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Abstract We explore the potential for making statistical decadal predictions of sea surface

temperatures (SSTs) in a perfect model analysis, with a focus on the Atlantic basin. Var-

ious statistical methods (Lagged correlations, Linear Inverse Modelling and Constructed

Analogue) are found to have significant skill in predicting the internal variability of At-

lantic SSTs for up to a decade ahead in control integrations of two different global climate

models (GCMs), namely HadCM3 and HadGEM1. Statistical methods which consider

non-local information tend to perform best, but which is the most successful statistical

method depends on the region considered, GCM data used and prediction lead time.

However, the Constructed Analogue method tends to have the highest skill at longer lead

times. Importantly, the regions of greatest prediction skill can be very different to regions

identified as potentially predictable from variance explained arguments. This finding sug-

gests that significant local decadal variability is not necessarily a prerequisite for skillful

decadal predictions, and that the statistical methods are capturing some of the dynamics

of low-frequency SST evolution. In particular, using data from HadGEM1, significant skill

at lead times of 6-10 years is found in the tropical North Atlantic, a region with relatively

little decadal variability compared to interannual variability. This skill appears to come

from reconstructing the SSTs in the far north Atlantic, suggesting that the more north-

ern latitudes are optimal for SST observations to improve predictions. We additionally

explore whether adding sub-surface temperature data improves these decadal statistical

predictions, and find that, again, it depends on the region, prediction lead time and GCM

data used. Overall, we argue that the estimated prediction skill motivates the further de-
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velopment of statistical decadal predictions of SSTs as a benchmark for current and future

GCM-based decadal climate predictions.

Keywords decadal prediction · Atlantic · SSTs · statistical methods · predictability

1 Introduction

Policymakers require quantitative regional climate predictions for the near-term (out to

30 years) to aid efforts in adapting to a changing climate, for example, for planning new

infrastructure (e.g. Arnell and Delaney 2006) or for the insurance industry (e.g. Michaels

et al. 1997). Changes in climate over these timescales occur for two reasons: the response of

the climate to both historical and future radiative forcings, and because of internal climate

variability. Until recently, climate projections have generally only considered the trends

due to the radiative forcing component and the spread of natural variability (Meehl et al.

2007). However, the phase of the internal variability component is particularly important

for near-term predictions on regional spatial scales (e.g. Hawkins and Sutton 2009b). The

potential to improve near-term climate forecasts by predicting the internal variability, as

well as the radiatively forced component, has led to the development of global climate

model (GCM) based ‘decadal prediction systems’ (e.g. Smith et al. 2007, Keenlyside et al.

2008). Analysing the skill of these types of predictions will be a major part of the next

IPCC assessment, although many challenges remain (Meehl et al. 2009).

The development of GCM based decadal predictions is complex, challenging, and com-

putationally expensive, so it seems prudent to assess the skill of the GCM predictions by

using benchmarks of simpler, statistically based alternatives. This type of assessment has

been a useful feature of seasonal predictions for many years (e.g. Penland and Magorian

1993; Barnston et al. 1994; Colman and Davey 2003; Saha et al. 2006), and has begun for

decadal timescales. Lee et al. (2006) considered a Bayesian method for making decadal

predictions using ensemble simulations of GCMs and demonstrated some skill in predict-

ing climate trends. Laepple et al. (2008) improved near-term predictions of global mean

temperature using the CMIP3 projections by simply adjusting for the internal variability

at the start of the forecast, but this still requires the CMIP3 projections to predict the

future trend. Ideally we would like to develop a benchmark prediction system which is

independent of any GCM-based information. Lean and Rind (2009) recently developed a

statistical decadal prediction of the global temperature response to radiative forcings to

allow a comparison with the GCM estimates. However, none of these papers attempted to

predict the internal variability component of temperatures for the coming decade.
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The presence of considerable decadal and multi-decadal variability in historical obser-

vations of Atlantic sea surface temperatures (SSTs) (e.g. Delworth and Mann 2000) gives

rise to the potential for more skillful predictions and motivates analysing this region in

detail. This type of variability is also thought to be potentially predictable in GCMs (e.g.

Boer 2004; Collins et al. 2006; Boer and Lambert 2008). Additionally, there are thought to

be regional temperature and precipitation impacts over land of these long-term Atlantic

SST changes (e.g. Folland et al. 1986; Sutton and Hodson 2005), which may then also be

potentially predictable. The number and intensity of Atlantic hurricanes are also sensitive

to the SSTs in the tropical regions (e.g. Goldenberg et al. 2001; Emanuel 2005; Vecchi et al.

2008). Recently, Smith et al. (2010) demonstrated skill in predicting hurricane numbers

on seasonal to multi-year timescales using a GCM based decadal prediction system.

In this paper we consider the first stage of building an operational statistical decadal

prediction system by analysing GCM output in a ‘perfect model’ framework, i.e. using

model data as substitute observations, and trying to predict the subsequent model data.

This type of analysis could be considered as a best case scenario, with perfect availability

of observations and a perfect model, although this assumes that the GCM has a realistic

representation of the internal variability of the real ocean. The robustness of the results

can be considered by analysing more than one GCM and by comparing this idealised skill

with operational predictions using the same GCM. We further simplify the problem by

analysing control simulations where there are no complicating external forcing factors.

This type of approach has been regularly used in GCM based predictability studies (e.g.

Griffies and Bryan 1997; Collins and Sinha 2003; Collins et al. 2006; Dunstone and Smith

2010) to explore the capability of GCMs to make decadal predictions, and we consider

it valuable to assess the potential skill of various statistical methods before starting to

analyse the real observations which are complicated by the forced trends and lack of

complete observational coverage. Once the potential predictive skill is established then

the methods can be subsequently applied to the observational records.

This paper is structured as follows. In Section 2 we discuss the data used and consider

the potential predictability in two GCMs and the historical observations, and Section 3

describes the statistical methods we use. Section 4 discusses the skill of the predictions

and considers the benefit of utilising sub-surface data as well as SSTs to improve the

predictions. We conclude and discuss the findings in Section 5, including a brief comparison

with existing operational decadal predictions.
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2 SST data and potential predictability

We consider historical observations and data from two GCMs to explore the predictability

of SSTs, with a focus on the Atlantic Ocean.

2.1 HadCM3, HadGEM1 and HadISST

Firstly, we use 1000 years of a long, stable control integration of the third version of the

Hadley Centre climate model (HadCM3, Gordon et al. 2000) with constant pre-industrial

radiative forcings. HadCM3 is a global coupled ocean-atmosphere model with an atmo-

spheric resolution of 2.5◦×3.75◦ and 19 vertical levels. The ocean component has a reso-

lution of 1.25◦×1.25◦ with 20 vertical levels.

We also use an 846 year control integration of the first version of the Hadley Centre

Global Environmental Model (HadGEM1, Johns et al. 2006), but we remove the first 300

years to avoid spin-up issues. The atmospheric component has a resolution of 1.25◦×1.875◦

with 38 layers in the vertical. The ocean component has 40 levels in the vertical with a

zonal resolution of 1◦ everywhere and a meridional resolution of 1◦ between the poles and

30◦ latitude, increasing to 1
3
◦ at the equator.

The reason for choosing these models is that HadCM3 is also the base model used in

the UK Met Office’s decadal prediction system (DePreSys; Smith et al. 2007) for which

a direct comparison of skill can be made. HadGEM1 has also been recently updated to

run at a higher horizontal resolution (HiGEM; Shaffrey et al. 2009), and HiGEM is being

used to make decadal predictions as part of the forthcoming CMIP5, allowing a future

comparison of a similar model. Unfortunately, the HiGEM control integration is not long

enough to allow the analysis presented here to be performed.

The HadISST dataset (Rayner et al. 2003) includes estimates of observed monthly

mean interpolated SSTs, available on a 1◦×1◦ grid for 140 years from 1870-2009. In all

that follows we consider annual means of SSTs from both GCMs and observations.

2.2 Comparing potential predictability in the GCMs and observations

Before attempting to make decadal predictions of SSTs in these models, it is enlightening

to consider the potential predictability (e.g., Boer 2004; Boer and Lambert 2008) of these

two GCMs, for different length time means, defined as,

potential predictability =
σN

σ1
, (1)
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where σN represents the standard deviation of N -year means of SST. This measure of

potential predictability essentially assumes that much of the interannual variability is

chaotic and unpredictable, whereas the longer timescale variability relies on slower ocean

dynamics and is therefore more predictable. A threshold for ‘useful’ potential predictability

is hard to define, as it is likely to be purpose and situation dependent.

The left hand column of Fig. 1 shows the interannual standard deviation (σ1) of SSTs in

the GCMs and observations. The remaining columns illustrate the potential predictability

for N = 3, 5 and 10 years.

Both GCMs (top two rows) identify the far North Atlantic in general, and the North

Atlantic Current (NAC) region in particular, as regions with high potential predictability.

There are also encouraging signals in the south tropical Atlantic. A similar analysis for

the HadISST observations is complicated by the trends due to historical radiative forcings.

The bottom row in Fig. 1 shows the variability and potential predictability for the annual

mean observations, detrended at each grid point using a cubic spline with two breakpoints.

This qualitative effort at removing the long-term trend will give approximate estimates of

the variability and potential predictability.

Comparing the observed and model estimates suggests that the GCMs overestimate

the interannual variability in SSTs, especially in the far North Atlantic region. However,

Minobe and Maeda (2005) conclude that HadISST under-represents the magnitude of the

variability, especially in the NAC region, so this appearance should not be regarded as

a robust finding. Additionally, the processing of point observations into a gridded data

set (Rayner et al. 2003) will mean that the comparison with GCM data is not really

comparing like with like. We also note that HadGEM1 has a far weaker ENSO than found

in the observations (Johns et al. 2006; also see Supplementary Fig. S1 which shows the

global version of Fig. 1). Nevertheless, the potential predictability estimates for the GCMs

have comparable magnitudes to HadISST.

2.3 Interpretation of potential predictability

It is often suggested that the existence of this type of potential predictability in a partic-

ular region is a necessary prerequisite for actual predictability in that region. Later, we

will compare the potential predictability with the actual skill of the prediction methods

developed and demonstrate that this is not always true.

We also note here that if the SSTs in a certain region evolved randomly (i.e. white

noise) then the potential predictability from Eqn. 1 would be 1/
√

N . In many regions,

and for different values of N , the potential predictability in both the observations and



6

GCMs is less than this value. This finding implies that the SSTs in these regions have

negative auto-correlations on timescales less than N years, due to the impact of El Nino

for instance. However, the existence of these anti-correlations might also be considered as

potential predictability which is not captured by the simple definition of Eqn. 1.

3 Empirical prediction methods

3.1 Rationale

The end goal of this research is to create decadal predictions of SSTs, based solely on

observational data, to act as a ’benchmark’ with which to compare and contrast results

from GCM predictions. The aim of the present paper is to take the first step towards this

goal by testing different statistical methods using data from a GCM. The experimental

design is chosen to match the availability of historical data, but in the ‘perfect’ GCM

framework. However, note especially that any regions identified as having significant skill in

the GCMs may not be the same as those found when analysing observations. For checking

the robustness of the findings we consider data from two different GCMs. Analysis of

the observed SSTs in some high latitude regions is impossible because there are no SST

observations in regions covered by sea ice. For most of the GCM analysis that follows we do

not consider latitudes polewards of 66◦N to roughly simulate the observational coverage.

We will compare different statistical methods for making predictions of SSTs. For each

individual prediction we consider 140 years of SST anomalies from the control integration

as training data, i.e. the same length as the historical observations. We then make a

statistical prediction of the next 10 years and compare to the actual SSTs in the control

integration, i.e. the ‘perfect model’ approach. We then repeat the analysis by shifting

the training data to start 10 years later in the control integration. Thus the different

training sets are pseudo-independent, allowing us to assess the cross-validated skill of the

predictions as the forecast data is not used in the training of the statistical model. For

the HadCM3 (HadGEM1) data this allows 85 (40) separate forecasts, allowing the average

skill statistics to be calculated.

Although we make a prediction for each lead time of 1-10 years, we consider the pre-

diction skill using four different lead times and averaging periods, namely, year 1, year 2,

the mean of years 3-5 and the mean of years 6-10.
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3.2 Climatology, persistence and lagged correlations

The simplest reference statistical methods that we consider are,

Climatology : x(t0 + τ) = 0, (2)

Persistence : x(t0 + τ) = x(t0), (3)

Lagged correlation : x(t0 + τ) = β(τ)x(t0), (4)

where x is the SST anomaly at a particular grid point, t0 is the start year for the forecast,

τ is the forecast lead time from 1-10 years, and β(τ) is the auto-correlation of x at a

lag of τ , estimated from the training data. In these methods, each grid point is treated

independently.

The lagged correlation forecast is a version of ‘damped persistence’ (DP; Lorenz 1973)

which damps the anomalies (x) at each grid point towards zero, although here β can

also be negative. Lorenz (1973) showed that DP is as good as, or better, than both a

climatological forecast (β = 0) and persistence (β = 1), as defined above, assuming the

underlying auto-correlation structure can be reliably estimated. If only short periods of

observations exist then ‘persistence’ may be the only option for a prediction.

3.3 Linear Inverse Modelling

The above methods utilise information from only one grid point to make a forecast, whereas

it may be possible to add skill by including covariance information from other grid points.

Linear Inverse Modelling (LIM) is one way of doing this and is currently being used

in experimental forecasts of tropical SSTs on seasonal1 (Penland and Magorian 1993)

and annual (Newman et al. 2010) timescales. Here we extend this approach to decadal

timescales.

The LIM method models the evolution of SSTs as a linear dynamical system, forced by

(atmospheric) white noise. The number of degrees of freedom are reduced by considering

only the leading modes of variability; we use empirical orthogonal functions (EOFs) as

the spatial fields and their respective principal components (PCs) as the time variation

of these spatial fields2. The technical steps required are given in Penland and Magorian

(1993) and here we give brief details:

1. We estimate the leading correlation EOFs and corresponding PCs of the SST data,

weighted to ensure each unit area of the sea surface is treated equally. In the analysis

1 These forecasts are available at: http://www.esrl.noaa.gov/psd/forecasts/sstlim/
2 The leading EOFs of the two GCMs are compared to the observations in the Supplementary Information.
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presented here we use this methodology on the entire global domain, and separately

using just the Atlantic region. The EOFs are estimated for each training period indi-

vidually, to ensure that we are cross-validating our predictions appropriately.

2. The evolution of the leading PCs is modelled as a linear dynamical system with (at-

mospheric) stochastic forcing (ξ),

dx

dt
= Bx + ξ, (5)

where x is the PC state vector and the matrix B defines the temporal evolution of the

state vector. This model can then be used to make forecasts of x (denoted by x̂), with

lead time τ ,

x̂(t + τ) = P(τ)x(t), (6)

where the forecast propagator (P) is derived from,

P(τ) = exp(τB) = exp

(
τ

τ0
ln

[
C(τ0)

C(0)

])
, (7)

where

C(τ0) = 〈x(t + τ0)x
T(t)〉, (8)

C(0) = 〈x(t)xT(t)〉, (9)

where 〈·〉 denotes an average over all t, and τ0 is the lead time over which the propagator

is estimated. We choose τ0 = 1 year, and select the largest number of EOFs which

ensure that B remains real. Typically this is around 7 (12) EOFs, explaining ∼ 40%

(∼ 62%) of the variance for the global (Atlantic) domain in HadCM3, and similarly, 9

(12) EOFs, explaining ∼ 47% (∼ 68%) of the variance for HadGEM1.

3. The spatial pattern of the forecast can be recovered by multiplying x̂ by the respective

EOF patterns.

3.4 Constructed Analogue

The use of historical matches (or ‘analogues’) for forecasting has a long history (see van den

Dool 2007 for a recent review). The natural analogue (NA) method looks for particular

times in the historical record which are ‘closest’ to the desired forecast start state. The

subsequent evolution in the historical records would then be the analogue forecast. van den

Dool (1994) described how unlikely finding a good natural analogue might be3, so suggested

3 van den Dool (1994) showed that, for the atmospheric flow at 500mb to match over an entire hemisphere, one

would need a library of 1030 years to find an analogue within the observational errors. Making a similar estimate,

with optimistic assumptions, for Atlantic SST would require more than 105 years of data to provide a natural

analogue. Given 140 years of data, the chance of finding a natural analogue is remote.
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the constructed analogue (CA) method, which has successfully been applied to seasonal

SST forecasts in the Pacific (Barnston et al. 1994) and soil moisture forecasts in the US

(van den Dool et al. 2003). The essential ingredient of this method is constructing an

analogue for the recent past from a weighted, linear combination of historical data. The

assumptions made are of linearity, and that the future evolution will be similar to the

historical evolution for similar situations.

Here we use a simple CA methodology to forecast SSTs at lead times (τ) of 1-10 years

by reconstructing the spatial pattern of the last year of our training data, denoted as

ut. Thus, if ui represents SST anomalies from year i in the control integration, then an

analogue can be constructed by minimising,

J =
∑

M


ut −

t−τ∑

i=t−L+1

wiui




2

, (10)

over the M gridpoints by choosing the weights, wi, and where L is the length of the training

data (here L = 140 years). When minimising J it is also necessary to ensure equal weight

for each unit area of the domain. The forecast of SST, û, at a lead time of τ years is then,

ût+τ =
t−τ∑

i=t−L+1

wiui+τ , (11)

where the procedure is repeated for different values of τ . Like the LIM method we per-

form the analysis for a global domain and the Atlantic basin separately. For HadCM3

(HadGEM1) the SST for the forecast start time is reconstructed with a mean correlation

across the forecasts of 0.79 (0.77) for the global domain and 0.83 (0.84) for the Atlantic

domain.

4 Predictive skill of the statistical methods

We now consider the skill of our various statistical methods using anomaly correlation

and root mean square (RMS) error, and compare the results to potential predictability

estimates. The reason for choosing these two skill measures is because they are simple,

commonly used for assessing skill in predictions, and measure different aspects of the

prediction which may be useful in different situations.

4.1 Anomaly correlation

Figs. 2, 3 show the anomaly correlation skill for some chosen prediction types for the

HadCM3 and HadGEM1 GCMs respectively, focussing on the Atlantic domain. The global
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maps of skill for all prediction types are shown in the Supplementary Information. Assum-

ing independent predictions, the 95% confidence level is around r ≈ 0.2 (0.3) for HadCM3

(HadGEM1), so most of the coloured regions are significant. Generally, the statistical

methods employed are superior to persistence forecasts, especially for lead times greater

than 5 years. We note that, in some regions, the skill appears to be increasing with lead

time, but this is mostly due to the averaging period also increasing, and hence increasing

the signal-to-noise.

There is considerable skill for many regions for 1 year ahead (left columns) in both

GCMs, especially in higher latitudes. By year 2, the skill has dropped markedly, with

little skill outside the far north Atlantic, although the Atlantic-only LIM and CA methods

are performing well in HadCM3 in this region. For years 3-5, the skill has dropped further,

though it remains close to zero rather than significantly negative. The largest grid point

skill remains in the Atlantic-only LIM and CA methods for HadCM3, especially in the

north-east Atlantic. There is very little skill anywhere in the South Atlantic beyond 1 year.

For years 6-10 the skill has declined further in the HadCM3 regions where significant

skill was found at shorter lead times. However, the largest skill (r ≈ 0.4 − 0.5) is in the

northern tropical Atlantic for HadGEM1 using the CA method, although the LIM method

also has some skill in this region. This is particularly interesting given the lack of skill in

this region at shorter lead times. This region is important for the development of Atlantic

hurricanes, and may suggest some long term predictability in this region when averaged

over longer time periods, i.e. 5 years rather than 3, even though there is little potential

predictability for this region in HadGEM1 (Fig. 1). However, this finding is not consistent

between the GCMs. In HadCM3, the CA method only produces significant skill in the

North Atlantic Current region, in agreement with potential predictability estimates.

Table 1 shows anomaly correlations for specific regional averages inside the Atlantic

domain, with the best performing methods highlighted in bold for each GCM and lead

time. Lagged correlations tend to perform best for shorter lead times, and CA for longer

lead times. LIM sometimes has the highest skill in year 2 or years 3-5. Particularly en-

couraging is the skill for predicting mean North Atlantic SSTs, with r ∼ 0.5 at a lead

time of 6-10 years using CA in both GCMs. The Atlantic-only LIM tends to outperform

the global LIM estimates for both GCMs, presumably because more SST variance is being

retained inside the Atlantic domain for the Atlantic-only case.
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4.2 RMS error

We now consider an alternative measure of skill, namely RMS error. We note here that

the LIM method ‘damps’ anomalies towards zero, and is therefore unlikely to give a worse

forecast than climatology. The CA method has no such natural damping, and is likely

to perform poorly on this measure. However, methods exist to apply artificial damping

to forecasts to minimise RMS error (e.g. Jewson and Hawkins 2009), although various

assumptions are needed to derive the optimal damping factors which would vary for each

forecast lead time and region.

Here we consider a very simple approach to reduce the RMS error in the CA forecasts.

In the RMS errors shown below we use a CA forecast that has been damped by dividing

each forecast (after lead time averaging) by a factor of
√

2, which improves the RMS skill

virtually everywhere (not shown) but leaves the correlation unchanged4.

Figs. 4, 5 show the RMS error for the HadCM3 and HadGEM1 GCMs respectively,

relative to the RMS error of a climatological forecast for N year means,

RMSrelative =
RMSpred

RMSclim
=

RMSpred

σN

. (12)

Thus, the blue regions indicate where the prediction is performing better than climatology,

and the red areas indicate where the performance is worse. The global maps of skill for all

prediction types are shown in the Supplementary Information.

For year 1, the best method in both models is the lagged correlations, with less skill seen

for the LIM and CA methods. For year 2 and years 3-5 there is little skill in any method

in either model, although lagged correlations and Atlantic LIM do not produce worse fore-

casts than climatology. The CA method produces skill in certain regions, matching the

skill found using anomaly correlations, but is also worse than climatology in many regions.

However, in years 6-10, the enhanced skill in the tropical north Atlantic in HadGEM1 reap-

pears as a significantly lower RMS error than a climatological forecast, again suggesting

some long term predictability for this important region. However, outside this region the

RMS error is worse than climatology.

It is clearly important to consider more than one measure of prediction skill when

analysing prediction systems as these two metrics have produced different estimates of

which method works best, and the choice of which to use will be situation dependent.

4 This choice of artificial damping is motivated by noting that a forecast time series with zero correlation skill,

but with the same variance as the true time series will produce an RMS error that is a factor of
√

2 larger than a

climatological forecast, assuming Gaussian distributions. It would be possible to derive optimal damping factors if

the mean RMS error was known before the forecasts are made, but in this case, it is not known.
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4.3 Where does the long lead time skill in HadGEM1 come from?

Although the lagged correlations predictions tend to perform best for shorter lead times,

the methods which use non-local information tend to perform better for longer lead times,

suggesting that they are predicting some of the dynamical evolution of the SSTs.

The tropical north Atlantic skill in HadGEM1 at long lead times is an intriguing region

of skill to explain, as this region has low potential predictability (Fig. 1). Interestingly, the

skill is larger for the mean of years 6-10 than the mean of years 1-5 (not shown) suggesting

that the skill comes from a non-local source. To more convincingly demonstrate the non-

local mechanisms, a series of data withholding experiments were performed. Fig. 6 shows

how the correlation skill for HadGEM1 for a lead time of 6-10 years changes as different

regions are masked out of the construction of the statistical model5 - a far North Atlantic

region (northwards of 47◦N) and a Gulf Stream region (GSR). These regions are chosen

as they are significantly correlated with the tropical north Atlantic at 6-10 year lead times

(not shown).

For the Atlantic LIM method (left column), removing the far North Atlantic region

completely removes the skill from the tropical north Atlantic. For the Atlantic CA method

(right column), both regions seem important, and removing each in turn reduces the skill,

which again disappears completely when both regions are removed from the domain. A

final test, removing the tropical region itself (bottom row), shows that even when the

local tropical data is not used in the construction of the statistical model, there is still

significant skill in the tropical North Atlantic region predictions, but the far north Atlantic

is unaffected.

The skill that derives from within the Atlantic therefore appears to be non-local to

the tropical north Atlantic, and instead relies on reconstructing the far north Atlantic,

especially the convection regions. The mechanism for propagation could be related to

changes in ocean deep convection leading to wave propagation along the boundaries from

the north Atlantic to the tropics (e.g. Johnson and Marshall 2002), but Hodson and Sutton

(in prep.) suggest that these wave anomalies remain sub-surface in HadGEM1 and that,

instead, there is an atmospheric teleconnection to the tropical Atlantic.

It is also interesting to note that the global CA method performs better than the

Atlantic CA method at long lead times in HadGEM1 for the tropical north Atlantic

region (Table 1, Fig. S4), suggesting that some skill comes from outside the Atlantic

5 For the LIM method, the estimated EOFs can be extended into the masked regions through regression onto

the SSTs, allowing a prediction to subsequently be made for all regions. For the CA method, the estimation of the

weights in Eqn. 10 does not include the masked regions, but Eqn. 11 can use all the data to make a prediction.
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basin. An analysis of lagged correlations between SSTs in the tropical north Atlantic and

global SSTs (not shown) indicates that this additional skill emanates from reconstructing

the Indian Ocean SSTs, which leads the tropical Atlantic SSTs, though this relationship

does not appear stationary and should be treated with caution. Possible mechanisms for

this communication might rely on an indirect influence of the Agulhas current on the

tropical north Atlantic (e.g. Biastoch et al. 2008; Haarsma et al. 2010) or an atmospheric

teleconnection. However, it is essential to reiterate that this finding of enhanced skill in

the tropical North Atlantic is only found in HadGEM1 and may not apply to observations.

An important conclusion of this analysis is that the regions identified as potentially

predictable in Fig. 1 are not necessarily the same regions which will show enhanced pre-

dictive skill in forecasts. As described above, this seems to be because the skill comes

from knowledge non-local to where the predictions are validated and the statistical meth-

ods are capturing some of the dynamics of low-frequency SST evolution. Thus, potential

predictability estimates may under- or over-estimate the ability to actually predict, and

prediction studies are required to reliably estimate actual predictability. Finally, these find-

ings indicate that the far North Atlantic regions may be optimal for targeted observations

to improve predictions, as found in previous studies (e.g. Tziperman et al. 2008; Hawkins

and Sutton 2009a).

4.4 Effects of additional sub-surface observations

The historical ocean observational record also consists of sub-surface observations, though

significant amounts of reliable measurements only exist for roughly the last 50 years.

Dunstone and Smith (2010) recently performed a set of idealised GCM-based prediction

experiments and found that using sub-surface data to initialise the HadCM3 GCM led to

improved predictions compared to predictions which only used SSTs to initialise the ocean.

We now consider whether the inclusion of such sub-surface information and/or different

quantities of SST data would improve the statistical forecasts described above.

Fig. 7 compares the correlation skill of the LIM approach using the Atlantic domain

in HadCM3 using varying amounts of data (Table 2). The top row (Short SST) shows

the skill when using just 50 years of SSTs for training, and the second row repeats the

previous analysis for 140 years of SST training data (Long SST). Unsurprisingly, there is a

clear increase in skill when more data is used in the construction of the statistical model.

The skill grows as longer amounts of training SST data are used (not shown), and the

extreme case of using all the SST data is shown in the third row (All SST). Note however
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that the ‘All SST’ case is not strictly cross-validated as the forecast data is used in the

construction of the EOFs.

When adding sub-surface temperature data down to 100m the situation becomes more

complicated. In this case the temperature EOFs used in LIM are three-dimensional (3D)

(e.g. Hawkins and Sutton 2007). The fourth row (Short 3D) demonstrates that using 50

years of the full 3D temperature data reduces the skill in the predictions from the ‘Long

SST’ case, especially for short lead times. This is presumably because 50 years is not long

enough to fully sample and represent the sub-surface temperature variability. The fifth

row (Mixed 3D) shows that using the full length of the SST record with a shorter sub-

surface record produces more skill for longer lead time predictions than the SSTs alone.

This case is the closest to the actual historical observational data amounts. The sixth row

(Long 3D) shows a more idealised case, and a further increase in skill for long lead times

if sub-surface data was available for as long as the SST data. However, for predictions up

to 5 year lead times, using the SST data alone tends to produce the highest skill (not

shown). Finally, the extreme case of using all 3D data is shown in the bottom row (All

3D), and the skill has again improved from the ‘Long 3D’ case. Interestingly, some skill

is now found in the tropical north Atlantic in HadCM3 with the addition of sub-surface

data. However, elsewhere the skill has decreased with the addition of sub-surface data

which may be because we are representing different modes of variability.

Fig. 8 repeats the same analysis for HadGEM1, and finds similar increases in skill

when using more SST data, but that including the sub-surface temperature data generally

makes the predictions worse, even in the ‘Long 3D’ case, in all regions. This difference

between HadGEM1 and HadCM3 could be because the mechanisms of decadal variability

are different in the two GCMs. As discussed above, Hodson and Sutton (in prep.) suggest

that there is an atmospheric teleconnection between variability in the far north Atlantic

and tropical Atlantic in HadGEM1, indicating that adding sub-surface data may not help

the predictions, as seen in Fig. 8. In HadCM3, Dong and Sutton (2005) demonstrated the

important role of the sub-surface ocean in decadal Atlantic variability, consistent with the

improved predictive skill when sub-surface data is added (Fig. 7), especially in the tropical

Atlantic.

Lastly, we note that using temperature data on even deeper levels tends to reduce the

correlation skill of the LIM predictions for both GCMs (not shown), but better ways of

including this information could perhaps be found.
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5 Conclusions and discussion

We have analysed the potential to make statistical decadal forecasts of Atlantic SSTs,

using control integrations of two different GCMs in a perfect model approach. The main

findings are as follows:

• Statistical decadal predictions of Atlantic SSTs can be made with significant skill for

up to a decade, and should provide a suitable benchmark for GCM based decadal

predictions in the future.

• The specific regions of significant predictive skill differ between the two GCMs, and are

likely to be different again in observations.

• Regions with low potential predictability can have high actual predictability as infor-

mation can propagate from non-local regions. Potential predictability is therefore not

necessarily a robust measure of potential predictive skill.

• Prediction skill should be measured using more than one metric, e.g. correlation and

RMS error.

It is important to again reiterate that we have considered an idealised case of predictive

skill, and actual skill in predicting observed variability may be lower than found here

because we do not have a perfect model or perfect observations. However, we believe that

this type of perfect model approach is valuable to assess methods before moving to a

more complex situation. We have considered two different GCMs to try and explore the

sensitivity of the results to the GCM chosen. For example, HadGEM1 has a relatively weak

ENSO (Johns et al. 2006) which may enhance the appearance of tropical North Atlantic

prediction skill. A more comprehensive study using a wider range of GCMs and statistical

techniques would be desirable.

When considering predictions in the real world, there will be additional skill from

predicting the trend component. In Table 3 we show the anomaly correlation skill for

predicting SSTs from an operational GCM-based prediction system for 1981-2001 based

on the HadCM3 GCM (Smith et al. 2007), both initialised (DePreSys) and uninitialised

(NoAssim). The skill for NoAssim is an estimate of the skill due to the trend component

only, and this exceeds r ∼ 0.6 for most regions at 6-10 year lead times. The DePreSys

predictions generally perform better on short lead times as they predict some of the vari-

ability component as well as the trend. However, DePreSys does not produce significantly

better predictions for longer lead times, apart from in the far North Atlantic (also see

Robson 2010, Smith et al. 2010). A quantitative comparison with the skill from the sta-

tistical predictions is not appropriate, but we explore the spatial pattern of this skill in

more detail in the Supplementary Information for interested readers.
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The next step in this perfect model approach is to analyse transient forced integra-

tions of the same GCMs. This should provide a suitable approach to subsequently analyse

the historical observations and compare with the GCM-based decadal predictions being

prepared for the forthcoming CMIP5 assessment. We will also need to consider the uncer-

tainties in the SST observations, perhaps generating an ensemble of predictions.

We also note that it may be possible to further increase skill by using longer lead time

averaging periods, depending on the application that the forecast may be required for.

Future work will also focus on predictions in other ocean basins and on examining other

measures of prediction skill. There are also undoubtedly more complex statistical methods

that may be appropriate for making such predictions and further improve skill; this will

be explored in future studies. Better use of deeper temperature data, and the addition of

other climate variables (such as ocean salinity or sea level pressure) into the statistical

model could also improve skill (e.g. Newman et al. 2010). The statistical methods also

provide a testbed for exploring where additional observations would be most beneficial for

improving predictions (Fig. 6, also see e.g. Hawkins and Sutton 2009a).

Furthermore, the skill in predicting SSTs could produce some additional skill in pre-

dicting other climate variables such as surface air temperature or precipitation, either by

using the predicted SSTs to drive atmosphere-only GCMs (e.g. Sutton and Hodson 2005;

Scaife et al. 2009) or through a further statistical step (e.g. Colman and Davey 1999). Sta-

tistical predictions of SSTs are also being used to make operational predictions of regions

likely to experience coral bleaching on seasonal timescales (Liu et al. 2009) and similar

applications could be found on decadal timescales.
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Table 1 Anomaly correlation skill measures for region averages for HadCM3 (HadGEM1). Values in bold indicate

the highest correlation for each GCM for particular lead times and regions.

Whole Atlantic (30◦S - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

Lag. Corr. 0.67 (0.66) 0.50 (0.39) 0.42 (0.30) 0.12 (0.21)

Glo. LIM 0.28 (0.32) 0.20 (0.27) 0.08 (0.12) 0.07 (0.05)

Atl. LIM 0.59 (0.60) 0.47 (0.41) 0.34 (0.30) 0.09 (0.16)

Glo. CA 0.61 (0.47) 0.49 (0.43) 0.40 (0.35) 0.41 (0.42)

Atl. CA 0.53 (0.49) 0.41 (0.30) 0.46 (0.42) 0.31 (0.38)

North Atlantic (0◦N - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

Lag. Corr. 0.79 (0.74) 0.65 (0.58) 0.48 (0.40) 0.22 (0.27)

Glo. LIM 0.43 (0.40) 0.24 (0.31) 0.13 (0.23) 0.07 (0.06)

Atl. LIM 0.70 (0.66) 0.57 (0.55) 0.47 (0.45) 0.16 (0.19)

Glo. CA 0.75 (0.59) 0.62 (0.56) 0.47 (0.47) 0.50 (0.51)

Atl. CA 0.71 (0.66) 0.57 (0.47) 0.59 (0.56) 0.43 (0.47)

Atlantic Main Development Region (10◦N - 20◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

Lag. Corr. 0.39 (0.32∗) 0.20 (0.15) -0.33 (-0.09) -0.06 (-0.06)

Glo. LIM 0.35 (0.26) 0.03 (0.05) -0.09 (0.12) -0.01 (0.00)

Atl. LIM 0.33 (0.32) 0.16 (0.22) 0.06 (0.17) 0.09 (0.16)

Glo. CA 0.45 (0.23) 0.10 (0.16) 0.03 (0.05) 0.26 (0.36)

Atl. CA 0.34 (0.26) 0.16 (0.19) 0.06 (0.13) 0.15 (0.22)

Far North Atlantic (50◦N - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

Lag. Corr. 0.77 (0.77) 0.61 (0.59) 0.36 (0.35) 0.07 (0.20)

Glo. LIM 0.33 (0.39) 0.22 (0.32) 0.21 (0.17) 0.01 (-0.01)

Atl. LIM 0.73 (0.68) 0.64 (0.63) 0.44 (0.39) -0.07 (-0.08)

Glo. CA 0.75 (0.66) 0.60 (0.55) 0.33 (0.23) 0.17 (0.18)

Atl. CA 0.77 (0.72) 0.64 (0.58) 0.54 (0.42) 0.30 (0.26)

∗ Persistence forecast has an anomaly correlation of 0.33 here.



22

Table 2 Amounts of data considered in the different observing system experiments. Sub-surface temperature data

is included on all model depth levels down to 100m. Practically, the ‘Mixed 3D’ case is achieved by taking the full

140 years of 3D data, but assuming all sub-surface temperature data for the first 90 years to have zero anomalies.

Experiment SST data Sub-surface data

[years] [years]

Short SST 50 0

Long SST 140 0

All SST

- HadCM3 1000 0

- HadGEM1 546 0

Short 3D 50 50

Mixed 3D 140 50

Long 3D 140 140

All 3D

- HadCM3 1000 1000

- HadGEM1 546 546

Table 3 Anomaly correlation skill measures for region averages for DePreSys and NoAssim from 1981-2001 (Smith

et al. 2007). Bold values indicate where one system is performing substantially better.

Whole Atlantic (30◦S - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

DePreSys 0.82 0.52 0.70 0.68

NoAssim 0.62 0.51 0.52 0.74

North Atlantic (0◦N - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

DePreSys 0.86 0.70 0.74 0.76

NoAssim 0.77 0.70 0.62 0.76

Atlantic Main Development Region (10◦N - 20◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

DePreSys 0.70 0.33 0.46 0.62

NoAssim 0.43 0.45 0.47 0.60

Far North Atlantic (50◦N - 66◦N)

Method Year 1 Year 2 Years 3-5 Years 6-10

DePreSys 0.86 0.77 0.82 0.68

NoAssim 0.69 0.60 0.35 0.61
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Fig. 1 Potential predictability of Atlantic SSTs. Left column: interannual standard deviation of SST. Other columns:

ratio of standard deviation of 3, 5 and 10 year means to the interannual standard deviation. Rows: HadCM3 (top),

HadGEM1 (middle) and HadISST observations from 1870-2009, detrended using cubic spline (bottom). Regions

where sea ice precludes analysis are shown in grey. The global version of this figure is shown as Fig. S1.
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Fig. 2 SST anomaly correlation skill for HadCM3, for lagged correlations, Linear Inverse Modelling (LIM) and

Constructed Analogue (CA) predictions using only the Atlantic domain. The skill for the full set of predictions is

shown in Fig. S3.
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Fig. 3 Same as Fig. 2 for HadGEM1. The skill for the full set of predictions is shown in Fig. S4.
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Fig. 4 Root mean square error relative to the climatological RMS error for HadCM3, for lagged correlations, LIM

and CA predictions using the Atlantic domain. The skill for the full set of predictions is shown in Fig. S5.
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Fig. 5 Same as Fig. 4 for HadGEM1. The skill for the full set of predictions is shown in Fig. S6.
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Fig. 6 Withholding data experiments: SST anomaly correlation skill for HadGEM1 for years 6-10, using different

domains and statistical methods. The hatched regions are not included in constructing the statistical models. GSR

= Gulf Stream Region.
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Fig. 7 Comparing the correlation skill of the Atlantic LIM predictions in HadCM3 using different amounts of

surface and sub-surface data (see Table 2).
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Fig. 8 Same as Fig. 7 for HadGEM1.



Evaluating the potential for statistical decadal

predictions of sea surface temperatures with a

perfect model approach:

Supplementary Information

Ed Hawkins∗, Jon Robson, Rowan Sutton, Doug Smith, Noel Keenlyside
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This supplementary information augments the findings of the main paper by showing

the global versions of many of the figures, and by including the skill of the prediction

methods that were not shown in the main paper. Additionally, we include a brief discus-

sion comparing the leading EOFs of the observations and GCMs. Finally, we discuss the

skill of SST predictions in operational decadal prediction systems.

Potential predictability

Fig. S1 is the global version of Fig. 1 and shows the potential predictability (PP) estimates

for the two GCMs and observations outside the Atlantic. Note particularly that Fig. S1b

shows PP using the raw observations (top) and the observations detrended with a spline

as in the main text (bottom).

It can be seen that much of the Atlantic has the highest levels of potential predictability,

although the Pacific is also highlighted. Although the presence of potential predictability

is not necessarily an indicator of actual predictability, this motivates considering pre-

dictions focussed on the Pacific in more detail in future work to establish whether this

potential predictability can be realised.

Leading EOFs of models and observations

In the LIM analysis in the main paper, EOFs are used to build the statistical model.

Fig. S2 shows the leading EOFs of the observations (HadISST; Rayner et al. 2003) and

∗E-mail: e.hawkins@reading.ac.uk
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the control runs of the two GCMs considered in this study. Note that in the LIM analysis,

the EOFs are estimated for each 140 year training period separately, but here we use the

whole control run.

The leading EOF of HadISST shows an overall warming, likely associated with the

radiatively forced signal. The leading EOF of both GCMs shows a pattern with opposite

signs across the equator, which also resembles EOF2 of the observations. The second

EOF of both GCMs shows a similarly signed signal either side of the equator, and this

pattern is not clearly seen in EOF3 of the observations. This is not particularly surprising

as EOFs will not separate the natural and anthropogenic components cleanly.

Prediction skill

Figs. S3-S6 are the global versions of Figs. 2-5, showing the skill measures over the entire

global domain for all prediction types, and they highlight the other regions where some

skill may be found. In particular, both the global LIM and CA methods show high levels

of skill in the Indian (HadCM3) and Pacific (HadGEM1) basins, although only for lead

times up to 2 years. From a comparison of the global and Atlantic-only predictions it

can be seen that using the global SSTs is often superior in year 1 in the tropical Atlantic,

likely related to predicting aspects of ENSO in the Pacific.

Comparison of operational decadal prediction systems

We now qualitatively compare the potential skill of the statistical approaches with the

actual skill found in two operational GCM-based decadal prediction systems, DePreSys

(Smith et al. 2007) (hereafter S07), which is based on HadCM3, and Keenlyside et al.

(2008) (hereafter K08), which uses the ECHAM5/MPI-OM climate model. In these

decadal predictions, skill comes from both predicting the trend and the variability around

the trend. We also use the companion simulations which only predict the trend (denoted

as NoAssim for S07 and ‘20th C’ for K08). Note that we do not consider any forecast

bias correction1.

For DePreSys (S07), we use the original retrospective forecasts (or hindcasts) which

1It is possible that the skill measures used are sensitive to the bias correction and this will be explored in future work.
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are started every season from 1981-2001, and we consider the skill of the ensemble mean

of all 4 members for each prediction. Both the predictions and the NoAssim simulations

do not include knowledge of volcanic eruptions that occur later in each hindcast. The

predictions from K08 are started every 5 years from 1955-2005, and we consider the

skill of the ensemble mean of all 3 members for each prediction. Again, the initialised

predictions do not include future volcanic eruptions, but the ‘20th C’ simulations have the

volcanic forcing prescribed. The other major difference between the two systems is that

K08 only assimilate historical SSTs into the model, whereas S07 nudge to an analysis of

temperature and salinity at all depths (Smith and Murphy 2007). Table 1 summarises the

experimental configurations. When estimating the skill in these predictions below, the

SST anomalies in the hindcasts are compared to observed anomalies relative to a chosen

climatological period (1955-2004 for K08 and 1951-2006 for DePreSys [following Robson

2010]).

Anomaly correlation

There is no simple decomposition of the correlations of such an initialised and uninitialised

decadal prediction system. However, Fig. S7a shows the SST correlation skill of the

predictions from S07 for NoAssim (top row), DePreSys (middle row) and the difference

(bottom row). The initialised system, DePreSys, generally outperforms NoAssim for year

1, especially in the tropics and in the far North Atlantic. At longer lead times there is

additional skill only in the far North Atlantic.

Although a direct quantitative comparison between DePreSys and Fig. S3 is not appro-

priate, it is interesting to note that the initialised system does outperform the uninitialised

system in many regions for year 1, and some regions for longer lead times. As demon-

strated, the statistical methods are also providing additional skill over a climatological

forecast in some regions, suggesting that they could match the skill of the GCM-based

predictions, and this motivates their further development.

Fig. S8a shows the equivalent SST correlation skill from K08, again demonstrating

increased predictive ability for the first year in most regions, and the north-east Atlantic

at longer lead times. The correlation skill in years 6-10 is still above 0.8 over a large

region, however many regions see a reduction in skill with initialisation. Note that the
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95% confidence level for these correlations, assuming 9 independent predictions, is r ≈ 0.7.

Both systems seem to show the potential to predict ENSO up to 2 years ahead. Beyond

2 years, the main skill outside the Atlantic is found in the east Pacific for K08.

Relative RMS error

As noted in the main paper, it is important to consider more than one measure of skill.

For a comparison of the RMS error we consider that,

RMSrelative =
RMSinit

RMSuninit

, (1)

where ‘init’ and ‘uninit’ refer to the initialised and uninitialised predictions respectively.

Note that this measure is relatively insensitive to the presence of the same trend in both

predictions.

Fig. S7b shows this relative RMS error for DePreSys (S07) and identifies similar regions

to the correlations where there is enhanced skill for DePreSys over NoAssim (shown in

blue colours), particularly for the far North Atlantic.

Fig. S8b shows the relative RMS error for K08, again demonstrating improved skill for

year 1. However, for longer lead times the RMS error is significantly worse than the ‘20th

C’ projections for many regions. It may also be noted that regions of high correlation often

also have large RMS errors, and this is probably due to the model’s internal variability

being too large in this region (see K08).

Overall, it is seen that the initialised GCM based predictions provide some additional

skill in predicting the internal variability than the uninitialised simulations, especially on

shorter lead times. The trends provide most of the apparent skill on longer lead times.
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Table 1: Description of the GCM based decadal prediction systems considered, Smith et al. (2007) and

Keenlyside et al. (2008). The two systems are based on different GCMs, consider different historical time

periods, have different frequency of start dates, and initialisation strategies for both temperature (T) and

salinity (S).

Study GCM used Years considered Frequency Initialisation strategy

S07 HadCM3 1981-2001 every season anomalies, full depth T, S

K08 ECHAM5/MPI-OM 1955-2005 every 5 years anomalies, SST only
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(a)

(b)

Figure S1: Potential predictability of Atlantic SSTs. Left column: interannual variability of SST. Other

columns: ratio of standard deviation of 3, 5 and 10 year means to the interannual standard deviation. (a)

Top row: HadCM3. Bottom row: HadGEM1. (b) HadISST observations from 1870-2009. Top row: raw

observations. Bottom row: detrended observations, using cubic spline. Regions where sea ice precludes

analysis are shown in grey.
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Figure S2: The leading correlation EOFs of the observations (HadISST, top) and the control runs of

HadCM3 and HadGEM1.
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Figure S3: SST anomaly correlation skill for HadCM3, for persistence, lagged correlations, Linear Inverse

Modelling (LIM) and Constructed Analogue (CA) predictions. The LIM and CA methods are repeated

for both Global and Atlantic domains. The grey regions are masked out of the analysis.
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Figure S4: Same as Fig. S3 for HadGEM1.
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Figure S5: Root mean square error relative to the climatological RMS error for HadCM3, for persistence,

lagged correlations, LIM and CA predictions. The LIM and CA methods are repeated for both Global

and Atlantic domains. The grey regions are masked out of the analysis.
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Figure S6: Same as Fig. S5 for HadGEM1.
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(a)

(b)

Figure S7: Prediction skill of an operational GCM-based decadal prediction system (DePreSys; Smith

et al. 2007) for years 1981-2001. (a) Correlation skill for the uninitialised ensemble (NoAssim), initialised

ensemble (DePreSys) and the difference. (b) RMS error of DePreSys relative to NoAssim.
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(a)

(b)

Figure S8: Prediction skill of an operational GCM-based decadal prediction system (Keenlyside et al.

2008) for years 1955-2005. (a) Correlation skill for the uninitialised ensemble (20th C), initialised ensemble

(Hindcast) and the difference. (b) RMS error of Hindcast relative to 20th C.
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