e data Sh
&~ assimilation 0

Exploring coupled 4D-Var data assimilation
using an idealised atmosphere-ocean model

Polly Smith, Alison Fowler, Amos Lawless

School of Mathematical and Physical Sciences, University of Reading

77—

/-—

=
W7

/%f

/-

/

3 e S a @ National Centre for N ERC @ UnlverSIty Of
Earth Observation

Reading

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



(E Problem

* Seasonal-decadal forecasting requires initialisation of coupled
atmosphere-ocean models

* Current approach uses analyses generated from independent
atmosphere and ocean data assimilation systems

> ignores interactions between systems
» analysis states likely to be unbalanced

» inconsistency at interface can lead to imbalance when states are
combined for coupled model forecast (initialisation shock)

» near surface data not fully utilised, e.g. SST, scatterometer winds



* Operational forecasting centres want to move towards
coupled assimilation systems

What is the best way to do this and is it worth the effort?



P Objective

To investigate some of the fundamental questions in the design
of coupled atmosphere-ocean data assimilation systems within
the context of an idealised strong constraint incremental 4D-Var
system:

e avoids issues associated with more complex models

* allows for more sophisticated experiments than in an operational
setting

* easier interpretation of results

* guide the design and implementation of coupled methods within
full 3D operational scale systems



ldealised sy

The system needs to be
* simple and quick to run

* able to represent realistic atmosphere-ocean coupling

Atmosphere

Simplified version of the ECMWEF single column
model (SCM) —

* based on early version of the IFS code
e 4 state variables on 60 model levels
* hybrid (n)coordinate system

* forced by large scale horizontal advection
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|dealised sys

Ocean
Atmosphere
Single column K-Profile Parameterisation (KPP) mixed- A1 EE
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— T horizontal
875 77 87] - Cpr T FT T PT "’ advection term
9q | .0q \
= F,+ P,
6t 77877 1 + 7 tendencies due to

parameterisation of
physics

w - vertical velocity in pressure co-ordinates
1) - vertical velocity in 7 co-ordinates



ot Oz

w -turbulent vertical velocity
w’@’ - turbulent flux
(Qn, - non-turbulent heat flux




|dealised sys

Simplifications for 4D-Var development

stripped down atmosphere code
— adiabatic component + vertical diffusion
diffusion scheme computes surface fluxes to pass to ocean model

perturbations to the diffusion coefficients ignored in tangent linear
model

non-local turbulent mixing term in the KPP-model switched off

retained option to run coupled model with full physics



AD-Var

. 1
min J(X,) = E(Xo -x,) B7(x, -X,)

+ _n (hi[xi]_yz')TRi_l(hi[Xi]_Yi)

1=

subject to

X, =m(t,,t,X), i=0,...,n-1

X, -a priori (background) state

Y, - Observations

h, - Observation operator

B - Background error covariance matrix

R. - Observation error covariance matrix



Incremental

Solve iteratively

set XgO) — Xb

outer loop: fork=0, ..., Nouter
d\
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(E Uncoupled incremental 4D-Var

(0)

0,atmos — Xb,almos

first guess X

* atmosphere and ocean analysis

v

allows for different assimilation
window lengths and schemes

non-linear trajectory computed using atmosphere model
(k) (k) S), prescribed SST
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in atmosphere and ocean
avoids new technical
development
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non-linear trajectory computed using ocean model

dynamically inconsistent - can
lead to imbalance in forecast
observations not used to full
potential
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Fully coupled incremental 4D-Var

: ©0) _
first guess X, =X,

v single minimisation process:

F non-lln(f)ar traiectory((l:c()))mputed using coupled model  allows for cross-covariances
x" = m(t,,1,,X}
nnovations d® =y — h(x®) between atmosphere and
;;. perturbation first guess 5Xl(.k) =0 ocean B = ( Ba Bao)
8 _ Bap Bo
= g TL of coupled model: J® .
3 . * atmosphere observations
E AD)J of coupled model: VJ® P
L = can influence ocean analysis
update X" =x;” +Ox(” and vice versa

* requires same window
length in atmosphere and
ocean

 technically very challenging



¥~ Weakly coupled incremental 4D-Var

first guess X, =X,

) _

v

—

I outer loop (k) I

non-linear trajectory computed using coupled model
(k) _ (k)
Xi _m(ti’t()’xo ) 5X
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ocean

perturbation first guess Ox'" =0
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3 TL of atmosphere model: s

e . (k)
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IS
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3 ADJ of ocean model: V.J '

c

(k)
l 5X0,ocean 5X(k)

0,atmos
update x{* =x{" +x" <

separate minimisation for
atmosphere and ocean:

* new technical
development limited

* allows for different
assimilation windows and
schemes in ocean and
atmosphere

* no explicit cross-
covariances between
atmosphere and ocean

 balance?



ldentical twin experiments

comparison of uncoupled, weakly coupled and fully coupled systems

12 hour assimilation window, 3 outer loops
data for June 2013, 188.75°E, 25°N (Pacific Ocean)

'true’ initial state is coupled non-linear forecast valid at 00:00 UTC
on 3rd June, with initial atmosphere state from ERA Interim and
initial ocean state from Mercator Ocean

initial background state is a perturbed non-linear model forecast
valid at same time

uncoupled atmosphere assimilation - SST from ERA interim

uncoupled ocean assimilation - surface fluxes from ERA interim



ldentical twin experiments

observations are generated by adding random Gaussian noise to
true solution => operator 4 is linear

T wwind vwind 6 salinity wu current v current

1.0 1.5 1.5 0.01  0.003 0.01 0.01

atmosphere: 3 hourly observations of temperature, u and v wind
components taken at 17 of 60 levels

ocean: 6 hourly observations of temperature, salinity, u and v
currents taken at 23 of 35 levels

no observations at initial time
error covariance matrices B and R are diagonal

simple preconditioning of cost function using B1/2
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Can coupled data assimilation
reduce or eliminate initialisation

shock?
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How does the frequency of the
observations affect the results?
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How does the accuracy of the
prescribed SST and surface fluxes
affect the results of the uncoupled
assimilation?



=Y Surface forcing test

— truth
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— |IC from weakly coupled
IC from uncoupled

SST (K) latent heat flux (W/m?) sensible heat flux (W/m?)

299.0

2985 ] -20 /——\

298.0 /7

297.5¢

297.0 : -80 : -20 :
0 6 12 0 6 12 0 6 12

time (hours) time (hours) time (hours)

* black circles show forecast from initialised with analysis from
uncoupled assimilations that were forced using true SST (uncoupled
atmosphere) and surface fluxes (uncoupled ocean) from truth
trajectory

* demonstrates best we may expect from uncoupled system



Can coupled data assimilation
make greater use of near-surface
observations?
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observing SST at end of 12 hour assimilation window
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@ Summary

Demonstrated potential benefits of moving towards coupled data
assimilation systemes:

initialisation from coupled analysis has positive impact on coupled
model forecast, especially in upper ocean.

coupled data assimilation is able to reduce initialisation shock.

coupled assimilation systems enable greater use of near-surface
data through generation of cross covariance information.

strongly coupled system generally outperforms the weakly and
uncoupled systems.

weakly coupled system is sensitive to input parameters of the
assimilation but still offers benefits over uncoupled system.

current efforts of operational centres are a step in the right
direction.



Extras

A paper is in preparation and will be submitted very soon ...
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