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Preliminaries

Notation
. state evolution: x

k

= M(x
k�1) + ⌘

k

, where x
k

= x(t
k

)

. observations: y
k

= H(x
k

) + ✏
k

. superscript i indexes ensemble members

. dim(x) = N
x

, dim(y) = N
y

, ensemble size = N
e

Interchangeable terms
. particles ⌘ ensemble members

. sample ⌘ ensemble
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Preliminaries (cont.)

State x
k

is a random variable
. goal is to estimate pdf p(x

k

|yo) of this “true” state given obs yo

[ In general, variables without superscripts are random.]

Bayes rule
. compute conditional pdf via

p(x
k

|yo) = p(yo|x
k

)p(x
k

)/p(yo)
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Jointly developed, primarily by NCAR and LANL/DOE 
 
MPAS infrastructure - NCAR, LANL, others. 
MPAS - Atmosphere (NCAR) 
MPAS - Ocean (LANL) 
MPAS - Ice, etc. (LANL and others) 
 
Project leads: Todd Ringler (LANL) 
       Bill Skamarock (NCAR) 
 



Unstructured spherical centroidal Voronoi meshes  
 Mostly hexagons, some pentagons and 7-sided cells. 
 Cell centers are at cell center-of-mass. 
 Lines connecting cell centers intersect cell edges at right 
angles. 

 Lines connecting cell centers are bisected by cell edge. 
 Mesh generation uses a density function. 
 Uniform resolution – traditional icosahedral mesh. 

 
C-grid 

 Solve for normal velocities on cell edges. 
 
Solvers 

 Fully compressible nonhydrostatic 
     equations (explicit simulation of  
     clouds) 
 
Solver Technology 

 Integration schemes are 
 similar to WRF. 

MPAS-Atmosphere 



3-km Global MPAS-A Simluation 

Observed 
extratropical cyclone 
with the lowest 
recorded surface 
pressure in North 
America!
Isolated tornadic 
storms observed in 
warm sector ahead 
of the cold front!

Tropical 
cyclone Chaba 
(cat 3)!

Courtesty of Bill Skamarock!



Cold-pools 
from !
isolated storms !
ahead of the !
cold front!

splitting !
supercell!
thunderstorms!

Courtesty of Bill Skamarock!



MPAS/DART!

Data Assimilation Research Testbed (DART)!
�  Provides algorithm(s) for ensemble Kalman filter (EnKF)!
�  General framework, used for several models!
�  Parallelizes efficiently to 100�s of processors!
�  Developed by Jeff Anderson and team; see                                              

http://www.image.ucar.edu/DAReS/DART/!
!
MPAS/DART!

�  MPAS-specific interfaces + obs operators (conventional, GPS)!
�  Month-long experiments with 6-hourly cycling are stable, with results 

comparable to those from Community Atmosphere Model (CAM 4)/DART!
!



Comparison with CAM/DART!

•  August 2008, 6-h cycling, conventional obs + GPS!
•  120-km MPAS, 1-deg CAM FV!
!

Courtesty of Soyoung Ha!



MPAS/DART Moisture Analysis!

Specific humidity,!
12Z 6 Aug 2008,!
member 1!
!
Negative values!!

Courtesty of Soyoung Ha!



EnKF and Positive-Definite Variables

KF (and EnKF) consider only mean and covariance of x
k

. linear updates for ¯x
k

= E(x
k

) and P
k

= cov(x
k

)

. implements Bayes rule when p(x
k

) and p(yo
k

|x
k

) are Gaussian

Positive-definite variables are not Gaussian
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EnKF and +ive Variables (cont.)

. One-dimensional example: sample from p(x
k

)
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EnKF and +ive Variables (cont.)

. p(yo|x
k

) and Gaussian obs error
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EnKF and +ive Variables (cont.)

. prior mean and obs value (yo = 0.4)
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EnKF and +ive Variables (cont.)

. updated sample produced by EnKF includes some xi < 0
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Part II

Particle filters o↵er potential solution for non-Gaussian DA

9



Part II: Overview

. Simplest particle filter requires very large ensemble size, growing
exponentially with the problem size.

. Can the use of the optimal proposal density fix this?

. What exactly is the “problem size?”
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Background I: Particle Filters (PFs)

Sequential Monte-Carlo method to approximate p(x
k

|y1:k)
. works with samples from desired pdf, rather than pdf itself

. fully general approach; converges to Bayes rule as N
e

! 1,

. Large literature for low-dimensional systems, plus recent interest in
geophysics (e.g. van Leeuwen 2003, 2010; Morzfeld et al. 2011;
Papadakis et al. 2010)
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PFs (cont.)

Elementary particle filter:

. begin with members xi
k�1 drawn from p(x

k�1|yo
k�1)

. begin with members xi
k�1 and weights wi

k�1 that “represent”
p(x

k�1|yo
k�1)

. compute xi
k

by evolving each member to t
k

under the system dynamics

. re-weight, given new obs yo
k

: wi

k

/ wi

k�1p(y
o

k

|xi
k

)

. resample
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Background II: Importance Sampling

Basic idea
. suppose p(x) is hard to sample from, but ⇡(x) is not.

. draw {xi} from ⇡(x) and approximate

p(x) ⇡
N

eX

i=1

wi�(x� xi), where wi / p(xi)/⇡(xi)

. ⇡(x) is the proposal density
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IS Example

. p(x1, x2) for 2D state (x1, x2); thin lines indicate marginal pdfs
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IS Example (cont.)

. observation y = x1 + ✏, with realization yo = 1.1

. p(yo|x1, x2) does not depend on x2
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IS Example (cont.)

. p(x1, x2| yo)
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IS Example (cont.)

. ⇡(x) = p(x),and sample from ⇡(x)

x
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. Want to sample from p(x|y)

. IS says we should weight sample from ⇡(x) = p(x)
by p(x|y)/⇡(x) = p(y|x)
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IS Example (cont.)

. p(x|y) and ”weighted” ensemble (size / weight)
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Sequential Importance Sampling

Perform importance sampling sequentially in time
. Given {xi

k�1} from ⇡(x
k�1), wish to sample from p(x

k

, x
k�1|yo

k

)

. choose proposal of the form

⇡(x
k

, x
k�1|yo

k

) = ⇡(x
k

|x
k�1, y

o

k

)⇡(x
k�1)

. Using p(xi
k

, xi
k�1|yok) / p(yo

k

|xi
k

)p(xi
k

|xi
k�1)p(x

i

k�1), new weights are

wi

k

/
p(xi

k

, xi
k�1|yok)

⇡(xi
k

, xi
k�1|yok)

=

p(yo
k

|xi
k

)p(xi
k

|xi
k�1)

⇡(xi
k

|xi
k�1, y

o

k

)

wi

k�1
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Sequential IS (cont.)

PF literature shows that choice of proposal is crucial

Standard proposal: transition density from dynamics
. ⇡(x

k

, x
k�1|yo

k

) = p(x
k

|x
k�1)

. wi

k

/ p(yo
k

|xi
k

)wi

k�1

. members at t
k

generated by evolution under system dynamics,
as in ensemble forecasting
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Sequential IS (cont.)

“Optimal” proposal: Also condition on most recent obs
. ⇡(x

k

, x
k�1|yo

k

) = p(x
k

|x
k�1, yo

k

)

. Since p(x
k

|x
k�1, yo

k

) = p(yo
k

|x
k

)p(x
k

|x
k�1)/p(yo

k

|x
k�1),

wi

k

/ p(yo
k

|xi
k�1)w

i

k�1

. optimal in sense that it minimizes variance of weights over xi
k

. several recent PF studies use proposals that either reduce to or are
related to the optimal proposal (van Leeuwen 2010, Morzfeld et al.
2011, Papadakis et al. 2010)

. not an ensemble forecast; generating members at t
k

resembles DA
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Degeneracy of PF Weights

. degeneracy ⌘ max

i

wi

k

! 1

. common problem, well known in PF literature

. for standard proposal, Bengtsson et al. (2008) and Snyder et al.
(2008) show N

e

must increase exponentially as problem size increases
in order to avoid degeneracy

. What happens with optimal proposal?
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A Simple Test Problem

Consider the system

x
k

= ax
k�1 + ⌘

k�1, y
k

= x
k

+ ✏
k

where x
k�1 ⇠ N(0, I), ⌘

k�1 ⇠ N(0, q2I) and ✏
k

⇠ N(0, I).
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A Simple Test Problem

Consider the system

x
k

= ax
k�1 + ⌘

k�1, y
k

= x
k

+ ✏
k

where x
k�1 ⇠ N(0, I), ⌘

k�1 ⇠ N(0, q2I) and ✏
k

⇠ N(0, I).

Then
y
k

|xi
k

⇠ N(xi
k

, I), y
k

|xi
k�1 ⇠ N

�
axi

k�1,
�
1 + q2

�
I
�
.

Easy to calculate wi

k

/ p(yo
k

|xi
k

) (standard proposal) or wi

k

/ p(yo
k

|xi
k�1)

(optimal proposal).
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A Simple Test Problem (cont.)

. histograms of max

i

wi

k

for N
e

= 10

3, a = q = 1/2. 103 simulations.

. degeneracy occurs, but optimal proposal clearly reduces it at any N
x
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Behavior of Weights

Define

V (x
k

, x
k�1, y

o

k

) = � log(w
k

/w
k�1) =

⇢
� log p(yo

k

|x
k

), std. proposal
� log p(yo

k

|x
k�1), opt. proposal

and let ⌧2 = var(V ).
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Behavior of Weights

Define

V (x
k

, x
k�1, y

o

k

) = � log(w
k

/w
k�1) =

⇢
� log p(yo

k

|x
k

), std. proposal
� log p(yo

k

|x
k�1), opt. proposal

and let ⌧2 = var(V ).

Then for large N
e

and large ⌧ ,

E(1/maxwi

k

) ⇠ 1 +

p
2 logN

e

⌧

(Bengtsson et al. 2008, Snyder et al. 2008)
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Behavior of Weights

Define

V (x
k

, x
k�1, y

o

k

) = � log(w
k

/w
k�1) =

⇢
� log p(yo

k

|x
k

), std. proposal
� log p(yo

k

|x
k�1), opt. proposal

and let ⌧2 = var(V ).

Then for large N
e

and large ⌧ ,

E(1/maxwi

k

) ⇠ 1 +

p
2 logN

e

⌧

(Bengtsson et al. 2008, Snyder et al. 2008)

As ⌧2 increases, N
e

must increase as exp(2⌧2) to keep E(1/maxwi

) fixed.
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The Linear, Gaussian Case

Analytic results possible for linear, Gaussian case with general R = cov(✏
k

),
Q = cov(⌘

k

) and P
k

= cov(x
k

).

⌧2 =

N

yX

j=1

�2
j

(3�2
j

/2 + 1),

where �2
j

are eigenvalues of

A =

⇢
R�1/2H(MP

k�1M
T

+Q)HTR�1/2, std. proposal
(HQHT

+ R)�1/2HMP
k�1(HM)

T

(HQHT

+ R)�1/2, opt. proposal.

. ⌧2(opt. proposal) always less than or equal to ⌧2(std. proposal), with
equality only when Q = 0.
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Simple Test Problem, Revisited

Recall
x
k

= ax
k�1 + ⌘

k�1, y
k

= x
k

+ ✏
k

where x
k�1 ⇠ N(0, I), ⌘

k�1 ⇠ N(0, q2I) and ✏
k

⇠ N(0, I).

Then

⌧2 = var(V ) =

8
><

>:

N
y

(a2 + q2)
�
3
2a

2
+

3
2q

2
+ 1

�
, std. proposal

N
y

a2
�
3
2a

2
+ q2 + 1

�
/(q2 + 1)

2, opt. proposal

. opt. proposal reduces ⌧2 by an O(1) factor for reasonable values of a
and q; a2 = q2 = 1/2 implies a factor of 5 reduction in ⌧2.
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Simple Test Problem, Revisited (cont.)

. Theoretical prediction for E(1/maxwi

) vs. simulations. Expectation
is based on 10

3 realizations.
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Simple Test Problem, Revisited (cont.)

. minimum N
e

such that E(1/maxwi

) � 1/0.8 for standard proposal
(circles) and optimal proposal (crosses) for a2 = q2 = 1/2.

. ratio of slopes of best-fit lines is 4.6, vs. asymptotic prediction of 5
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Ny, Nx and Problem Size

⌧2 = var(log likelihood) measures “problem size” for PF
. as ⌧2 increases, N

e

must increase as exp(2⌧2) if E(1/maxwi

) fixed.

Related to obs-space dimension
. in simple example, ⌧2 / N

y

. given by sum over e-values of obs-space covariance in general linear,
Gaussian case—like an e↵ective dimension

Analogy of ⌧2 to dimension is incomplete
. ⌧2 depends on obs-error statistics, increasing as R decreases

. ⌧2 depends on proposal
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Ny, Nx and Problem Size (cont.)

⌧2 depends explicitly only on obs-space quantities

How does N
x

a↵ect weight degeneracy?
. asymptotic relation of ⌧2 and E(1/maxwi

) requires V (x
k

, x
k�1, y

k

)

to be ⇠ Gaussian over x
k

. ⇠ Gaussianity of V (x
k

) only if N
x

= dim(x) is large and components
of x are su�ciently independent

34



Summary

. As was the case for the standard proposal, the optimal proposal
requires N

e

to increase exponentially with the “problem size” to
avoid degeneracy.

. Exponential rate of increase is quantitatively smaller for the optimal
proposal; necessary ensemble size may therefore be much smaller in a
given problem. Using optimal proposal, PF feasible for problems with
⌧2 as large as a few hundred.

. No free lunch: Benefits of optimal proposal dependent on magnitude
and form of system noise.
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Other Potential Tricks

. Equivalent-weights particle filter (van Leeuwen 2010)

. Use proposals that consider state and obs over a window
[t
k�L+1, tk�L+2, . . . , tk] (Doucet, Briers and Sénécal 2006)

. Consider sequences of proposals, where consecutive pdfs in the
sequence are similar/close (Beskos, Crisan and Jasra 2012)

. Spatial localization, in which individual observations influence update
only locally (Bengtsson et al. 2003, Lei and Bickel 2011)
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Recommendation

New PF algorithms intended for high-dimensional systems should be
evaluated first on the simple test problem given here.
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Ny, Nx and Problem Size (cont.)

. log(p(V )): N
y

= 1, 3, 10, 100; x ⇠ N(0, I), H = I, ✏ ⇠ N(0, I)
(standard proposal, a2 + q2 = 1)

. recall that max weight depends on left-hand tail of p(V )

. as N
y

(and N
x

) increase, left-hand tail changes and V ! Gaussian
(i.e. log(p(V )) approaches a parabola)
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Behavior of Weights

Define

V (x
k

, x
k�1, y

o

k

) = � log(w
k

/w
k�1) =

⇢
� log p(yo

k

|x
k

), std. proposal
� log p(yo

k

|x
k�1), opt. proposal

Interested in V as random variable with yo
k

known and x
k

and x
k�1

distributed according to the proposal distribution at t
k

and t
k�1, respectively.
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Behavior of Weights

Define

V (x
k

, x
k�1, y

o

k

) = � log(w
k

/w
k�1) =

⇢
� log p(yo

k

|x
k

), std. proposal
� log p(yo

k

|x
k�1), opt. proposal

Interested in V as random variable with yo
k

known and x
k

and x
k�1

distributed according to the proposal distribution at t
k

and t
k�1, respectively.

Suppose each component of obs error is independent.

. p(yo
k

|x
k

), p(yo
k

|x
k�1) can be written as products over likelihoods for

each component yo
j,k

of yo
k

. V becomes a sum over log likelihoods for each component

. if terms in sum are nearly independent, V ! Gaussian as N
y

! 1
. infer asymptotic behavior of maxwi

k

from known asymptotics for
sample min of Gaussian
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