Performance Bounds for Particle Filters in High Dimensions

- Chris Snyder

National Center for Atmospheric Research*, Boulder Colorado, USA

Preliminaries

Notation
\triangleright state evolution: $\mathbf{x}_{k}=M\left(\mathbf{x}_{k-1}\right)+\eta_{k}$, where $\mathbf{x}_{k}=\mathbf{x}\left(t_{k}\right)$
\triangleright observations: $\mathbf{y}_{k}=H\left(\mathbf{x}_{k}\right)+\epsilon_{k}$
\triangleright superscript i indexes ensemble members
$\triangleright \operatorname{dim}(\mathbf{x})=N_{x}, \operatorname{dim}(\mathbf{y})=N_{y}$, ensemble size $=N_{e}$

Interchangeable terms
\triangleright particles \equiv ensemble members
\triangleright sample \equiv ensemble

Preliminaries (cont.)

State \mathbf{x}_{k} is a random variable
\triangleright goal is to estimate pdf $p\left(\mathbf{x}_{k} \mid \mathbf{y}^{o}\right)$ of this "true" state given obs \mathbf{y}^{o}
[In general, variables without superscripts are random.]
Bayes rule
\triangleright compute conditional pdf via

$$
p\left(\mathbf{x}_{k} \mid \mathbf{y}^{o}\right)=p\left(\mathbf{y}^{o} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k}\right) / p\left(\mathbf{y}^{o}\right)
$$

Jointly developed, primarily by NCAR and LANL/DOE

MPAS infrastructure - NCAR, LANL, others.
MPAS - Atmosphere (NCAR)
MPAS - O- cean (LANL)
MPAS - Ice, etc. (LANL and others)

Project leads: Todd Ringler (LANL)
Bill Skamarock (NCAR)

Model for Prediction Across Scales

MPAS-Atmosphere

Unstructured spherical centroidal Voronoi meshes
Mostly hexagons, some pentagons and 7-sided cells.
Cell centers are at cell center-of-mass.
Lines connecting cell centers intersect cell edges at right angles.
Lines connecting cell centers are bisected by cell edge.
Mesh generation uses a density function.
Uniform resolution - traditional icosahedral mesh.

C-grid

Solve for normal velocities on cell edges.
Solvers
Fully compressible nonhydrostatic equations (explicit simulation of clouds)

Solver Technology

Integration schemes are similar to WRF.

Model for Prediction Across Scales

3-km Global MPAS-A Simluation

Courtesty of Bill Skamarock

Model for Prediction Across Scales

MPAS/DART

Data Assimilation Research Testbed (DART)
\triangleright Provides algorithm(s) for ensemble Kalman filter (EnKF)
\triangleright General framework, used for several models
\triangleright Parallelizes efficiently to 100's of processors
\triangleright Developed by Jeff Anderson and team; see http://www.image.ucar.edu/DAReS/DART/

MPAS/DART

\triangleright MPAS-specific interfaces + obs operators (conventional, GPS)
\triangleright Month-long experiments with 6-hourly cycling are stable, with results comparable to those from Community Atmosphere Model (CAM 4)/DART

Comparison with CAM/DART

- August 2008, 6-h cycling, conventional obs + GPS
- 120-km MPAS, 1-deg CAM FV

RADIOSONDE_TEMPERATURE (Tropics)

rms, totalspread, mean (K)

Courtesty of Soyoung Ha

MPAS/DART Moisture Analysis

Specific humidity, 12Z 6 Aug 2008, member 1

Negative values!

Courtesty of Soyoung Ha

EnKF and Positive-Definite Variables

KF (and EnKF) consider only mean and covariance of \mathbf{x}_{k}
\triangleright linear updates for $\overline{\mathbf{x}}_{k}=E\left(\mathbf{x}_{k}\right)$ and $\mathbf{P}_{k}=\operatorname{cov}\left(\mathbf{x}_{k}\right)$
\triangleright implements Bayes rule when $p\left(\mathbf{x}_{k}\right)$ and $p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right)$ are Gaussian
Positive-definite variables are not Gaussian

EnKF and +ive Variables (cont.)

\triangleright One-dimensional example: sample from $p\left(x_{k}\right)$

EnKF and +ive Variables (cont.)

$\triangleright p\left(y^{o} \mid x_{k}\right)$ and Gaussian obs error

EnKF and +ive Variables (cont.)

\triangleright prior mean and obs value $\left(y^{o}=0.4\right)$

EnKF and +ive Variables (cont.)

\triangleright updated sample produced by EnKF includes some $x^{i}<0$

Part II

Particle filters offer potential solution for non-Gaussian DA

Part II: Overview

\triangleright Simplest particle filter requires very large ensemble size, growing exponentially with the problem size.
\triangleright Can the use of the optimal proposal density fix this?
\triangleright What exactly is the "problem size?"

Background I: Particle Filters (PFs)

Sequential Monte-Carlo method to approximate $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$
\triangleright works with samples from desired pdf, rather than pdf itself
\triangleright fully general approach; converges to Bayes rule as $N_{e} \rightarrow \infty$,
\triangleright Large literature for low-dimensional systems, plus recent interest in geophysics (e.g. van Leeuwen 2003, 2010; Morzfeld et al. 2011; Papadakis et al. 2010)

PFs (cont.)

Elementary particle filter:
\triangleright begin with members \mathbf{x}_{k-1}^{i} drawn from $p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{k-1}^{o}\right)$
\triangleright begin with members \mathbf{x}_{k-1}^{i} and weights w_{k-1}^{i} that "represent" $p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{k-1}^{o}\right)$
\triangleright compute \mathbf{x}_{k}^{i} by evolving each member to t_{k} under the system dynamics
\triangleright re-weight, given new obs $\mathbf{y}_{k}^{o}: w_{k}^{i} \propto w_{k-1}^{i} p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}^{i}\right)$
\triangleright resample

Background II: Importance Sampling

Basic idea
\triangleright suppose $p(\mathbf{x})$ is hard to sample from, but $\pi(\mathbf{x})$ is not.
\triangleright draw $\left\{\mathbf{x}^{i}\right\}$ from $\pi(\mathbf{x})$ and approximate

$$
p(\mathbf{x}) \approx \sum_{i=1}^{N_{e}} w^{i} \delta\left(\mathbf{x}-\mathbf{x}^{i}\right), \quad \text { where } w^{i} \propto p\left(\mathbf{x}^{i}\right) / \pi\left(\mathbf{x}^{i}\right)
$$

$\triangleright \pi(\mathbf{x})$ is the proposal density

IS Example

$\triangleright p\left(x_{1}, x_{2}\right)$ for 2D state $\left(x_{1}, x_{2}\right)$; thin lines indicate marginal pdfs

IS Example (cont.)
\triangleright observation $y=x_{1}+\epsilon$, with realization $y^{o}=1.1$
$\triangleright p\left(y^{o} \mid x_{1}, x_{2}\right)$ does not depend on x_{2}

IS Example (cont.)
$\triangleright \quad p\left(x_{1}, x_{2} \mid y^{o}\right)$

IS Example (cont.)

$\triangleright \quad \pi(\mathbf{x})=p(\mathbf{x})$, and sample from $\pi(\mathbf{x})$

\triangleright Want to sample from $p(\mathbf{x} \mid \mathbf{y})$
\triangleright IS says we should weight sample from $\pi(\mathbf{x})=p(\mathbf{x})$ by $p(\mathbf{x} \mid \mathbf{y}) / \pi(\mathbf{x})=p(\mathbf{y} \mid \mathbf{x})$

IS Example (cont.)
$\triangleright p(\mathbf{x} \mid \mathbf{y})$ and "weighted" ensemble (size \propto weight)

Sequential Importance Sampling

Perform importance sampling sequentially in time
\triangleright Given $\left\{\mathbf{x}_{k-1}^{i}\right\}$ from $\pi\left(\mathbf{x}_{k-1}\right)$, wish to sample from $p\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{y}_{k}^{o}\right)$
\triangleright choose proposal of the form

$$
\pi\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{y}_{k}^{o}\right)=\pi\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right) \pi\left(\mathbf{x}_{k-1}\right)
$$

\triangleright Using $p\left(\mathbf{x}_{k}^{i}, \mathbf{x}_{k-1}^{i} \mid \mathbf{y}_{k}^{o}\right) \propto p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}^{i}\right) p\left(\mathbf{x}_{k}^{i} \mid \mathbf{x}_{k-1}^{i}\right) p\left(\mathbf{x}_{k-1}^{i}\right)$, new weights are

$$
w_{k}^{i} \propto \frac{p\left(\mathbf{x}_{k}^{i}, \mathbf{x}_{k-1}^{i} \mid \mathbf{y}_{k}^{o}\right)}{\pi\left(\mathbf{x}_{k}^{i}, \mathbf{x}_{k-1}^{i} \mid \mathbf{y}_{k}^{o}\right)}=\frac{p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}^{i}\right) p\left(\mathbf{x}_{k}^{i} \mid \mathbf{x}_{k-1}^{i}\right)}{\pi\left(\mathbf{x}_{k}^{i} \mid \mathbf{x}_{k-1}^{i}, \mathbf{y}_{k}^{o}\right)} w_{k-1}^{i}
$$

Sequential IS (cont.)

PF literature shows that choice of proposal is crucial
Standard proposal: transition density from dynamics
$\triangleright \pi\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{y}_{k}^{o}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)$
$\triangleright w_{k}^{i} \propto p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}^{i}\right) w_{k-1}^{i}$
\triangleright members at t_{k} generated by evolution under system dynamics, as in ensemble forecasting

Sequential IS (cont.)

"Optimal" proposal: Also condition on most recent obs
$\triangleright \pi\left(\mathbf{x}_{k}, \mathbf{x}_{k-1} \mid \mathbf{y}_{k}^{o}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)$
$\triangleright \quad$ Since $p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) / p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right)$,

$$
w_{k}^{i} \propto p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}^{i}\right) w_{k-1}^{i}
$$

\triangleright optimal in sense that it minimizes variance of weights over \mathbf{x}_{k}^{i}
\triangleright several recent PF studies use proposals that either reduce to or are related to the optimal proposal (van Leeuwen 2010, Morzfeld et al. 2011, Papadakis et al. 2010)
$\triangleright n o t$ an ensemble forecast; generating members at t_{k} resembles DA

Degeneracy of PF Weights

\triangleright degeneracy $\equiv \max _{i} w_{k}^{i} \rightarrow 1$
\triangleright common problem, well known in PF literature
\triangleright for standard proposal, Bengtsson et al. (2008) and Snyder et al. (2008) show N_{e} must increase exponentially as problem size increases in order to avoid degeneracy
\triangleright What happens with optimal proposal?

A Simple Test Problem
Consider the system

$$
\mathbf{x}_{k}=a \mathbf{x}_{k-1}+\eta_{k-1}, \quad \mathbf{y}_{k}=\mathbf{x}_{k}+\epsilon_{k}
$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I}), \eta_{k-1} \sim N\left(0, q^{2} \mathbf{I}\right)$ and $\epsilon_{k} \sim N(0, \mathbf{I})$.

A Simple Test Problem

Consider the system

$$
\mathbf{x}_{k}=a \mathbf{x}_{k-1}+\eta_{k-1}, \quad \mathbf{y}_{k}=\mathbf{x}_{k}+\epsilon_{k}
$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I}), \eta_{k-1} \sim N\left(0, q^{2} \mathbf{I}\right)$ and $\epsilon_{k} \sim N(0, \mathbf{I})$.
Then

$$
\mathbf{y}_{k}\left|\mathbf{x}_{k}^{i} \sim N\left(\mathbf{x}_{k}^{i}, \mathbf{I}\right), \quad \mathbf{y}_{k}\right| \mathbf{x}_{k-1}^{i} \sim N\left(a \mathbf{x}_{k-1}^{i},\left(1+q^{2}\right) \mathbf{I}\right) .
$$

Easy to calculate $w_{k}^{i} \propto p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}^{i}\right)$ (standard proposal) or $w_{k}^{i} \propto p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}^{i}\right)$ (optimal proposal).

A Simple Test Problem (cont.)
\triangleright histograms of $\max _{i} w_{k}^{i}$ for $N_{e}=10^{3}, a=q=1 / 2.10^{3}$ simulations.
\triangleright degeneracy occurs, but optimal proposal clearly reduces it at any N_{x}

Behavior of Weights

Define
$V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=-\log \left(w_{k} / w_{k-1}\right)= \begin{cases}-\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), & \text { std. proposal } \\ -\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right), & \text { opt. proposal }\end{cases}$
and let $\tau^{2}=\operatorname{var}(V)$.

Behavior of Weights

Define
$V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=-\log \left(w_{k} / w_{k-1}\right)= \begin{cases}-\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), & \text { std. proposal } \\ -\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right), & \text { opt. proposal }\end{cases}$
and let $\tau^{2}=\operatorname{var}(V)$.
Then for large N_{e} and large τ,

$$
E\left(1 / \max w_{k}^{i}\right) \sim 1+\frac{\sqrt{2 \log N_{e}}}{\tau}
$$

(Bengtsson et al. 2008, Snyder et al. 2008)

Behavior of Weights

Define
$V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=-\log \left(w_{k} / w_{k-1}\right)= \begin{cases}-\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), & \text { std. proposal } \\ -\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right), & \text { opt. proposal }\end{cases}$
and let $\tau^{2}=\operatorname{var}(V)$.
Then for large N_{e} and large τ,

$$
E\left(1 / \max w_{k}^{i}\right) \sim 1+\frac{\sqrt{2 \log N_{e}}}{\tau}
$$

(Bengtsson et al. 2008, Snyder et al. 2008)
As τ^{2} increases, N_{e} must increase as $\exp \left(2 \tau^{2}\right)$ to keep $E\left(1 / \max w^{i}\right)$ fixed.

The Linear, Gaussian Case

Analytic results possible for linear, Gaussian case with general $\mathbf{R}=\operatorname{cov}\left(\epsilon_{k}\right)$, $\mathbf{Q}=\operatorname{cov}\left(\eta_{k}\right)$ and $\mathbf{P}_{k}=\operatorname{cov}\left(\mathbf{x}_{k}\right)$.

$$
\tau^{2}=\sum_{j=1}^{N_{y}} \lambda_{j}^{2}\left(3 \lambda_{j}^{2} / 2+1\right)
$$

where λ_{j}^{2} are eigenvalues of
$\mathbf{A}= \begin{cases}\mathbf{R}^{-1 / 2} \mathbf{H}\left(\mathbf{M} \mathbf{P}_{k-1} \mathbf{M}^{T}+\mathbf{Q}\right) \mathbf{H}^{T} \mathbf{R}^{-1 / 2}, & \text { std. proposal } \\ \left(\mathbf{H Q} \mathbf{H}^{T}+\mathbf{R}\right)^{-1 / 2} \mathbf{H} \mathbf{M} \mathbf{P}_{k-1}(\mathbf{H M})^{T}\left(\mathbf{H} \mathbf{Q} \mathbf{H}^{T}+\mathbf{R}\right)^{-1 / 2}, & \text { opt. proposal. }\end{cases}$
$\triangleright \tau^{2}$ (opt. proposal) always less than or equal to τ^{2} (std. proposal), with equality only when $\mathbf{Q}=0$.

Simple Test Problem, Revisited

Recall

$$
\mathbf{x}_{k}=a \mathbf{x}_{k-1}+\eta_{k-1}, \quad \mathbf{y}_{k}=\mathbf{x}_{k}+\epsilon_{k}
$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I}), \eta_{k-1} \sim N\left(0, q^{2} \mathbf{I}\right)$ and $\epsilon_{k} \sim N(0, \mathbf{I})$.
Then

$$
\tau^{2}=\operatorname{var}(V)= \begin{cases}N_{y}\left(a^{2}+q^{2}\right)\left(\frac{3}{2} a^{2}+\frac{3}{2} q^{2}+1\right), & \text { std. proposal } \\ N_{y} a^{2}\left(\frac{3}{2} a^{2}+q^{2}+1\right) /\left(q^{2}+1\right)^{2}, & \text { opt. proposal }\end{cases}
$$

\triangleright opt. proposal reduces τ^{2} by an $O(1)$ factor for reasonable values of a and $q ; a^{2}=q^{2}=1 / 2$ implies a factor of 5 reduction in τ^{2}.

Simple Test Problem, Revisited (cont.)

\triangleright Theoretical prediction for $E\left(1 / \max w^{i}\right)$ vs. simulations. Expectation is based on 10^{3} realizations.

Simple Test Problem, Revisited (cont.)

\triangleright minimum N_{e} such that $E\left(1 / \max w^{i}\right) \geq 1 / 0.8$ for standard proposal (circles) and optimal proposal (crosses) for $a^{2}=q^{2}=1 / 2$.
\triangleright ratio of slopes of best-fit lines is 4.6 , vs. asymptotic prediction of 5

N_{y}, N_{x} and Problem Size

$\tau^{2}=\operatorname{var}(\log$ likelihood) measures "problem size" for PF
\triangleright as τ^{2} increases, N_{e} must increase as $\exp \left(2 \tau^{2}\right)$ if $E\left(1 / \max w^{i}\right)$ fixed.
Related to obs-space dimension
\triangleright in simple example, $\tau^{2} \propto N_{y}$
\triangleright given by sum over e-values of obs-space covariance in general linear, Gaussian case-like an effective dimension

Analogy of τ^{2} to dimension is incomplete
$\triangleright \tau^{2}$ depends on obs-error statistics, increasing as \mathbf{R} decreases
$\triangleright \tau^{2}$ depends on proposal

N_{y}, N_{x} and Problem Size (cont.)

τ^{2} depends explicitly only on obs-space quantities
How does N_{x} affect weight degeneracy?
\triangleright asymptotic relation of τ^{2} and $E\left(1 / \max w^{i}\right)$ requires $V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}\right)$ to be \sim Gaussian over \mathbf{x}_{k}
$\triangleright \quad \sim$ Gaussianity of $V\left(\mathbf{x}_{k}\right)$ only if $N_{x}=\operatorname{dim}(\mathbf{x})$ is large and components of \mathbf{x} are sufficiently independent

Summary

\triangleright As was the case for the standard proposal, the optimal proposal requires N_{e} to increase exponentially with the "problem size" to avoid degeneracy.
\triangleright Exponential rate of increase is quantitatively smaller for the optimal proposal; necessary ensemble size may therefore be much smaller in a given problem. Using optimal proposal, PF feasible for problems with τ^{2} as large as a few hundred.
\triangleright No free lunch: Benefits of optimal proposal dependent on magnitude and form of system noise.

Other Potential Tricks

- Equivalent-weights particle filter (van Leeuwen 2010)
\triangleright Use proposals that consider state and obs over a window $\left[t_{k-L+1}, t_{k-L+2}, \ldots, t_{k}\right]$ (Doucet, Briers and Sénécal 2006)
\triangleright Consider sequences of proposals, where consecutive pdfs in the sequence are similar/close (Beskos, Crisan and Jasra 2012)
\triangleright Spatial localization, in which individual observations influence update only locally (Bengtsson et al. 2003, Lei and Bickel 2011)

Recommendation

New PF algorithms intended for high-dimensional systems should be evaluated first on the simple test problem given here.

References

Bengtsson, T., P. Bickel and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. IMS Collections, 2, 316-334. doi: 10.1214/193940307000000518.

Morzfeld, M., X. Tu, E. Atkins and A. J. Chorin, 2011: A random map implementation of implicit filters. J. Comput. Phys. 231, 2049-2066.
van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Quart. J. Roy. Meteor. Soc. 136, 1991-1999.

Papadakis, N., E. Mémin, A. Cuzol and N. Gengembre, 2010: Data assimilation with the weighted ensemble Kalman filter. Tellus 62A, 673-697.

Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Monthly Wea. Rev., 136, 4629-4640.
N_{y}, N_{x} and Problem Size (cont.)
$\triangleright \log (p(V)): N_{y}=1,3,10,100 ; \mathbf{x} \sim N(0, \mathbf{I}), \mathbf{H}=\mathbf{I}, \epsilon \sim N(0, \mathbf{I})$ (standard proposal, $a^{2}+q^{2}=1$)
\triangleright recall that max weight depends on left-hand tail of $p(V)$
\triangleright as N_{y} (and N_{x}) increase, left-hand tail changes and $V \rightarrow$ Gaussian (i.e. $\log (p(V))$ approaches a parabola)

Behavior of Weights

Define
$V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=-\log \left(w_{k} / w_{k-1}\right)= \begin{cases}-\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), & \text { std. proposal } \\ -\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right), & \text { opt. proposal }\end{cases}$
Interested in V as random variable with \mathbf{y}_{k}^{o} known and \mathbf{x}_{k} and \mathbf{x}_{k-1} distributed according to the proposal distribution at t_{k} and t_{k-1}, respectively.

Behavior of Weights

Define
$V\left(\mathbf{x}_{k}, \mathbf{x}_{k-1}, \mathbf{y}_{k}^{o}\right)=-\log \left(w_{k} / w_{k-1}\right)= \begin{cases}-\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), & \text { std. proposal } \\ -\log p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right), & \text { opt. proposal }\end{cases}$
Interested in V as random variable with \mathbf{y}_{k}^{o} known and \mathbf{x}_{k} and \mathbf{x}_{k-1} distributed according to the proposal distribution at t_{k} and t_{k-1}, respectively.

Suppose each component of obs error is independent.
$\triangleright p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k}\right), p\left(\mathbf{y}_{k}^{o} \mid \mathbf{x}_{k-1}\right)$ can be written as products over likelihoods for each component $y_{j, k}^{o}$ of \mathbf{y}_{k}^{o}
$\triangleright \quad V$ becomes a sum over log likelihoods for each component
\triangleright if terms in sum are nearly independent, $V \rightarrow$ Gaussian as $N_{y} \rightarrow \infty$
\triangleright infer asymptotic behavior of max w_{k}^{i} from known asymptotics for sample min of Gaussian

