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Abstract We separate and quantify the sources of uncertainty in projections of regional

(∼ 2500 km) precipitation changes for the 21st century using the CMIP3 multi-model

ensemble, allowing a direct comparison with a similar analysis for regional temperature

changes. For decadal means of seasonal mean precipitation, internal variability is the dom-

inant uncertainty for predictions of the first decade everywhere, and for many regions until

the third decade ahead. Model uncertainty is generally the dominant source of uncertainty

for longer lead times. Scenario uncertainty is found to be small or negligible for all regions

and lead times, apart from close to the poles at the end of the century. For the global

mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of

the precipitation projections is highest at the poles but less than 1 almost everywhere

else, and is far lower than for temperature projections. In particular, the tropics have the

highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘poten-

tial S/N’ by assuming that model uncertainty could be reduced to zero, and show that,

for regional precipitation, the gains in S/N are fairly modest, especially for predictions

of the next few decades. This finding suggests that adaptation decisions will need to be

made in the context of high uncertainty concerning regional changes in precipitation. The

potential to narrow uncertainty in regional temperature projections is far greater. These

conclusions on S/N are for the current generation of models; the real signal may be larger

or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme pre-

cipitation, which is more relevant for many climate impacts, may be larger than for the

seasonal mean precipitation considered here.

Keywords precipitation; uncertainty

1 Introduction

In order to adapt to a changing climate, decision makers require quantitative predictions

of climate on regional scales. Such predictions are available from global climate models

(GCMs), but they have large uncertainties: for example, for many regions even the sign

of the change in mean precipitation is uncertain (e.g., Meehl et al., 2007). This large un-

certainty comes from three sources, namely model uncertainty, scenario uncertainty and
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the random, internal variability of climate. Model uncertainty arises from each GCM pro-

jecting somewhat different future changes in climate in response to the same radiative

forcings, and scenario uncertainty results from the unknown future changes in anthro-

pogenic forcings. Internal climate fluctuations could potentially mask or enhance, for a

decade or so, the signal of anthropogenic changes; appreciation of these fluctuations is

especially important for decision makers tasked with adapting to a changing climate.

The value for decision making of predictive information depends, to a large extent, on

the signal-to-noise ratio of the prediction, i.e. how large is the expected change compared

to the uncertainty in the prediction. Thus one key issue for climate prediction is, what is

the signal-to-noise ratio for different regions and climate variables? An equally important

second question is what is the potential to increase the signal-to-noise ratio, and therefore

the value of the predictions, by decreasing the uncertainties? In a previous study Hawkins

and Sutton (2009) (hereafter HS09) we addressed both these questions for predictions of

surface air temperature change over the twenty first century. Through an analysis of the

CMIP3 multi-model ensemble we quantified the signal-to-noise ratio for different regions

and lead times, and demonstrated that the uncertainty in predictions of the next few

decades is dominated by contributions (especially model uncertainty) that are potentially

reducible through progress in climate science.

However, the dominant sources of uncertainty depend on the climate variable of inter-

est. Precipitation change is a key variable for adaptation. Several previous studies have

demonstrated that internal variability is a significantly more important factor for predic-

tions of precipitation change than for predictions of temperature change (e.g., Räisänen,

2001, Murphy et al., 2004). This research has also shown that predictions of precipita-

tion change are more consistent (higher signal-to-noise ratio) for some regions than others

(e.g., Giorgi and Mearns, 2002; Tebaldi et al., 2004; Murphy et al., 2004; Stainforth et al.,

2005; Harris et al., 2006, Giorgi and Bi, 2009). For example, the Mediterranean region is

typically predicted to experience significantly drier summers in the future whichever GCM

is used. Most recently, Giorgi and Bi (2009) used the CMIP3 multi-model ensemble to es-

timate the signal-to-noise ratio (S/N) for changes in seasonal mean precipitation. They

found that, for a limited number of regions (including the Mediterranean and Central

America), the S/N becomes greater than 1 sometime during the 21st century, and thus

the sign of the precipitation change is robust across this particular set of GCMs.

In this paper we perform a similar analysis to that of Giorgi and Bi (2009) but using the

methodology that we employed in HS09. Using this methodology, we explicitly partition

the sources of uncertainty in predictions of regional precipitation change (which was not

done by Giorgi and Bi, 2009), and obtain quantitative estimates of the signal-to-noise

ratio, which we compare with those of Giorgi and Bi (2009). We then go on to quantify

the potential to increase the signal-to-noise ratio through progress in climate science (in

particular, improvements in climate models). Because we use the same methodology to

analyse precipitation as we used to analyse surface air temperature, we are able to compare

and contrast the findings for these two variables.

The paper is structured as follows. Section 2 describes the methods used to separate and

quantify the sources of uncertainty. We examine how the contributions to total uncertainty

vary for different regions and seasons in Section 3. The robustness of the predictions,
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measured by the signal-to-noise ratio is explored in Section 4, and we conclude and discuss

the implications of our results in Section 5.

2 Partitioning uncertainty in precipitation projections

We utilise precipitation projections for the 20th and 21st century from fourteen different

GCMs, under historical forcings and three different future emissions scenarios (SRES A1B,

A2 and B1). The particular GCMs used in the analysis were chosen purely on the basis of

data availability, i.e. we used the GCMs for which all three different scenario simulations

were available. Although some of the GCMs have several realisations of these simulations,

we use just one ensemble member for each GCM to treat all the models equally. Fig. 1

shows the global mean, annual mean precipitation projections for the GCMs used, as a

percentage change from the mean of 1971-2000. The thick lines represent the multi-model

mean for each emissions scenario. Although the GCMs all predict an increase in global

mean precipitation, there is a considerable spread. On regional scales this spread can be

far larger (e.g., Meehl et al., 2007).

2.1 Separating the sources of uncertainty

Following HS09 we consider that there are three independent sources of uncertainty in

these precipitation projections. Firstly, there is model uncertainty: for the same radiative

forcings, different models produce different projections (shown by the spread between

similarly coloured lines in Fig. 1). Secondly, there is scenario uncertainty: uncertainty in

future radiative forcing causes uncertainty in future climate (demonstrated by the spread

in the thick coloured lines in Fig. 1). Thirdly, there are the random, internal fluctuations in

climate, which are the ‘wiggles’ superimposed on the long term trends in each projection.

These sources of uncertainty are separated and quantified following the methods de-

scribed by HS09; here we give brief details. Firstly, the percentage change from the mean

of 1971-2000 is calculated for each projection1, and a smooth fourth-order polynomial is

fitted for 1950-2099. The decadal mean residuals from these smooth fits for 2000-2099 are

considered to represent the internal variability, which is assumed to be constant with lead

time2. We take the average over all models as our best estimate. The model spread around

the mean for each scenario is considered as the model uncertainty, and this is averaged

over the three scenarios considered. Finally, the spread between the multi-model means

for each scenario is considered as the scenario uncertainty. Each model is assumed to be

independent and equally realistic, i.e. no effort is made to weight the models by their abil-

ity to simulate historical precipitation changes. The analysis can be repeated for different

seasonal means and regions. In all that follows we consider the uncertainties in decadal

means.

1 Note that the results are not significantly different if the absolute changes from the mean of 1971-2000 are

considered, rather than the percentage changes.
2 Boer (2009) noted a small increase in decadal variability of precipitation in the tropics for stabilised B1 and

A1B scenarios in the CMIP3 ensemble. If we allow the variability to change with time in our analysis, the results

are virtually indistinguishable, but for simplicity we assume a constant decadal variability.
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In this analysis we assume that the model estimates of internal variability are realis-

tic and that the inter-model spread is representative of the true model uncertainty. We

acknowledge that these methods are fairly simple but, as discussed in detail by HS09, we

expect that the findings are qualitatively robust, especially for projections of the next few

decades. Additionally, Appendix A demonstrates that the methodology described above

for estimating the internal variability component of uncertainty from the future scenarios

gives similar answers to the variability estimated from the unforced control integrations;

this gives us more confidence that our findings are robust.

2.2 Uncertainties in global mean precipitation change

We first consider how the uncertainty in global mean, decadal mean precipitation grows

over the 21st century and how this uncertainty is partitioned amongst the three com-

ponents (Fig. 2a). Throughout the century, model uncertainty (blue) is the dominant

contributor, but at the start of the century, internal variability (orange) is important,

and scenario uncertainty (green) becomes more important at the end of the century. This

dominance of model uncertainty for precipitation can be contrasted with the situation

for temperature (Fig. 2b) which shows that scenario uncertainty is more important than

model uncertainty from mid-century onwards (also see HS09).

The spread in GCM estimates of the historical changes in precipitation and temperature

are shown in grey in Fig. 2, with the mean in white. An observational estimate from the

Global Precipitation and Climatology Project (GPCP; Adler et al., 2003) version 2.1 is

shown with the black line in Fig. 2a, suggesting that the GCMs may sufficiently represent

global decadal variability of precipitation, although the observed record is short and is

itself subject to considerable uncertainty. For temperature, the GCM estimates agree well

with an estimate from the HadCRUT3 dataset (Brohan et al., 2006), which is shown as

the black line in Fig. 2b.

As an alternative representation of the uncertainty in precipitation, Fig. 3a shows the

fractional uncertainty (i.e. the uncertainty divided by the expected change), for global,

decadal mean precipitation. This representation shows that the smallest fractional uncer-

tainty (or the largest signal-to-noise ratio), occurs around 2070, far later than for temper-

ature, which has the minimum around 2040 (Fig. 3b, also see HS09).

Finally, Fig. 4a shows the fraction of the total variance in global mean precipitation

projections due to each source of uncertainty, for different lead times in the 21st century.

Consistent with Figs. 2a, 3a model uncertainty (blue) is clearly dominant for all lead times

considered, internal decadal variability (orange) is a significant factor at short lead times,

and scenario uncertainty (green) only becomes important at the end of the century.

3 Sources of uncertainty on regional scales

Changes in global mean precipitation are not particularly relevant for decision makers.

Instead, it is the changes on far smaller scales, and for different seasons, which are vi-

tal for adapting to a changing climate. For smaller regions, and for decadal means of

particular seasons (Figs. 4b-d), the contribution from internal variability is larger, but
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scenario uncertainty is generally still small, and in some cases, e.g. summer (JJA) Sahel

rainfall (Fig. 4b), is completely negligible. European winter (DJF) rainfall (Fig. 4c) has

a very large internal variability contribution, which is dominant until around 2050, likely

related to the North Atlantic Oscillation (NAO). For JJA monsoon rainfall in South East

Asia (Fig. 4d), scenario uncertainty is slightly larger than for the other regions shown,

but internal variability and model uncertainty still dominate. A larger set of results for

both temperature and precipitation can be viewed on our interactive website (http://ncas-

climate.nerc.ac.uk/research/uncertainty/).

3.1 Uncertainty maps

We now further examine the sources of uncertainty on regional scales. We define 96 regions,

each 30◦ wide in longitude with 8 varying thickness latitudinal bands to ensure each region

has the same area (about 5 × 106 km2). Fig. 5 shows maps of the fraction of variance

explained by each source of uncertainty for these different regions and lead times, for both

boreal winter (DJF, panel a) and summer (JJA, panel b).

It is clear that scenario uncertainty is rarely a significant source of uncertainty; the

only exception is the polar regions at the end of the century. Model uncertainty dominates

for nearly all regions for lead times longer than around four decades. At the end of the

century, model uncertainty explains 60 − 95% of the total uncertainty over virtually all

regions away from the winter pole.

However, it must be noted that internal variability is the dominant source of uncertainty

over all regions for the first decade ahead, many regions in the third decade ahead, and is

of comparable importance to scenario uncertainty even at the end of the century. Internal

climate fluctuations could therefore potentially mask or enhance, for a decade or so, the

signal of anthropogenic changes. Appendix A shows that tropical Africa has especially

large decadal variability relative to the mean precipitation.

By direct comparison with HS09, it is clear that both internal variability and model

uncertainty are more important for precipitation changes than for temperature changes

(as also found by Räisänen, 2001).

4 Signal-to-noise in precipitation projections

The signal-to-noise ratio (S/N) is often used to measure the robustness of a prediction.

We now consider the S/N of these precipitation projections on regional scales,

S/N =
∆precip

σprecip
, (1)

where ∆precip is the change in decadal means of seasonal precipitation, relative to 1971-

2000, and σprecip is the total standard deviation of the projections. To assess the significance

of the S/N, we consider the null hypothesis that the signal is zero. This null hypothesis

can be rejected in favour of the hypothesis that the signal is non-zero at around the 8%

significance level for a S/N of 2, using a t-test.
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Maps of S/N are shown in Fig. 6a for boreal winter (DJF, top row) and summer (JJA,

bottom row), for different lead times in the 21st century. The highest S/N is found in

the polar regions where precipitation is projected to increase, and model uncertainty is

relatively small. Away from the poles, there are few regions where the magnitude of S/N is

above 1, even at the end of the century. Also, there are many areas where the magnitude

of the S/N is less than 0.25, though this is often where the signal of precipitation changes

is small.

For more populated areas, the Mediterranean is highlighted as having a relatively

high S/N, for decreasing precipitation, especially in JJA. Central America also shows

a relatively high S/N for decreasing precipitation in both JJA and DJF. North-eastern

Europe, North Asia and Eastern Africa in DJF also show a relatively high S/N. Recently,

Giorgi and Bi (2009) used the CMIP3 projections to find regions and lead times where the

S/N was above 1. Although their methodology differs3, the regions identified are similar.

In Fig. 6b we show the S/N for JJA precipitation, assuming zero model uncertainty, i.e.

a ‘potential S/N’ assuming a perfect model, illustrating the potential gains from improving

GCM representations of precipitation. The S/N increases are fairly modest, especially for

the first 3 decades. Other seasons show similarly modest gains in S/N (not shown). This

important point implies that even if all GCMs agreed on the ensemble mean precipitation

change, this mean change is small relative to the internal variability, and this has impli-

cations for adaptation planners. Adapting to internal variability in precipitation is likely

to aid successful adaptation to climate change in many regions for climate impacts that

are seasonal mean precipitation dependent.

Fig. 6c shows the S/N for JJA temperature changes using the same methods. It is

clear that S/N is far higher for temperature than for precipitation (also found by Murphy

et al., 2004); other seasons (not shown) have similar S/N values. However, for temperature

the S/N generally peaks in the mid-21st century and subsequently declines as scenario

uncertainty becomes more important towards the end of the century. For precipitation,

the maximum in S/N generally occurs much later in the 21st century, and for some regions

is still increasing at 2100. Also, the tropical regions have the highest S/N for temperature

changes, but among the lowest for precipitation changes. Fig. 6d shows the ‘potential S/N’

for JJA temperature, and demonstrates that the S/N could be increased considerably if

model uncertainty was reduced, especially on adaptation timescales of up to 3 decades, in

contrast with precipitation.

Finally, we consider how these findings may change if longer time means of precipitation

are considered. Fig. 7 shows the S/N for a 30 year mean of JJA precipitation from 2020-

2049 with (left) and without (right) model uncertainty. The S/N, and also the potential

increase in S/N by narrowing model uncertainty, is larger in this example than for decadal

means, suggesting that longer time means may need to be considered to ensure more

robust projections of precipitation.

Note that these estimates of S/N assume that the signal is the mean change across

all GCMs and scenarios, and the noise estimate relies heavily on the GCM estimates of

3 Giorgi and Bi (2009) used 20 year means of precipitation changes for 6-month periods, and estimated the S/N

for each scenario independently. We consider 10 year means for 3-month seasons and include the additional scenario

uncertainty. It would therefore be expected that our methodology would produce lower S/N values, and this is

indeed the case.
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internal variability of precipitation. Appendix A shows a comparison of the GCM and

observational estimates of decadal variability of precipitation and suggests that the GCMs

may underestimate its magnitude. If this is the case, then our estimated S/N would be an

upper limit, although there is also considerable uncertainty in the observed estimates.

5 Conclusions and discussion

We have separated and quantified the three sources of uncertainty in global and regional

projections of precipitation change for the 21st century. Our main findings are as follows:

1. Internal variability contributes 50-90% of the total uncertainty for all regions for pre-

cipitation projections of the next decade, and is the most important uncertainty for

many regions for lead times up to 30 years. Model uncertainty is generally dominant

thereafter. Scenario uncertainty is generally small or negligible over land areas.

2. The signal-to-noise of precipitation projections is highest near the poles (often > 3

by the end of the century), but is far lower than for temperature everywhere. This is

especially true for the tropics where S/N is highest for temperature (often > 4 in mid-

century) but close to zero for precipitation. Outside of the polar regions, the projected

decreases in Mediterranean and Central American precipitation show the highest S/N

(> 2 by the end of the century), consistent with the findings of Giorgi and Bi (2009).

3. The potential gains in S/N from reducing model uncertainty to zero are modest for pre-

dictions of decadal mean precipitation change, especially for predictions of the next few

decades, implying that adaptation decisions will need to be made in the context of high

uncertainty. For longer time means of precipitation and for decadal mean temperature,

the potential to reduce uncertainty is far greater.

This type of analysis also has important consequences for modelling the impacts of pre-

cipitation change. For policy relevant advice, it is vital that studies on the impacts of

climate change consider a wide range of GCMs (e.g., Wilby and Harris, 2006; Poulter

et al., 2009). If not, there is a significant risk of underestimating the total uncertainty in

impacts predictions. The low signal-to-noise values of current precipitation projections also

have important implications for adaptation, e.g. for decisions on investment in infrastruc-

ture such as reservoirs. Robust decisions need to be made soon (e.g., Dessai and Hulme,

2007), and reduced uncertainty would allow better decisions, but a substantial reduction

in uncertainty for precipitation predictions of the next few decades seems unlikely in the

near future. However, for temperature there is a larger potential to reduce uncertainty

(Figs. 6c,d). Lobell and Burke (2008) recently showed that uncertainties in crop yield pre-

dictions in most regions were dominated by uncertainties in future temperature, rather

than precipitation, because the projected changes in temperature are further outside the

range of present-day internal variability. Thus there is real potential to reduce uncertainty

in some climate impact predictions through GCM improvement.

It is important to note that the identified dominant sources of uncertainty (i.e. model

uncertainty and internal variability) are potentially reducible through progress in climate

science. Reducing model uncertainty in precipitation requires the continued improvement

of the representation of the hydrological cycle in climate models. However, our results sug-

gest that this reduction in model uncertainty would only give substantially more confident
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precipitation predictions for mid-late 21st century because of the considerable internal

variability, relative to the signal, for the next few decades. Note that there is some evi-

dence that predictions of higher order precipitation statistics (e.g., extremes), which are

often more important for climate impacts, may have greater confidence than the seasonal

means discussed here (see e.g. Tebaldi et al., 2006).

Decadal climate forecasts which are initialised from the observed state of the ocean

(Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009) are designed to predict

some of the internal variability component of precipitation for a few years ahead, espe-

cially in regions such as the Sahel, North America and western Europe, where the role

of the nearby ocean state is particularly important (e.g., Sutton and Hodson, 2005), but

this potential has yet to be explored in detail. These initialised forecasts also have the

potential to reduce the model uncertainty component of uncertainty by, firstly, starting

the models from similar climate states and thus reducing the model spread for short lead

times, and secondly, examining how and why the models diverge from the subsequent ob-

servations may allow the processes responsible to be identified and their representations

improved. The initialised decadal predictions planned for the next Coupled Model Inter-

comparison project (CMIP5; Meehl et al., 2009) offer a new opportunity to explore these

issues, and will also allow analysis of the important relationships between the ‘spread’ in

climate projections (as considered here) and the ‘skill’ in climate predictions. Research

in weather and seasonal forecasting has shown that the relationships between prediction

spread and prediction skill are rarely straightforward, but there is little published work on

these relationships for longer lead time climate predictions, although Palmer et al. (2008)

describe one way of calibrating long lead time predictions using the reliability of seasonal

forecasts.

The small contribution of scenario uncertainty is also worthy of further comment.

Although studies may find significant changes in the regional precipitation response for

different scenarios using a single GCM, it is likely that using a different GCM would

give a far larger change, and inter-scenario differences of a single GCM should not be

over-interpreted. However, the response to aerosol forcings, which have a large spatial

variations and short atmospheric lifetime may be an exception to this generalisation.

Finally, it is necessary to consider whether these conclusions might change for a future

range of GCMs, especially as we have not considered uncertainty due to model biases,

or errors, that are common to all current GCMs. For example, Atlantic ‘blocking’ is not

generally well simulated in GCMs at present and this common model error may impact the

conclusions drawn from Fig. 4c. The generally higher resolution GCMs being prepared for

CMIP5 may simulate blocking and other aspects of the climate system better, and provide

different quantitative estimates of the uncertainty. However, it seems unlikely that model

uncertainty will decrease dramatically for the new generation of GCMs, and it is even

likely that model uncertainty will increase for predictions on multi-decadal lead times due

to the incorporation of additional Earth system feedbacks, e.g. the carbon cycle (Knutti

et al., 2008) or land use changes (Feddema et al., 2005). Our conclusions on the potential

S/N of projections without model uncertainty also depend on the mean response of the

GCMs considered and on the simulation of precipitation variability; how this will change

for a new generation is not known, though the pattern of the mean precipitation response
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did not change considerably between the 3rd and 4th IPCC assessment reports. Lastly, it

is worth noting that the CMIP3 GCMs should probably not be considered as independent

models, and therefore the ‘spread’ between models may need inflating (e.g., Jewson and

Hawkins, 2009).
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Appendix A

A.1 Testing the internal variability estimates

We test our estimates of the internal variability component of regional precipitation us-

ing the constant forcing pre-industrial control integrations of the same GCMs, in which

there are no complicating transient forcing effects to consider4. This estimate can then be

compared to the estimate derived from the transient integrations.

Fig. 8 shows the standard deviation of running decadal means of regional precipitation,

expressed as a percentage of the mean precipitation, for both the pre-industrial control

integrations (panel a) and the 21st century transient integrations (panel b). The patterns

are very similar, giving us confidence in our estimates of the decadal variability component

of the uncertainty.

Boer (2009) also analysed the CMIP3 pre-industrial control integrations and found that

the magnitude of the zonal mean decadal variability, relative to the mean precipitation,

peaks in the tropics, and increases slightly with increased radiative forcings. The maps

in Fig. 8 suggest that it is Africa which dominates the estimates of zonal mean decadal

variability in the tropics, and the Sahel region is well known to have large decadal variabil-

ity in precipitation (e.g., Rowell et al., 1995), possibly caused by changes in the Atlantic

Multi-decadal Oscillation (AMO) (e.g., Folland et al., 1986).

A.2 Comparison with observational estimates

Fig. 8c shows an estimate of the decadal variability from the CRU TS3.0 observational

dataset (Mitchell and Jones, 2005) for 1901-2006, calculated in a similar way to the GCM

estimates above. The observations consist of land-only annual mean data, have been re-

gridded onto a 10◦×10◦ grid, and detrended with a fourth order polynomial. Note that

the scale on Fig. 8c is twice that of Figs. 8a,b. The regions identified as having relatively

large decadal variability are similar to the GCMs, but this analysis suggests that the ob-

served decadal variability in precipitation is larger than the GCM estimates, although it

must be noted that the observational estimate will have considerable uncertainties. Zhang

4 Note however that some GCMs show a drift in precipitation related to the spin-up of the model. This drift is

removed using a second order polynomial.
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et al. (2007) also found that for land-only zonal means, the variability in precipitation was

significantly underestimated in GCMs when compared to observations, but Boer (2009)

found that the internal variability of the GCMs agreed well with an observational estimate

of zonal mean precipitation. There is therefore a suggestion, but certainly no consensus,

that GCMs may underestimate the magnitude of decadal variability in precipitation.

Appendix B

In Fig. 2 we show the proportion of the total standard deviation due to each type of uncer-

tainty. This has been estimated by considering that the total variance in the projections

(T 2) is the sum of the variance due to internal variability (I 2), model uncertainty (M 2)

and scenario uncertainty (S2),

T 2 = I2 + M2 + S2. (2)

When considering the total standard deviation, T , we would like,

T = I ′ + M ′ + S′ =
I

F
+

M

F
+

S

F
, (3)

where the primes denote scaled versions of I,M and S. The common scaling factor, F , is

then,

F =
I + M + S

T
(4)

and the boundaries between the different coloured sections in Fig. 2 are at ±I

F
, ±(I+M)

F

and ±(I+M+S)
F

.
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Fig. 1 CMIP3 projections of changes in global mean precipitation, relative to the mean of 1971-2000, for historical
forcings and different future emission scenarios. The different lines each represent a different global climate model
for SRES B1 (blue), A1B (green) and A2 (red) scenarios, with historical projections shown in grey. The thick lines
represent the multi-model means for each scenario.
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Fig. 2 The total uncertainty in CMIP3 global mean, decadal mean projections for the 21st century, separated into
its three components: internal variability (orange), model uncertainty (blue) and scenario uncertainty (green). The
grey regions show the uncertainty in the 20th century integrations of the same GCMs, with the mean in white. The
black lines show an estimate of the observed historical changes. (a) Precipitation, with observations from GPCP
v2.1 (Adler et al., 2003). (b) Temperature, with observations from HadCRUT3 (Brohan et al., 2006). All anomalies
are calculated relative to the 1971-2000 mean, except for the precipitation observations, for which a 1979-2000 mean
is used. Appendix B describes how the components of standard deviation were scaled from the estimated variances.
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Fig. 3 The fractional uncertainty in decadal mean, global mean climate projections, defined as the uncertainty
divided by the expected mean change for (a) precipitation, and (b) surface air temperature (after HS09).
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Fig. 4 Fraction of total variance in decadal mean precipitation projections explained by internal variability (orange),
model uncertainty (blue) and scenario uncertainty (green), for (a) global, annual mean, (b) Sahel JJA mean, (c)
European DJF mean, and (d) South East Asian JJA mean.
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Fig. 5 Fraction of variance explained by the three sources of uncertainty in projections of decadal mean seasonal
precipitation changes, for (a) boreal winter (DJF), and (b) boreal summer (JJA). Each grid cell has the same area,
roughly 5 × 106 km2.
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Fig. 6 Signal-to-noise (S/N) ratio for projections of decadal mean seasonal climate changes for, (a) precipitation
(DJF, top row and JJA, bottom row), (b) precipitation for JJA, but assuming model uncertainty is zero, (c) surface
air temperature for JJA, and (d) surface air temperature for JJA, but assuming model uncertainty is zero. Note the
reversed colour scale for temperature. A negative S/N denotes where precipitation is projected to decrease.
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Fig. 7 Signal-to-noise ratio for projections of JJA precipitation changes for a 30-year mean period (2020-2049) with
(left) and without (right) model uncertainty.
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Fig. 8 Estimates of the decadal internal variability of regional precipitation. (a) Mean standard deviation from the
pre-industrial control integrations of the GCMs used. (b) Mean standard deviation for the 21st century integrations of
the GCMs used. (c) From the CRU TS3.0 land observations for 1901-2006 (Mitchell and Jones, 2005), averaged into
10◦ boxes, using a 1971-2000 climatology. Grey denotes no data. Note the different colour scale for the observations.
Units are % of the mean precipitation.


