

Regional Reanalysis at UK Met Office

Richard Renshaw, Peter Jermey, Dale Barker

May 2014

with thanks

Stephen Oxley, Adam Maycock, Nigel Atkinson, Tom Green, Jonah Roberts-Jones, Paul Dando, Rachel North, Ric Crocker, and others

- 1. Why Regional Reanalysis?
- 2. EURO4M Regional Reanalysis Evaluation
- 3. Regional Reanalysis Plans
 - Uncertainty Estimation in Regional ReAnalysis (UERRA) project
 - Indian Monsoon Data Assimilation and Analysis (IMDAA) project
 - Other activities

1. Why Regional Reanalysis ?

© Crown copyright Met Office

Why would anyone want a reanalysis ?

- Gridded data
- Based on observations
- Incorporates model equations
- Physically and dynamically coherent
- Full set of meteorological fields
- Consistent in time and in space
- We can estimate accuracy

Global Reanalyses

- NCEP-NCAR (1995) 250km
- ECMWF ERA-40 (2004) 130km
- ECMWF ERA-Interim (2010) 80km
 - JMA JRA-55 (2013) 60km

The 20th Century Reanalysis Project

Jeff Whitaker, Gil Compo, Nobuki Matsui and Prashant Sardesmukh

> NOAA/ESRL and Univ. of Colorado/CIRES

NOAA 20th Century (v2) Gil Compo

1870 – 2010, 200km Surface pressure obs 56-member ensemble, EKF

El Nino, 1919 Wind anomalies

20th Century Reanalysis: land temperature trend

- Global atmosphere, T255 (80km), 60 vertical levels
- 12-hour 4D-Var
- 1979 present

Regional reanalysis - why bother ?!

...the benefits of resolution

...and the disadvantage of boundaries!

EUROPEAN REANALYSIS AND OBSERVATIONS FOR MONITORING

Tracking changes in European climate

• EU-project, April 2010 – March 2014, 9 partners

 Goal: LONG-TERM CLIMATE DATASETS + ASSESSMENTS OF CHANGE ...describing climate variability and change at the European scale ...placing high-impact extreme events in a historical context

European Regional Reanalysis: EURO4M project

Met Office

EURO4M project (2010-2014) developed DA UM regional reanalysis, tested in pilot 2 year period (2008-2009).

- Resolution: 12km model, 24-36km DA (4D-Var, hybrid EnDA)
- Lateral boundary conditions: ERA (-Interim). ERA observations.

ERA-Interim: Model/DA 80/125km

EURO4M: Model/DA: 12/24km

Observations

- Surface (SYNOP, buoy, etc)
- Upper air (sonde, pilot, wind profiler)
 - Aircraft
 - AMV ('satwinds')
 - GPS-RO and ground-based GPS
 - Scatterometer winds
 - ATOVS
 - AIRS
 - IASI
 - MSG clear sky radiances

Getting more from surface obs...

- Visibility
 - Cloud
- Rainfall

Visibility assimilation

Visibility = f(aerosol concentration, humidity)

Cloud from SYNOP reports

Peter Francis

Cloud base assimilated as function of relative humidity

2. EURO4M Regional Reanalysis Evaluation

Peter Jermey

© Crown copyright Met Office

Russian heatwave, July 2010

Met Office

Tmax, 10-07-2010

ERA-Interim

Tmax 10-07-10

MO

© Crown copyright Met Office

Climate Statistics

Compare with ECA&D statistics from obs stations

Mean	Max of Min Temp	Dry Days	
Mean of Min Temp	Mean Precip	Wet Days	
Mean of Max	Icing Days	Frost Days	MO better in
Mean Wind Speed	Total Wet Precip		24/24 months
Max of Min Temp	Mean Temp		23/24 months
Max of Max Temp	Tropical Nights		22/24 or 21/24
Min of Min Temp	Mean Wet Precip		20/24 or 19/24
Max Precip 5	Mean Cloud		10/24 months
Summer Days	Mean Rel Hum		
Calm Days	Maximum Gust		
Days	Max Daily Precip		
Days	Wind Days	Mean PMSL	

© Crown copysight Met Office

Climate Statistics

Climate statistics are useful for monitoring the European climate. Regional models represent 12/28 stats better than ERA-Interim for the full period. Regional models represent 27/28 stats better than ERA-Interim for most of the period. Large scale variables (e.g. pressure) are better represented in the global ERA-Interim.

Covers wide range of intensities, periods and scales

Flooding in central Europe in 2013 caused 25 deaths and 12bn Euros damage

Higher resolution should lead to improved representation of extremes

Floods July 2008

ROMANIA

9000 houses damaged 20,000ha ag. land flooded 5 dead \$100 million MOLDOVA

300 houses destroyed 7500ha ag. land flooded 3 dead \$300million UKRAINE

50,000 houses flooded 300,000 people affected 38 dead cost \$700million

23-26th July Accumulations

ERA-Interim

SYNOP

UKMO

Mean abs error

15mm

© Crown copyright Met Office

ERA-Interim

HIRLAM

Met Office

0.5

0.0

0

5

10

Month

15

2

At high thresholds models under-represent, but bias is reduced by increased resolution & 4DVAR assimilation

20

0.5

0.0

0

10

5

15

Month

20

25

25

0.5

0.0

0

5

10

Month

15

20

Validation

- Reanalysis is only useful if we know the errors
- Validation datasets need to be independent
- Reanalysis fields are already of good quality
- Datasets need to be good quality, with error estimates
- Conventional obs have limited coverage
- Some variables difficult to validate

3. Regional Reanalysis Plans

Uncertainty Estimation in Regional ReAnalysis (UERRA) Project

- EURO4M represents just an initial step towards a full regional reanalysis capability.
- UERRA (2014-2018) will provide a multidecadal, multivariate dataset of essential climate variables (ECVs) for the satellite era (1978-present).

- UERRA will include both deterministic and the first ensemble regional reanalysis (leveraging techniques developed for global NWP).
- UERRA described as a component of a 'pre-operational' climate service, preparing the way for reanalysis as a central pillar of the Copernicus Operational Climate Service.

Uncertainties from ensembles

Calibrate for variables we can validate

Get uncertainties for variables we can't validate

Reanalysis challenges...

TOVS sounding instrument

(Amy Doherty)

Variational Bias Correction

Airmass-dependent bias correction of satellite radiances (based on Harris and Kelly, 2001)

$$bias = c^{scan} + \sum_{i=1}^{n} ci^{air} f(x_b)$$

VarBC will give smooth and automatic updating

Challenge: tune for a regional model

(DingMin Li, Andrew Lorenc, Dale Barker)

Precipitation assimilation

Target

Use E-Obs gridded daily precipitations

System to disaggregate 24hr accumulations to 6hrs

4D-Var has linearised precipitation processes

Use Var outer loop (UM-Var-UM-Var-UM) to cope with non-linearity

Regional Ensemble

Met Office

1. Reanalysis benefits both weather and climate services.

- 1. Motivations for regional reanalysis similar to those for regional NWP.
- 1. Very promising results from EURO4M pilot 2008-2009 study.

- 1. Focus now on 'production' regional reanalyses (1978-present).
- 1. Collaboration with UM partners

Korean East Asia Reanalysis

Thank you for listening...

http://www.euro4m.eu/ http://www.uerra.eu/

© Crown copyright Met Office

Extra slides...

© Crown copyright Met Office

Cloud assimilation

Operational NAE assimilates 3D cloud fields from nowcasting system (combines satellite imagery + surface reports)

EURO4M reanalysis uses surface reports directly

Cloud from SYNOP report

Wattisham, 00Z 2012/03/13

AAXX 13004 03590 11238 83504 10064 20068 30240 40352 53002 60001 71022 886// 92350 333 55/// 20411 84703 86706 88708

- 84703 4 oktas Stratus from 90m
- 86706 6 oktas Stratus from 180m
- 88708 8 oktas Stratus from 240m

Pete Francis

Met Office

Smith scheme QJRMS 1990

aircraft data

Wood & Field, JAS 2000

KNMI, Ge Verver et al

ECAD: European Climate Assessment and Dataset

www.ecad.eu

Daily data from 1950 -

10 1600 2000 2400 2800 3200 3600 4000 km

"E-Obs"

obs

daily 25km grid

0 1600 2000 2400 2800 3200 3600 4000 km

Maximum temperature on 10 July 2010 (during the Russian heat wave)

4D-Ensemble-Var (4DEnVar): 4D ensemble covariances without using a linear model

- Should be much more efficient on next-generation supercomputers with much larger numbers of processors.
- Ensemble forecasts can be run in parallel before obs arrive rather than sequentially during the 4D-Var iterations. (No PF model.)
- Much higher I/O costs in 4DEnVar.
- Generalises to a unified deterministic / ensemble analysis system.

A possible ensemble system

Met Office

