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1 The problem

Variational data assimilation schemes rely on geostrophic and hydrostatic balances being valid. The key motivation
behind this work is that at small scales the validity of these balances is questionable. In this report, all symbols
have their usual meanings. For convenience we shall use the following abbreviations and convections:

• GB/gb - geostrophic balanced, geostrophically balanced, or linear balance,

• HB/hb - hydrostatic balanced or hydrostatically balanced,

• LS - linearisation state (subscript 0).

• LBE - linear balance equation.

• CS - convective-scale.

• LBC - lateral boundary condition.

• Perturbations are indicated with a δ.

2 The current Met O�ce scheme

2.1 The Tp-transform

The Tp-transform performs model perturbations to control parameter perturbations.

• The (input) model perturbations considered here: δ~vh = (uh, vh) (horizontal wind), δp (pressure), and δθ
(potential temperature). [Discussion is not made of humidity.]

• The (output) control parameter perturbations considered here: δψ (stream-function), and δplb (linearly un-
balanced pressure). [Discussion is not made of humidity nor velocity potential.]

• Find the HB pressure, δphb, by integrating (1) from the ground upwards:
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δθhb = 0. (1)

� δθhb is the hydrostatically balanced potential temperature increment, which is substituted by δθ.

� phb0 and θhb0 are the hydrostatically balanced LS pressure and potential temperature which are substituted
by p0 and θ0 respectively.

� We represent the solution in the form: δphb = (Lhb)−1δθhb.

• Find the stream function δψ = ∇−2
h {~k · ∇ × δ~vh}.
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� ~k is the vertical unit vector.

� We represent the solution in the form: δψ = Hψvhδ~vh.

• Find GB pressure by solving (2) for δplb given δψ:

∇2
hδp

lb +∇h ·
(
f

αlb
0

∇hδψ

)
= 0. (2)

� The global mean of δplb is arbitrary. We set it to the same value as that of δphb. See footnote1.

� We represent the solution in the form: δplb = Llbδψ.

• Perform a regression operation on δplb with a vertical regression operator, R: δplbvr = Rδplb, where R =

Cphbplb
(
Cplbplb

)−1

. See footnote2

• Find the residual pressure, δplb = δphb−δplbvr, using the above. If δplbvr is the true linearly balanced pressure
then the residual is the true unbalanced pressure. Section 3 discusses how we may expect this to go wrong at
convective scales.

The �elds of control parameters (δψ, δplb) (plus velocity potential, δχ, and moisture, δµ, in the full scheme) are used

to calibrate their spatial background error covariance matrices, which have square-roots B
1/2
s,ψ and B

1/2

s,plb
respectively.

2.2 The Up-transform

The Up-transform is the inverse of the Tp-transform and is run for every Var iteration. The essential steps for
calculating the model space parameters involves the following. The (assumed) completely uncorrelated control

variables are δψ̂ and δp̂lb, which become control parameters via the spatial transforms, i.e. δψ = B
1/2
s,ψ δψ̂ and

δplb = B
1/2

s,plb
δp̂lb.

• Compute the horizontal wind increments from δψ (and δχ in the full scheme), δ~vh = (Hψvh)−1δψ, where
(Hψvh)−1is the Helmholtz operator that computes wind from streamfunction.

• Calculate the balanced pressure, δplb = Llbδψ.

• Perform the vertical regression: δplbvr = Rδplb.

• Calculate the total pressure, δphb = δplbvr + δplb.

• Calculate the HB potential temperature found from δθhb = Lhbδphb.

In matrix form part of the U-transform is: δvh

δphb

δθhb

 =

 I 0
0 I
0 Lhb

( (Hψvh)−1 0
RLlb I

)(
B

1/2
s,ψ 0

0 B
1/2

s,plb

)(
δψ̂

δp̂lb

)
, (3)

⇑ (4)

and the HB pressure and potential temperature variables are assumed to represent the total pressure and potential
temperature perturbations (no hydrostatically unbalanced contributions). The vector at the point in the matrix
equation indicated by the ⇑ is

(
δ~vh δphb

)
and the step to the left is the calculation of HB potential temperature.

1Note that the linearly balanced pressure �elds in the results part of this report are found in a di�erent way to that used in Var.
In Var. the perturbations are transformed to spectral space, where the Laplacian in (2) is easier to invert. This relies on the LB and
HB pressure solutions satisfying Dirichlet LBCs. Our main training data set is an ensemble, where the members do not have the same
LBCs. The pressure perturbations within the ensemble will not therefore satisfy Dirichelet LBCs. We solve the LBE with a GCR solver
(no preconditioning) where the imposed LBCs of δplb are taken from δphb for each member.

2We have options for choice of the regression R. One option is to use I (no vertical regression), another is to use the matrix used
operationally, and yet another is to derive R from the data considered in this report. There is also choice concerning the inner product
to use in this derivation. We derive R from the data and use I as the inner product.

2



By design, control variables each have a background variance of unity,
〈
δψ̂δψ̂T

〉
b
= I and

〈
δp̂lbδp̂lbT

〉
b
= I

(where
〈
•
〉
b
means expectation over the background PDF), and are assumed to be uncorrelated,

〈
δψ̂δp̂lbT

〉
b
∼ 0.

For our purposes, we consider that the non-correlation property will be true only if Llbδψ̂ is an exclusively balanced

pressure (which is related to di�erent physical processes than those related to δp̂lb). Llb is not be expected to be a
perfect balance operator in CS systems.

3 What can go wrong with this at the convective scale?

The implied background error covariance matrix of the model perturbations is, using the above control variable
statistics:

Bimp =

〈 δ~vh
δp
δθ

 (
δ~vTh δpT δθT

) 〉
b

,

=


(Hψvh)−1Bs,ψ(H

ψvh)−T (Hψvh)−1Bs,ψ(L
lb)TRT (Hψvh)−1Bs,ψ(L

lb)TRT(Lhb)T

RLlbBs,ψ(H
ψvh)−T RLlbBs,ψ(L

lb)TRT

+B
s,plb

RLlbBs,ψ(L
lb)TRT(Lhb)T

+B
s,plb

(Lhb)T

LhbRLlbBs,ψ(H
ψvh)−T LhbRLlbBs,ψ(L

lb)TRT

+LhbB
s,plb

LhbRLlbBs,ψ(L
lb)TRT(Lhb)T

+LhbB
s,plb

(Lhb)T

 . (5)

The implied background error variances of δ~vh, δp and δψ are found from the diagonal elements of (5).

3.1 Anomalies due to inappropriate geostrophic balance

Highlighting some key quantities:

• The implied covariance of δp (actually δphb) is Bimp
s,p = RLlbBs,ψ(L

lb)TRT + B
s,plb

.

• The unbalanced pressure is δp−RLlbB
1/2
s,ψ δψ̂ whose covariance is B

s,plb
.

3.1.1 Formula 1 for the anomalous part of the implied covariance

Developing the formula for the total (actually HB according to the scheme) pressure variance:〈
δpδpT

〉
b

=
〈
(δplb + δplb)(δplb + δplb)T

〉
b
,

=

〈(
RLlbB

1/2
s,ψ δψ̂ + B

1/2

s,plb
δp̂lb

)(
RLlbB

1/2
s,ψ δψ̂ + B

1/2

s,plb
δp̂lb

)T〉
b

,

= RLlbBs,ψ(L
lb)TRT + B

s,plb
+ RLlbB

1/2
s,ψ

〈
δψ̂(δp̂lb)T

〉
b

B
T/2

s,plb
+ B

1/2

s,plb

〈
δp̂lbδψ̂T

〉
b

B
T/2
s,ψ (Llb)TRT,

= Bimp
s,p + RLlbB

1/2
s,ψ

〈
δψ̂(δp̂lb)T

〉
b

B
T/2

s,plb
+ B

1/2

s,plb

〈
δp̂lbδψ̂T

〉
b

B
T/2
s,ψ (Llb)TRT. (6)

The last two terms are related to the anomalous covariance.

3.1.2 Formula 2 for the anomalous part of the implied covariance

Returning to the bullet points at the start of Sect. 3. Substituting the latter into the former:

Bimp
s,p = RLlbBs,ψ(L

lb)TRT + B
s,plb

,

= RLlbBs,ψ(L
lb)TRT +

〈(
δp−RLlbB

1/2
s,ψ δψ̂

)(
δp−RLlbB

1/2
s,ψ δψ̂

)T〉
b

,

= Bs,p + 2RLlbBs,ψ(L
lb)TRT −RLlbB

1/2
s,ψ

〈
δψ̂δpT

〉
b
−
〈
δpδψ̂T

〉
b

B
T/2
s,ψ (Llb)TRT, (7)

where Bs,p is the actual background error covariance of pressure. This shows that Bimp
s,p and Bs,p di�er as long as

2RLlbBs,ψ(L
lb)TRT −RLlbB

1/2
s,ψ

〈
δψ̂δpT

〉
b
−
〈
δpδψ̂T

〉
b

B
T/2
s,ψ (Llb)TRT 6= 0.
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3.1.3 A 'perfect balance' operator

Suppose that we have an operator, Q, that calculates the true balanced pressure from δψ (e.g. by applying a �lter
to eliminate unbalanced motions, followed by the linear balance operator).

• Let δp̂lb∗ be the true unbalanced pressure control variable.

• Let δp̂lb∗ be the true unbalanced pressure, satisfying δp = R∗QB
1/2
s,ψ δψ̂ + B

1/2

s,p̂lb∗
δp̂lb∗ (R∗ is the regression

operator applied to the truly balanced system).

• Now δψ̂ and δp̂lb∗ are truly uncorrelated,
〈
δψ̂δp̂lb∗

〉
b
= 0.

These de�nitions give
〈
δψ̂δpT

〉
b
= B

T/2
s,ψ QTR∗T, which can be substituted into (7):

Bimp
s,p = Bs,p + 2RLlbBs,ψ(L

lb)TRT −RLlbB
1/2
s,ψ

〈
δψ̂δpT

〉
b
−
〈
δpδψ̂T

〉
b

B
T/2
s,ψ (Llb)TRT,

= Bs,p + 2RLlbBs,ψ(L
lb)TRT −RLlbBs,ψQTR∗T −R∗QBs,ψ(L

lb)TRT,

= Bs,p + RLlbBs,ψ(RLlb)T + RLlbBs,ψ(L
lb)TRT −RLlbBs,ψ(R

∗Q)T −R∗QBs,ψ(L
lb)TRT,

= Bs,p + RLlbBs,ψ(RLlb −R∗Q)T + (RLlb −R∗Q)Bs,ψ(L
lb)TRT. (8)

This result says how the implied pressure covariances can be mis-speci�ed in the DA system when the balance
operator used, Llb, di�ers from the 'correct' operator, Q. Note that, if RLlb = R∗Q then Bimp

s,p = Bs,p.

3.1.4 Some basic diagnostics and note on the solution of the LB pressure

From dynamical arguments we might expect that the anomalous covariance is largest at small scales where the
linear balance assumption is less valid. Let us consider only the diagonal elements of the covariances (either in real
or spectral spaces).

3.1.5 Diagnostics from a convective-scale ensemble (no vertical regression)

The following Figs have been computed from one 24-member convective-scale ensemble of 1-hour forecasts from the
NDP model (Southern UK) with no vertical regression. A cold front is passing over the UK dividing the domain
into two - behind the front (the NW part) and ahead of the front (the SE part). All plots are for model level 35.

Fig. 1 shows pressure variances for δphb, δplb and δplb. There is more total pressure variance to behind the front
(NW of the domain) than ahead. The balanced pressure variances look reasonable (similar in magnitude and in
large-scale pattern to the total pressure variances). The unbalanced (residual) pressure variances are smaller in
magnitude and scale.

Fig. 2 shows the
〈
δplbδplb

〉
correlation, and the anomaly found from (6) (in absolute and relative terms).

Deviations from zero in all of these panels indicate that the covariance model used in Var. is anomalous. The
relative anomalies tend to be highest just behind the front at the N end of the domain, although there are also
strong anomalies ahead of the front. The right-hand panel in particular shows that the scheme overestimates the
true variance by nearly 100% in the region near the northern edge. The parts of the domain behind the front
generally have positive anomaly (overestimating total variance) and the parts ahead of the front generally have
negative anomaly (underestimating total variance).

Now we examine the diagnostics in spectral space to see the scales where the anomalies in the variance occurs.
This is done by �rst transforming the ensemble perturbations into spectral space and then computing the variances.

Fig. 3 (left) shows the variance of δphb, δplb and δplb as a function of horizontal scale. Perhaps surprisingly the
balanced and unbalanced pressure variances have a similar order of magnitude over most scales. The exceptions
are above 200 km and below 10 km (I am ignoring the data below 3 km as this is too close to the grid scale to be
reliable). At the largest scales the unbalanced pressure variance is about 1-2 orders of magnitude smaller than the
balanced pressure (which seems reasonable). At the small scales though the unbalanced pressure variance is about
1 order of magnitude smaller than the balanced pressure variance. Fig. 3 (middle) shows the relative anomaly as a
function of length-scale and shows an envelope of anomalies of alternating sign that are high at around 3 km and
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Figure 1: Ensemble-derived pressure variances for δphb (left panel), δplb (middle panel) and δplb (right panel).
Units: Pa2. No vertical regression has been performed for these results.

Figure 2: Ensemble-derived covariances between δplb and δplb (left), the anomaly in the implied pressure variance
(implied− total from (6) (middle), and the relative anomaly ((implied− total)/total, right). No vertical regression
has been performed for these results.

Figure 3: Ensemble-derived pressure diagnostics as a function of length-scale (derived from total wavenumber).

Variances for δphb, δplb and δplb (left panel), and relative anomaly (centre panel). No vertical regression has been
performed for these results.
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Figure 4: As Fig. 1 but for the case with vertical regression.

Figure 5: As Fig. 2 but for the case with vertical regression.

gradually decrease with increasing scale until about 40 km where they climb again. Note that a simpli�ed version
of (6) (diagonal elements only in either real or spectral space) is:

σ2
p = σimp2

p + 2
〈
δplbδplb

〉
b
,

anomaly = implied− total,

= −2
〈
δplbδplb

〉
b
. (9)

A positive anomaly therefore implies negative correlation between the balanced and unbalanced pressure perturba-
tions.

3.1.6 Diagnostics from a convective-scale ensemble (with vertical regression)

Versions of the previous Figs., but for the case with vertical regression are shown in Figs. 4, 5 and 6. Note that we
would expect this 'balanced pressure' (i.e. including the regression step) would give results that deviate from linear
balance (even at LS). This is still a sensible thing to investigate though as vertical regression is done operationally.

Some discussion of these real-space results:

• The vertical regression reduces signi�cantly the balanced pressure variances and increases the unbalanced
pressure variances.

• The δplb-δplb correlations have changed from regions of both sign correlation to mainly positive correlation.

• The anomaly has reduced.

Some discussion of these spectral-space results:

• The decrease (increase) in balanced (unbalanced) pressure variances is seen across all scales, and the unbal-
anced pressure variance is larger than the balanced pressure variance between about 8 and 200 km.
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Figure 6: As Fig. 3but for the case with vertical regression.

• From 3 km upwards to 100 km, the anomaly follows an envelope that is negative and reduces towards zero
(remember that, from (9)) a negative anomaly means positive correlation, which is consistent with the real-
space results above).

3.1.7 A possible interpretation

We are investigating whether the LBE is appropriate or not. To try to understand the results above, the following
data model is considered which accounts for imperfections in the de�nition of balance.

• Let the true degree of balance be a linear function of the diagnosed linear balance: δplb∗ = Λ̃δplb, where recall
that δplb∗ is the true balanced pressure perturbation. This implies that R∗Q = Λ̃RL. If we could estimate
Λ̃ from data then this may help improve data assimilation.

• Knowing δp = δplb∗ + δplb∗ and δp = δplb + δplb, the model δplb∗ = Λ̃δplb (which is a relationship between
the balanced perturbations) may be developed into a relationship between the unbalanced perturbations:

δp = Λ̃δplb + δplb∗,

= Λ̃(δp− δplb) + δplb∗,

=⇒ δplb∗ = (1− Λ̃)δp+ Λ̃δplb.

• The covariance between the true balanced and unbalanced pressure perturbations are then:〈
δplb∗(δplb∗)T

〉
b

=

〈[
Λ̃δplb

] [
(1− Λ̃)δp+ Λ̃δplb

]T〉
b

,

= Λ̃
〈
δplbδpT

〉
b
(1− Λ̃)T + Λ̃

〈
δplb(δplb)T

〉
b

Λ̃
T
.

• We de�ne the true balance/unbalanced pressures as those that are mutually uncorrelated. The above then
becomes:

0 = Λ̃
〈
δplbδpT

〉
b
(1− Λ̃)T + Λ̃

〈
δplb(δplb)T

〉
b

Λ̃
T
.

• Suppose that in spectral space, the operator Λ̃ (called Λ in spectral space) is diagonal. Let the diagonal
element of Λ at a particular scale be λ. The variances of the above become:

0 = λ(1− λ)
〈
δplbδp

〉
b
+ λ2

〈
δplbδplb

〉
b
.

• One solution is λ = 0 (which says that non-correlation can be achieved by having zero balanced pressure; we
ignore this solution). The other solution is:

λ =

〈
δplbδp

〉
b

〈δplbδp〉b −
〈
δplbδplb

〉
b

. (10)
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Figure 7: Diagnosed values of λ as a function of wavenumber for the 'no vertical regression' (left) and 'vertical
regression' (right) cases.

Noting that
〈
δplbδplb

〉
b
=
〈
δplb(δp− δplb)

〉
b
=
〈
δplbδp

〉
b
−
〈
(δplb)2

〉
b
, the above becomes:

λ =

〈
δplbδp

〉
b

〈(δplb)2〉b
. (11)

Here are my expectations.

• At large scales, balance is valid and we would expect λ ≈ 1. This is consistent with (10) with
〈
δplbδplb

〉
b
= 0.

• At small scales where the use of the LBE is less valid, the 'balanced pressure' calculated from the LBE will
be incorrect. We might expect the balanced pressure to be systematically too large in magnitude and so the
correction would satisfy 0 < λ < 1 (λ would get progressively closer to zero with smaller scales).

• We would not expect λ > 1 or λ < 0.

Here is what we �nd from the data.

• Figure 3 (right panel) shows the diagnosed λ as a function of total wavenumber for the case with no vertical
regression. The expected behaviour is not found! As before, ignore anything below 3km in scale. The value
of λ oscillates around 1 with increasing amplitude with increasing scale. This breaks our expectations: (i) the
envelope of deviations gets worse for larger scales, and values of λ often exceed 1.

• The value of λ does not go below zero though, as expected.

• Figure 6 (right panel) shows the diagnosed λ as a function of total wavenumber for the case with vertical
regression. The values of λ are larger than for the no regression case and are almost always greater than 1.
This is consistent with the above: regression will lessen balance and so λ will need to be larger to compensate.

• In order to resolve the total wavenumber results into each wave-vector, Fig. 7 plots λ as a function of
~k = (kx, ky) (the plots that are a function of total wavenumber, k =

√
k2x + k2y, are an average of these data

over all ~k that have similar values of k). In the cases without and with vertical regression, there is a region of
large λ at values of kx and ky between about 0.0004m−1 and 0.0020m−1. This represents scales from about
15km down to 3km. Elsewhere λ is close to unity.

• This is virtually the opposite of what was expected. λ > 1 means that the true balance is actually greater
than that calculated by the LBE at small scales!
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