Performance Bounds for Particle Filters in High Dimensions

Chris Snyder
 National Center for Atmospheric Research*, Boulder Colorado, USA

 $^{^*}$ NCAR is supported by the US National Science Foundation.

Preliminaries

Notation

- \triangleright state evolution: $\mathbf{x}_k = M(\mathbf{x}_{k-1}) + \eta_k$, where $\mathbf{x}_k = \mathbf{x}(t_k)$
- \triangleright observations: $\mathbf{y}_k = H(\mathbf{x}_k) + \epsilon_k$
- \triangleright superscript *i* indexes ensemble members
- $\triangleright \quad \dim(\mathbf{x}) = N_x$, $\dim(\mathbf{y}) = N_y$, ensemble size = N_e

Interchangeable terms

- $\triangleright \quad \text{particles} \equiv \text{ensemble members}$
- $\triangleright \quad \mathsf{sample} \equiv \mathsf{ensemble}$

Preliminaries (cont.)

State \mathbf{x}_k is a random variable

 \triangleright goal is to estimate pdf $p(\mathbf{x}_k | \mathbf{y}^o)$ of this "true" state given obs \mathbf{y}^o

[In general, variables *without* superscripts are random.]

Bayes rule

▷ compute conditional pdf via

 $p(\mathbf{x}_k|\mathbf{y}^o) = p(\mathbf{y}^o|\mathbf{x}_k)p(\mathbf{x}_k)/p(\mathbf{y}^o)$

Jointly developed, primarily by NCAR and LANL/DOE

MPAS infrastructure - NCAR, LANL, others.

MPAS - Atmosphere (NCAR)

MPAS - Ocean (LANL)

MPAS - Ice, etc. (LANL and others)

Project leads: Todd Ringler (LANL) Bill Skamarock (NCAR)

MPAS-Atmosphere

Unstructured spherical centroidal Voronoi meshes

Mostly *hexagons*, some pentagons and 7-sided cells. Cell centers are at cell center-of-mass.

Lines connecting cell centers intersect cell edges at right angles.

Lines connecting cell centers are bisected by cell edge. Mesh generation uses a density function.

Uniform resolution – traditional icosahedral mesh.

C-grid

Solve for normal velocities on cell edges.

Solvers

Fully compressible nonhydrostatic equations (explicit simulation of clouds)

Solver Technology

Integration schemes are similar to WRF.

3-km Global MPAS-A Simluation

Courtesty of Bill Skamarock

Courtesty of Bill Skamarock

MPAS/DART

Data Assimilation Research Testbed (DART)

- Provides algorithm(s) for ensemble Kalman filter (EnKF)
- ▷ General framework, used for several models
- ▷ Parallelizes efficiently to 100's of processors
- Developed by Jeff Anderson and team; see http://www.image.ucar.edu/DAReS/DART/

MPAS/DART

- MPAS-specific interfaces + obs operators (conventional, GPS)
- Month-long experiments with 6-hourly cycling are stable, with results comparable to those from Community Atmosphere Model (CAM 4)/DART

Comparison with CAM/DART

- August 2008, 6-h cycling, conventional obs + GPS
- 120-km MPAS, 1-deg CAM FV

Courtesty of Soyoung Ha

MPAS/DART Moisture Analysis

Specific humidity, 12Z 6 Aug 2008, member 1

Negative values!

Courtesty of Soyoung Ha

EnKF and Positive-Definite Variables.

KF (and EnKF) consider only mean and covariance of \mathbf{x}_k

- \triangleright linear updates for $\bar{\mathbf{x}}_k = E(\mathbf{x}_k)$ and $\mathbf{P}_k = \operatorname{cov}(\mathbf{x}_k)$
- \triangleright implements Bayes rule when $p(\mathbf{x}_k)$ and $p(\mathbf{y}_k^o|\mathbf{x}_k)$ are Gaussian

Positive-definite variables are not Gaussian

 \triangleright One-dimensional example: sample from $p(x_k)$

 $\triangleright p(y^{o}|x_{k})$ and Gaussian obs error

▷ prior mean and obs value ($y^o = 0.4$)

 $\triangleright \ \ {\rm updated} \ {\rm sample} \ {\rm produced} \ {\rm by} \ {\rm EnKF} \ {\rm includes} \ {\rm some} \ x^i < 0$

Part II

Particle filters offer potential solution for non-Gaussian DA

Part II: Overview ____

- Simplest particle filter requires very large ensemble size, growing exponentially with the problem size.
- ▷ Can the use of the optimal proposal density fix this?
- ▷ What exactly is the "problem size?"

Background I: Particle Filters (PFs) _

Sequential Monte-Carlo method to approximate $p(\mathbf{x}_k | \mathbf{y}_{1:k})$

- ▷ works with samples from desired pdf, rather than pdf itself
- $\,\triangleright\,\,$ fully general approach; converges to Bayes rule as $N_e \to \infty$,
- Large literature for low-dimensional systems, plus recent interest in geophysics (e.g. van Leeuwen 2003, 2010; Morzfeld et al. 2011; Papadakis et al. 2010)

PFs (cont.) _

Elementary particle filter:

- ▷ begin with members \mathbf{x}_{k-1}^i drawn from $p(\mathbf{x}_{k-1}|\mathbf{y}_{k-1}^o)$
- \triangleright begin with members \mathbf{x}_{k-1}^i and weights w_{k-1}^i that "represent" $p(\mathbf{x}_{k-1}|\mathbf{y}_{k-1}^o)$
- \triangleright compute \mathbf{x}_k^i by evolving each member to t_k under the system dynamics
- $\triangleright \quad \text{re-weight, given new obs } \mathbf{y}_k^o: \; w_k^i \propto w_{k-1}^i p(\mathbf{y}_k^o | \mathbf{x}_k^i)$
- \triangleright resample

Background II: Importance Sampling ____

Basic idea

- \triangleright suppose $p(\mathbf{x})$ is hard to sample from, but $\pi(\mathbf{x})$ is not.
- \triangleright draw $\{\mathbf{x}^i\}$ from $\pi(\mathbf{x})$ and approximate

$$p(\mathbf{x}) \approx \sum_{i=1}^{N_e} w^i \delta(\mathbf{x} - \mathbf{x}^i), \quad \text{where } w^i \propto p(\mathbf{x}^i) / \pi(\mathbf{x}^i)$$

 $\triangleright \pi(\mathbf{x})$ is the *proposal density*

IS Example

 \triangleright $p(x_1, x_2)$ for 2D state (x_1, x_2) ; thin lines indicate marginal pdfs

- \triangleright observation $y = x_1 + \epsilon$, with realization $y^o = 1.1$
- $\triangleright p(y^{o}|x_{1}, x_{2})$ does not depend on x_{2}

 $\triangleright \quad p(x_1, x_2 | y^o)$

- \triangleright Want to sample from $p(\mathbf{x}|\mathbf{y})$
- $\triangleright \quad \text{IS says we should weight sample from } \pi(\mathbf{x}) = p(\mathbf{x})$ by $p(\mathbf{x}|\mathbf{y})/\pi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$

 \triangleright $p(\mathbf{x}|\mathbf{y})$ and "weighted" ensemble (size \propto weight)

Sequential Importance Sampling

Perform importance sampling sequentially in time

- \triangleright Given $\{\mathbf{x}_{k-1}^i\}$ from $\pi(\mathbf{x}_{k-1})$, wish to sample from $p(\mathbf{x}_k, \mathbf{x}_{k-1} | \mathbf{y}_k^o)$
- \triangleright choose proposal of the form

 $\pi(\mathbf{x}_k, \mathbf{x}_{k-1} | \mathbf{y}_k^o) = \pi(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{y}_k^o) \pi(\mathbf{x}_{k-1})$

 $\triangleright \quad \text{Using } p(\mathbf{x}_k^i, \mathbf{x}_{k-1}^i | \mathbf{y}_k^o) \propto p(\mathbf{y}_k^o | \mathbf{x}_k^i) p(\mathbf{x}_k^i | \mathbf{x}_{k-1}^i) p(\mathbf{x}_{k-1}^i), \text{ new weights are}$

$$w_{k}^{i} \propto \frac{p(\mathbf{x}_{k}^{i}, \mathbf{x}_{k-1}^{i} | \mathbf{y}_{k}^{o})}{\pi(\mathbf{x}_{k}^{i}, \mathbf{x}_{k-1}^{i} | \mathbf{y}_{k}^{o})} = \frac{p(\mathbf{y}_{k}^{o} | \mathbf{x}_{k}^{i}) p(\mathbf{x}_{k}^{i} | \mathbf{x}_{k-1}^{i})}{\pi(\mathbf{x}_{k}^{i} | \mathbf{x}_{k-1}^{i}, \mathbf{y}_{k}^{o})} w_{k-1}^{i}$$

Sequential IS (cont.) _

PF literature shows that choice of proposal is crucial

Standard proposal: transition density from dynamics

$$\triangleright \quad \pi(\mathbf{x}_k, \mathbf{x}_{k-1} | \mathbf{y}_k^o) = p(\mathbf{x}_k | \mathbf{x}_{k-1})$$

- $\triangleright \quad w_k^i \propto p(\mathbf{y}_k^o | \mathbf{x}_k^i) \, w_{k-1}^i$
- \triangleright members at t_k generated by evolution under system dynamics, as in ensemble forecasting

Sequential IS (cont.)

"Optimal" proposal: Also condition on most recent obs

$$\triangleright \quad \pi(\mathbf{x}_k, \mathbf{x}_{k-1} | \mathbf{y}_k^o) = p(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{y}_k^o)$$

$$\text{Since } p(\mathbf{x}_k | \mathbf{x}_{k-1}, \mathbf{y}_k^o) = p(\mathbf{y}_k^o | \mathbf{x}_k) p(\mathbf{x}_k | \mathbf{x}_{k-1}) / p(\mathbf{y}_k^o | \mathbf{x}_{k-1}),$$

$$w_k^i \propto p(\mathbf{y}_k^o | \mathbf{x}_{k-1}^i) w_{k-1}^i$$

- \triangleright optimal in sense that it minimizes variance of weights over \mathbf{x}_k^i
- several recent PF studies use proposals that either reduce to or are related to the optimal proposal (van Leeuwen 2010, Morzfeld et al. 2011, Papadakis et al. 2010)
- \triangleright not an ensemble forecast; generating members at t_k resembles DA

Degeneracy of PF Weights.

- \triangleright degeneracy $\equiv \max_i w_k^i \to 1$
- ▷ common problem, well known in PF literature
- ▷ for standard proposal, Bengtsson et al. (2008) and Snyder et al. (2008) show N_e must increase exponentially as problem size increases in order to avoid degeneracy
- ▷ What happens with optimal proposal?

A Simple Test Problem ___

Consider the system

$$\mathbf{x}_k = a\mathbf{x}_{k-1} + \eta_{k-1}, \quad \mathbf{y}_k = \mathbf{x}_k + \epsilon_k$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I})$, $\eta_{k-1} \sim N(0, q^2 \mathbf{I})$ and $\epsilon_k \sim N(0, \mathbf{I})$.

A Simple Test Problem.

Consider the system

$$\mathbf{x}_k = a\mathbf{x}_{k-1} + \eta_{k-1}, \quad \mathbf{y}_k = \mathbf{x}_k + \epsilon_k$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I})$, $\eta_{k-1} \sim N(0, q^2 \mathbf{I})$ and $\epsilon_k \sim N(0, \mathbf{I})$.

Then

$$\mathbf{y}_k | \mathbf{x}_k^i \sim N(\mathbf{x}_k^i, \mathbf{I}), \quad \mathbf{y}_k | \mathbf{x}_{k-1}^i \sim N\left(a\mathbf{x}_{k-1}^i, \left(1+q^2\right)\mathbf{I}\right).$$

Easy to calculate $w_k^i \propto p(\mathbf{y}_k^o | \mathbf{x}_k^i)$ (standard proposal) or $w_k^i \propto p(\mathbf{y}_k^o | \mathbf{x}_{k-1}^i)$ (optimal proposal).

A Simple Test Problem (cont.)

- \triangleright histograms of $\max_i w_k^i$ for $N_e = 10^3$, a = q = 1/2. 10³ simulations.
- \triangleright degeneracy occurs, but optimal proposal clearly reduces it at any N_x

Behavior of Weights _____

Define

$$V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k^o) = -\log(w_k/w_{k-1}) = \begin{cases} -\log p(\mathbf{y}_k^o | \mathbf{x}_k), & \text{std. proposal} \\ -\log p(\mathbf{y}_k^o | \mathbf{x}_{k-1}), & \text{opt. proposal} \end{cases}$$

and let $\tau^2 = \operatorname{var}(V)$.

Behavior of Weights _

Define

$$V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k^o) = -\log(w_k/w_{k-1}) = \begin{cases} -\log p(\mathbf{y}_k^o | \mathbf{x}_k), & \text{std. proposal} \\ -\log p(\mathbf{y}_k^o | \mathbf{x}_{k-1}), & \text{opt. proposal} \end{cases}$$

and let $\tau^2 = \operatorname{var}(V)$.

Then for large N_e and large au,

$$E(1/\max w_k^i) \sim 1 + \frac{\sqrt{2\log N_e}}{\tau}$$

(Bengtsson et al. 2008, Snyder et al. 2008)

Behavior of Weights

Define

$$V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k^o) = -\log(w_k/w_{k-1}) = \begin{cases} -\log p(\mathbf{y}_k^o | \mathbf{x}_k), & \text{std. proposal} \\ -\log p(\mathbf{y}_k^o | \mathbf{x}_{k-1}), & \text{opt. proposal} \end{cases}$$

and let $\tau^2 = \operatorname{var}(V)$.

Then for large N_e and large au,

$$E(1/\max w_k^i) \sim 1 + \frac{\sqrt{2\log N_e}}{\tau}$$

(Bengtsson et al. 2008, Snyder et al. 2008)

As τ^2 increases, N_e must increase as $\exp(2\tau^2)$ to keep $E(1/\max w^i)$ fixed.

The Linear, Gaussian Case

Analytic results possible for linear, Gaussian case with general $\mathbf{R} = \operatorname{cov}(\epsilon_k)$, $\mathbf{Q} = \operatorname{cov}(\eta_k)$ and $\mathbf{P}_k = \operatorname{cov}(\mathbf{x}_k)$.

$$\tau^{2} = \sum_{j=1}^{N_{y}} \lambda_{j}^{2} \left(3\lambda_{j}^{2}/2 + 1 \right),$$

where λ_j^2 are eigenvalues of

$$\mathbf{A} = \begin{cases} \mathbf{R}^{-1/2} \mathbf{H} (\mathbf{M} \mathbf{P}_{k-1} \mathbf{M}^T + \mathbf{Q}) \mathbf{H}^T \mathbf{R}^{-1/2}, & \text{std. proposal} \\ (\mathbf{H} \mathbf{Q} \mathbf{H}^T + \mathbf{R})^{-1/2} \mathbf{H} \mathbf{M} \mathbf{P}_{k-1} (\mathbf{H} \mathbf{M})^T (\mathbf{H} \mathbf{Q} \mathbf{H}^T + \mathbf{R})^{-1/2}, & \text{opt. proposal.} \end{cases}$$

 \triangleright τ^2 (opt. proposal) always less than or equal to τ^2 (std. proposal), with equality only when $\mathbf{Q} = 0$.

Simple Test Problem, Revisited

Recall

$$\mathbf{x}_{k} = a\mathbf{x}_{k-1} + \eta_{k-1}, \quad \mathbf{y}_{k} = \mathbf{x}_{k} + \epsilon_{k}$$

where $\mathbf{x}_{k-1} \sim N(0, \mathbf{I})$, $\eta_{k-1} \sim N(0, q^{2}\mathbf{I})$ and $\epsilon_{k} \sim N(0, \mathbf{I})$.

Then

$$\tau^{2} = \operatorname{var}(V) = \begin{cases} N_{y}(a^{2} + q^{2}) \left(\frac{3}{2}a^{2} + \frac{3}{2}q^{2} + 1\right), & \text{std. proposal} \\ N_{y}a^{2} \left(\frac{3}{2}a^{2} + q^{2} + 1\right) / (q^{2} + 1)^{2}, & \text{opt. proposal} \end{cases}$$

 \triangleright opt. proposal reduces τ^2 by an O(1) factor for reasonable values of aand q; $a^2 = q^2 = 1/2$ implies a factor of 5 reduction in τ^2 .

Simple Test Problem, Revisited (cont.)

▷ Theoretical prediction for $E(1/\max w^i)$ vs. simulations. Expectation is based on 10^3 realizations.

Simple Test Problem, Revisited (cont.).

- ▷ minimum N_e such that $E(1/\max w^i) \ge 1/0.8$ for standard proposal (circles) and optimal proposal (crosses) for $a^2 = q^2 = 1/2$.
- ▷ ratio of slopes of best-fit lines is 4.6, vs. asymptotic prediction of 5

N_y , N_x and Problem Size.

 $\tau^2 = \text{var}(\log \text{ likelihood}) \text{ measures "problem size" for PF}$

 \triangleright as τ^2 increases, N_e must increase as $\exp(2\tau^2)$ if $E(1/\max w^i)$ fixed.

Related to obs-space dimension

- ho~ in simple example, $au^2 \propto N_y$
- given by sum over e-values of obs-space covariance in general linear, Gaussian case—like an effective dimension

Analogy of τ^2 to dimension is incomplete

- $\triangleright \ \tau^2$ depends on obs-error statistics, increasing as ${\bf R}$ decreases
- \triangleright τ^2 depends on proposal

 N_y , N_x and Problem Size (cont.)

 au^2 depends explicitly *only* on obs-space quantities

How does N_x affect weight degeneracy?

- ▷ asymptotic relation of τ^2 and $E(1/\max w^i)$ requires $V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k)$ to be ~ Gaussian over \mathbf{x}_k
- $\triangleright \sim \text{Gaussianity of } V(\mathbf{x}_k) \text{ only if } N_x = \dim(\mathbf{x}) \text{ is large and components of } \mathbf{x} \text{ are sufficiently independent}$

Summary.

- \triangleright As was the case for the standard proposal, the optimal proposal requires N_e to increase exponentially with the "problem size" to avoid degeneracy.
- \triangleright Exponential rate of increase is quantitatively smaller for the optimal proposal; necessary ensemble size may therefore be *much* smaller in a given problem. Using optimal proposal, PF feasible for problems with τ^2 as large as a few hundred.
- No free lunch: Benefits of optimal proposal dependent on magnitude and form of system noise.

Other Potential Tricks.

- ▷ Equivalent-weights particle filter (van Leeuwen 2010)
- \triangleright Use proposals that consider state and obs over a window $[t_{k-L+1}, t_{k-L+2}, \ldots, t_k]$ (Doucet, Briers and Sénécal 2006)
- ▷ Consider sequences of proposals, where consecutive pdfs in the sequence are similar/close (Beskos, Crisan and Jasra 2012)
- Spatial localization, in which individual observations influence update only locally (Bengtsson et al. 2003, Lei and Bickel 2011)

Recommendation ____

New PF algorithms intended for high-dimensional systems should be evaluated first on the simple test problem given here.

References

- Bengtsson, T., P. Bickel and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. *IMS Collections*, **2**, 316–334. doi: 10.1214/19394030700000518.
- Morzfeld, M., X. Tu, E. Atkins and A. J. Chorin, 2011: A random map implementation of implicit filters. *J. Comput. Phys.* **231**, 2049–2066.
- van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: an extremely efficient particle filter. *Quart. J. Roy. Meteor. Soc.* **136**, 1991–1999.
- Papadakis, N., E. Mémin, A. Cuzol and N. Gengembre, 2010: Data assimilation with the weighted ensemble Kalman filter. *Tellus* **62A**, 673–697.
- Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. *Monthly Wea. Rev.*, **136**, 4629–4640.

N_y , N_x and Problem Size (cont.)

- ▷ $\log(p(V))$: $N_y = 1$, 3, 10, 100; $\mathbf{x} \sim N(0, \mathbf{I})$, $\mathbf{H} = \mathbf{I}$, $\epsilon \sim N(0, \mathbf{I})$ (standard proposal, $a^2 + q^2 = 1$)
- \triangleright recall that max weight depends on left-hand tail of p(V)
- ▷ as N_y (and N_x) increase, left-hand tail changes and $V \rightarrow$ Gaussian (i.e. $\log(p(V))$ approaches a parabola)

Behavior of Weights _

Define

$$V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k^o) = -\log(w_k/w_{k-1}) = \begin{cases} -\log p(\mathbf{y}_k^o | \mathbf{x}_k), & \text{std. proposal} \\ -\log p(\mathbf{y}_k^o | \mathbf{x}_{k-1}), & \text{opt. proposal} \end{cases}$$

Interested in V as random variable with \mathbf{y}_k^o known and \mathbf{x}_k and \mathbf{x}_{k-1} distributed according to the proposal distribution at t_k and t_{k-1} , respectively.

Behavior of Weights

Define

$$V(\mathbf{x}_k, \mathbf{x}_{k-1}, \mathbf{y}_k^o) = -\log(w_k/w_{k-1}) = \begin{cases} -\log p(\mathbf{y}_k^o | \mathbf{x}_k), & \text{std. proposal} \\ -\log p(\mathbf{y}_k^o | \mathbf{x}_{k-1}), & \text{opt. proposal} \end{cases}$$

Interested in V as random variable with \mathbf{y}_k^o known and \mathbf{x}_k and \mathbf{x}_{k-1} distributed according to the proposal distribution at t_k and t_{k-1} , respectively.

Suppose each component of obs error is independent.

- ▷ $p(\mathbf{y}_k^o | \mathbf{x}_k)$, $p(\mathbf{y}_k^o | \mathbf{x}_{k-1})$ can be written as products over likelihoods for each component $y_{j,k}^o$ of \mathbf{y}_k^o
- \triangleright V becomes a sum over log likelihoods for each component
- \triangleright if terms in sum are nearly independent, $V \rightarrow \text{Gaussian}$ as $N_y \rightarrow \infty$
- $\triangleright~$ infer asymptotic behavior of $\max w_k^i$ from known asymptotics for sample min of Gaussian