which corresponds to the assumption that p(xk |xk−1) is a delta function.
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Prediction with the Monte Carlo method

1 1: 1|( )k kp
− −

x y

1: 1)( |k kp
−

x y

Suppose that the particles {x(i)
k−1|k−1} are

Monte Carlo samples drawn from the
posterior at the previous time step
p(xk−1|y1:k−1).

If we generate each member of the
forecast ensemble by applying the
dynamical system model for each
particle:

x(i)
k|k−1 =M(x(i)

k−1|k−1),

it provides a random sample from the
forecast distribution p(xk |y1:k−1).

Non-Gaussian features of the forecast
distribution can be represented with a
sufficiently large number of particles.

The exact mean and covariance can be
obtained for N → ∞.
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Forecast

This Monte Carlo approache can deal with non-Gaussian PDF. But, it
assumes that the number of particles is sufficiently large.

To obtain the forecast, a model run is required for each of the particles.

In practical applications, the ensemble size is typically limited to
smaller than the state dimension.

If the ensemble size N is smaller than the rank of the state covariance
matrix, the ensemble would form a simplex in an (N − 1)-dimensional
subspace.

It would be difficult to represent the non-Gaussianity by the simplex.

Monte Carlo representation Simplex representation
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Simplex representation

1 1: 1|( )k kp
− −

x y

1: 1)( |k kp
−

x y

If an ensemble is obtained by applying
the system model to each particle:

x(i)
k|k−1 =M(x(i)

k−1|k−1).

the moments are considered up to the
second order (Wang et al, 2004).

The first and second order moments are
approximated with second order
accuracy. (The Taylor expansion of the
dynamical model up to the second-order
is considered except for the uncertainties
in the subspace complimentary to the
ensemble subspace. )

We then use only the first and second
order moments of the forecast ensemble
and assume that the forecast PDF is
Gaussian.
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Exact mean vector

The mean vector of the forecast distribution can be calculated via the
following integral:

xk|k−1 =

∫
M(xk−1) · p(xk−1|y1:k−1) dxk−1.

Since we can represent the PDF p(xk−1|y1:k−1) by the generative model

xk |y1:k ∼ xk|k + Xk|kzk, (zk ∼ N(zk; 0, I)) ,

the above equation can be rewritten as

xk|k−1 =

∫
M (xk−1|k−1 + Xk−1|k−1zk

) · p (zk−1) dzk−1.
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Exact mean vector

We can approximateM(xk−1) by the following Taylor expansion:

M(xk−1) =M(xk−1|k−1 + Xk−1|k−1zk−1)
=M(xk−1|k−1) + ∇M(xk−1|k−1) · Xk−1|k−1zk−1

+

[
Xk−1|k−1zk−1

]T ∇2M(xk−1|k−1)
[
Xk−1|k−1zk−1

]
2

+ · · · .

Using this Taylor expansion, we obtain

xk|k−1

=

∫
M (xk−1|k−1 + Xk−1|k−1zk

) · p (zk−1) dzk−1

=M(xk−1|k−1) +
1
2

tr
(
XT

k−1|k−1

[
∇2M(xk−1|k−1)

]
Xk−1|k−1

)
+ O(δx4).
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Mean with a simplex

The ensemble mean can also be reduced as follows:

x̄k|k−1

=
1
N

N∑
i=1

M(x(i)
k−1|k−1) =

1
N

N∑
i=1

M(xk−1|k−1 + Xk−1|k−1z(i)
k−1)

=M(xk−1|k−1) +
1
2

tr
(
XT

k−1|k−1

[
∇2M(xk−1|k−1)

]
Xk−1|k−1

)
+

1
6

∑
i,j,k

∑
l

∂3M
∂xi∂xj∂xk

Xil
k−1|k−1Xjl

k−1|k−1Xkl
k−1|k−1 + O(δx4).

Therefore, the ensemble mean x̄k|k−1 approximates the forecast mean with
accuracy up to the second order term.

However, the third order term does not agree with that of the analytical
mean.
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Covariance matrix

The covariance matrix of the forecast distribution can be calculated via the
following integral:

Vk|k−1

=

∫ [M(xk−1) − xk−1|k−1
][M(xk−1) − xk−1|k−1

]T· p(xk−1|y1:k−1) dxk−1.

It can be reduced as follows:

Vk|k−1

≈
∫ [∇M(xk−1|k−1)

]
Xk−1|k−1zk−1zT

k−1XT
k−1|k−1

[∇M(xk−1|k−1)
]T

× p (zk−1) dzk−1

=
[∇M(xk−1|k−1)

]
Xk−1|k−1XT

k−1|k−1
[∇M(xk−1|k−1)

]T .
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Covariance matrix with a simplex

The covariance matrix of the ensemble can be reduced as follows:

V̄k|k−1 =
1
N

N∑
i=1

[
M(x(i)

k−1|k−1) − x̄k|k−1

] [
M(x(i)

k−1|k−1) − x̄k|k−1

]T
≈ [∇M(xk−1|k−1)

]
Xk−1|k−1XT

k−1|k−1
[∇M(xk−1|k−1)

]T .
Therefore, the ensemble covariance V̄k|k−1 approximates the covariance
matrix of the forecast distribution with accuracy up to the second order term.
(The third order term does not agree with the analytical value again.)
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Covariance inflation

If the number of particles is limited, the ensemble mean can deviate
from the exact forecast mean.
This means that the forecast PDF produced by a limited-sized ensemble
may not cover the probable region of the state space.
The inflation of the covariance matrix could be a good way to avoid
missing the probable value.

Exact forecast distribution

Gaussian approximation

Gaussian with a forecast error

Exact forecast distribution

Gaussian approximation
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Covariance inflation
The following rough argument would suggest that the discrepancy from the exact
forecast can be reduced by inflating the covariance.

We want to attain the Gaussian forecast distribution, N(xk|k−1,Vk|k−1), where
xk|k−1 and Vk|k−1 are the exact mean vector and the exact covariance matrix,
respectively.

We estimate the forecast distribution as a Gaussian N(x̄k|k−1, α
2V̄k|k−1), where

x̄k|k−1 and V̄k|k−1 are the sample mean and the sample covariance of the forecast
ensemble.

The cross entropy

−
∫
N(xk|k−1,Vk|k−1) logN(x̄k|k−1, α

2V̄k|k−1) dx

is minimized when

α2 =
1

dimxk
tr
[
V̄−1

k|k−1Vk|k−1 + V̄−1
k|k−1(x̄k|k−1 − xk|k−1)(x̄k|k−1 − xk|k−1)T

]
.

If E
[
V̄−1

k|k−1

]
= V−1

k|k−1,

E[α2] = 1 +
1

dimxk
tr
[
V−1

k|k−1(x̄k|k−1 − xk|k−1)(x̄k|k−1 − xk|k−1)T
]
≥ 1.
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Overview

Posterior distribution

(with importance sampling)

Proposal distribution

(Simplex representation)

Posterior distribution

(with many samples)

Approximated posterior

(Simplex representation)

Forecast distribution Proposal distribution

(with ETKF)

We consider cases in which the
forecast PDF is represented by a
simplex representation with a
limited-size ensemble.

To allow nonlinear or non-Gaussian
observation models, the simplex
representation is converted into a
Monte Carlo representation. Then the
importance sampling method is
applied.

Finally, the importance sampling
result is converted into a simplex
representation again.
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Some definitions

Suppose that the forecast distribution is represented by an ensemble
{x(1)

k|k−1, . . . , x
(N)
k|k−1}.

The mean of the forecast distribution is obtained as:

x̄k|k−1 =
1
N

N∑
i=1

x(i)
k|k−1.

We define a matrix Xk|k−1 and Yk|k−1 as

Xk|k−1 =
1
√

N

(
δx(1)

k|k−1 · · · δx(N)
k|k−1

)
, Yk|k−1 =

1
√

N

(
δy(1)

k|k−1 · · · δy(N)
k|k−1

)
,

where δx(i)
k|k−1 = x(i)

k|k−1 − xk|k−1 and δy(i)
k|k−1 = Hk(x(i)

k|k−1) − Hk(xk|k−1), respectively,
and we assumed the following observation model

yk = Hk(xk) + wk.

The covariance matrix of the forecast (predictive) distribution is written as
Vk|k−1 = Xk|k−1XT

k|k−1.
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Ensemble transform Kalman filter (ETKF)

The mean of the filtered distribution is obtained according to the Kalman filter
algorithm:

x†k|k = xk|k−1 + Kk
(
yk − Hkxk|k−1

)
The square root of the covariance matrix is also calculated as X†k|k = Xk|k−1Tk,
where the matrix Tk is designed to satisfy V†k|k = X†k|kX

†T
k|k and X†k|k1 = 0,

where 1 = (1 · · · 1)T . The latter condition is required to preserve the mean of
the PDF.

Using the following eigen-value decomposition

Yk|k−1R−1
k Yk|k−1 = UkΛkUT

k ,

the matrices Kk and Tk are obtained as follows:

Kk = Xk|k−1Uk(IN + Λk)−1UT
k YT

k|k−1R−1
k ,

Tk = Uk(IN + Λk)−
1
2 UT

k ,

where Rk is the covariance matrix of the observation noise.
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Sampling from the ETKF estimate

The ETKF estimates the filtered (posterior) distribution as a Gaussian
distribution N(x̄†k|k,V

†
k|k).

However, it does not actually calculate the covariance matrix V†k|k itself.
Instead, a square root of the covariance matrix X†k|k is calculated.
Using the matrix X†k|k, we can easily generate a large number of random
numbers obeying N(x̄†k|k,V

†
k|k) using the following generative model:

xk = x̄†k|k + X†k|kzk, where zk ∼ N(0, IN).

Monte Carlo representationSimplex representation
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Importance sampling

Since the posterior distribution p(xk |y1:k) is written as

p(xk |y1:k) =
p(xk |y1:k)
π(xk)

π(xk) =
p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)π(xk)
π(xk),

the posterior p(xk |y1:k) can be represented by the importance sampling
using the sample drawn from π(xk):

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ).

In the normal particle filter, the forecast p(xk |y1:k−1) is used as π(xk).
On the other hand, we use the estimate of p(xk |y1:k) obtained by the
ETKF as the proposal π(xk).
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Importance sampling

If we obtain the proposal π(xk) by the ETKF, we can generate a large
number of particles from π(xk) according to the following generative
model:

xπ(j)k = x̄†k|k + X†k|kz(j)
k

(
z(j)

k ∼ N(0, IN)
)
.

In order to approximate the posterior p(xk |y1:k) using the importance
sampling method as follows:

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ),

we need to calculate
p(xπ(j)k |y1:k−1)

π(xπ(j)k )

for each particle xπ(j)k . (We can obtain p(yk |x
π(j)
k ) from the observation

model. )
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Importance weight

According to the generative model

xπ(j)k = x̄†k|k + X†k|kz(j)
k

(
z(j)

k ∼ N(0, IN)
)
,

π(xπ,(j)k|k ) can be associated with the probability density for z(j)
k , p(z(j)

k ).

The probability density p(z(j)
k ) is proportional to exp

(
−∥z(j)

k ∥2/2
)
.

Considering that X†k|k satisfies the mean-preserving condition X†k|k1 = 0,
the component parallel to 1 is projected onto a null space. We therefore
obtain

π(xπ,(j)k|k ) ∝ exp

−1
2

∥∥∥∥z(j)
k

∥∥∥∥2 − (1Tz(j)
k )2

N

 .
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We consider that a sample from the forecast p(xk |y1:k−1) is generated according to the
following model:

xk = x̄k|k−1 + Xk|k−1zk

(
zk ∼ N(0, IN)

)
.

We can then evaluate the probability density that xπ,(j)k|k is drawn from the forecast
distribution as follows:

xπ,(j)k|k = x†k|k + X†k|kz(j)
k = xk|k−1 + Kk

(
yk − hk(xk|k−1)

)
+ Xk|k−1Tkz(j)

k

= xk|k−1 + Xk|k−1

[
Uk(IN + Λk)−1UT

k YT
k|k−1R−1

(
yk − hk(xk|k−1)

)
+ Tkz(j)

]
= xk|k−1 + Xk|k−1ζ

(j)
k

where
ζ(j)

k = Uk(IN + Λk)−1UT
k YT

k|k−1R−1
(
yk − hk(xk|k−1)

)
+ Tkz(j).

We therefore obtain

p(xπ,(j)k|k |y1:k−1) ∝ exp

−1
2

∥∥∥ζ(j)
k

∥∥∥2 − (1Tζ(j)
k )2

N

 .
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As seen previously, the posterior distribution is approximated as

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ).

If we generate the proposal sample according to the following model:

xπ,(j)k|k = x̄k|k−1 + Xk|k−1z(j)
k

(
z(j)

k ∼ N(0, IN)
)
,

the weight for each particle can be given as follows:

β
(j)
k ∝

p(yk |x
π,(j)
k|k ) exp

−1
2

∥∥∥ζ(j)
k

∥∥∥2 − (1Tζ(j)
k )2

N


exp

−1
2

∥∥∥z(j)
k

∥∥∥2 − (1T z(j)
k )2

N


.

We then obtain a new approximation of the posterior PDF:

p(xk |y1:k) ≈
M∑

j=1

β
(j)
k δ(xk − xπ(j)k ).
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Ensemble reconstruction

Using the weight β(j)
k , we can obtain a random sample from the

posterior p(xk |y1:k) with the rejection sampling method or the
independent chain Metropolis-Hastings method.
However, we consider the case in which a large ensemble size is not
allowed. A small-size ensemble generated randomly would not give a
good approximation of p(xk |y1:k).
To avoid the errors due to the randomness, we construct a simplex
approximation that represents the first and second order moments of the
posterior.

Monte Carlo representation Simplex representation
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Moments on the z-space

If we calculate the mean and the covariance on the z-space:

z̄k =

M∑
i=1

β
(j)
k z(j)

k , Vz,k|k =
M∑

i=1

β
(j)
k (z(j)

k − z̄k)(z(j)
k − z̄k)T ,

the mean and the covariance of the filtered distribution p(xk |y1:k) are given as
follows:

xk|k = x†k|k + X†k|k z̄k, Vk|k = Xk|kXT
k|k = X†k|kVz,k|kX

†T
k|k

where x†k|k and X†k|k provide the estimate by the ETKF.

To avoid the bias of the ensemble mean, the new Xk|k should also satisfy

Xk|k1 = 0.
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We define the following matrix

A = IN −
1
N


1 · · · 1
...
. . .

...
1 · · · 1

 ,
which obviously satisfies

A1 = 0.

The covariance matrix Vk|k can then be written as follows:

Vk|k = X†k|kVz,k|kX
†T
k|k

= X†k|kA Vz,k|kATX†Tk|k

because obviously X†k|k = X†k|kA.
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When we calculate the eigen-value decomposition of the matrix A Vz,k|kAT as

A Vz,k|kAT = Uz,kΓkUT
z,k,

the matrix Uz,k contains an eigen-vector which is parallel to 1 and
corresponds to zero eigen-value. Therefore, if we define Xk|k as

Xk|k = X†k|kUz,kΓ
1
2
k UT

z,k,

it satisfies both of the necessary conditions:

Xk|kXT
k|k = X†k|kVz,k|kX

†T
k|k,

Xk|k1 = 0.
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Ensemble reconstruction

Finally, we obtain ensemble perturbations:(
δx(1)

k|k−1 · · · δx(N)
k|k−1

)
=
√

N Xk|k−1.

We then obtain the filtered ensemble:

x(i)
k|k = xk|k + δx(i)

k|k.
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Remark

Using the generative model, xπ(j)k = x̄†k|k +X†k|kz(j)
k , the ensemble members

are generated in the subspace spanned by the ensemble members.
We could consider a small uncertainty in the complement space as
follows

xπ,(j)k = x†k|k + X†k|kz(j)
k + ε

(j)
k ,

where ε(j)
k is a random sample representing the uncertainty of the

orthogonal complement space. But, this may invoke ‘the curse of
dimensionality’.
As far as we ignore the complement space, we can convert between the
importance sampling result and a spherical simplex representation
through the calculation in the small subspace spanned by the forecast
ensemble members. This would help reduce the computational cost.
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Experiment

We performed experiments using the Lorenz 96 model (Lorenz and Emanuel
1998):

dxm

dt
= (xm+1 − xm−2)xm−1 − xm + f

where x−1 = xM−1, x0 = xM , and xM+1 = x1. We take the dimension of a state
vector M to be 40 and the forcing term f to be 8.

It was assumed that xm can be observed only if m is an even number. This
means that the half of the variables xm are observable.
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First, the following nonlinear observation model is considered:

p(yk |xk) =
1

(2πσ2)
M
2

exp

−
∥∥∥yk − h(xk)

∥∥∥2
2σ2

 ,
Multiplicative covariance inflation (Anderson and Anderson, 1999) was
applied. The inflation factor was set at 1.1.
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Result

An estimate of an observed variable

With 32 ensemble members (and 2048 particles for importance
sampling)
RMSE: 0.43 (with the hybrid algorithm), 0.68 (with the ETKF)
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Result

An estimate of an unobserved variable

With 32 ensemble members (and 2048 particles for importance
sampling)
RMSE: 0.43 (with the hybrid algorithm), 0.68 (with the ETKF)
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Result

ETKF
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Result

Hybrid
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Second, the following non-Gaussian observation model is considered:

p(yk |xk) =
1

(2πσ2)
M
2

M∏
i=1

exp

−
∥∥∥log yi,k − log(x2

2i,k + 1)
∥∥∥2

2σ2

 ,
where σ = 0.4.

As p(yk |xk) is maximized at x2i,k = ±
√
|yi,k − 1|, the following Gaussian

approximation is employed to obtain a proposal distribution:

p′(yk |xk) =
1

(2πσ′2)
M
2

M∏
i=1

exp

−
∥∥∥√|yi,k − 1| − |x2i,k |

∥∥∥2
2σ′2

 .
The inflation factor was set at 1.1 again.
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Result

An estimate of an observed variable

With 32 ensemble members (and 2048 particles for importance
sampling)
RMSE: 0.28 (with the hybrid algorithm), 0.81 (with the ETKF)
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Result

An estimate of an unobserved variable

With 32 ensemble members (and 2048 particles for importance
sampling)
RMSE: 0.28 (with the hybrid algorithm), 0.81 (with the ETKF)
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Result

ETKF
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Result

Hybrid
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Result

Blue line: the result with the ETKF
Histogram: the result with the hybrid algorithm
Solid vertical line: the true state
Dashed vertical line: the observed value
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Summary

We propose a hybrid algorithm which combines the ensemble
transform Kalman filter (ETKF) and the importance sampling.
While the importance sampling method requires a large number of
particles, the ETKF is based on a spherical simplex representation
which uses less particles than the state dimension. We thus need to
make the conversion between a simplex representation and a Monte
Carlo representation.
In our approach, this conversion is performed in the low-dimensional
subspace spanned by the forecast ensemble members.
Even though the uncertainty is considered only in the subspace, the
proposed approach seems to well work in the cases with nonlinear,
non-Gaussian observation models in which the application of standard
ensemble Kalman filters is not valid.
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