Basic Equations for the Ensemble Kalman and Square-root Filters

List of symbols

\(\psi^f \) Forecast state (ensemble member \(i \))
\(\psi^t \) Truth state
\(\psi^a_i \) Analysis state (ensemble member \(i \))
\(y_i \) Observation set (associated with ensemble member \(i \))
\(y_i^{(m)} \) Model observation set (associated with ensemble member \(i \))
\(P^f \) Forecast error covariance matrix
\(P^f_e \) Ensemble estimate of forecast error covariance matrix
\(P^a \) Analysis error covariance matrix
\(P^a_e \) Ensemble estimate of analysis error covariance matrix
\(R \) Observation error covariance matrix
\(h \) Non-linear observation operator
\(H \) Tangent linear model of observation operator
\(K \) Kalman gain matrix
\(A^f \) Forecast state vector matrix (forecasts are columns)
\(A^f_s \) Forecast state vector perturbation matrix
\(A^a \) Analysis state vector matrix (analyses are columns)
\(A^a_s \) Analysis state vector perturbation matrix
\(D \) Observation vector matrix (observation sets are columns)
\(\Upsilon \) Observation vector perturbation matrix
\(I_{N \times N} \) \(N \times N \) identity matrix
\(1_{N \times N} \) \(N \times N \) matrix of \(1/N \) values
\(S \) Model observation perturbations calculated from forecast perturbations
\(C \) \((N - 1) \times \) model ob + ob covariance matrices

Let there be \(n \) elements in a state vector, \(N \) ensemble members and \(p \) observations.
Definition of error covariance matrices

Forecast error covariance matrices
\[
\begin{align*}
P_f &= (\psi_f' - \overline{\psi_f'})(\psi_f' - \overline{\psi_f'})^T \\
P_{ef} &= (\psi_f' - \overline{\psi_e'})(\psi_f' - \overline{\psi_e'})^T
\end{align*}
\]

Analysis error covariance matrices
\[
\begin{align*}
P_a &= (\psi_a' - \psi_f')(\psi_a' - \psi_f')^T \\
P_{ea} &= (\psi_a' - \psi_a')(\psi_a' - \psi_a')^T
\end{align*}
\]

Observation error covariance matrix
\[
R_e = (y_i - \overline{y})(y_i - \overline{y})^T
\]

The observation operator
\[
y_i^{(m)} = \mathbf{h}(\overline{\psi}^i) + \mathbf{H}(\psi_f' - \overline{\psi_f'})
\]

The KF analysis update step for each member and for the mean

Analysis step for ensemble member \(i\)
\[
\begin{align*}
\psi_a^i &= \psi_f^i + P_e^i H^T (H P_e^i H^T + R_e)^{-1} (y_i - \mathbf{h}(\psi_f^i) - H(\psi_f^i - \overline{\psi_f'})) \\
\overline{\psi_a^i} &= \overline{\psi_f^i} + P_e^i H^T (H P_e^i H^T + R_e)^{-1} (\overline{y}_i - \mathbf{h}(\overline{\psi_f'}))
\end{align*}
\]

Deviation of each member from the mean
\[
\begin{align*}
\psi_a^i - \overline{\psi_a^i} &= \psi_f^i - \overline{\psi_f'} + P_e^i H^T (H P_e^i H^T + R_e)^{-1} (y_i - \overline{y}_i - H(\psi_f^i - \overline{\psi_f'})) \\
&= (I - KH)(\psi_f^i - \overline{\psi_f'}) + K(y_i - \overline{y}_i) \\
K &= P_e^i H^T (H P_e^i H^T + R_e)^{-1}
\end{align*}
\]

The ensemble analysis error covariance

Assume no correlation between forecast and observation errors.
\[
\begin{align*}
P_{ea} &= \left\langle (I - KH)(\psi_f^i - \overline{\psi_f'}) + K(y_i - \overline{y}_i) \left((I - KH)(\psi_f^i - \overline{\psi_f'}) + K(y_i - \overline{y}_i) \right)^T \right\rangle \\
&= \left\langle (I - KH)(\psi_f^i - \overline{\psi_f'}) \left((I - KH)(\psi_f^i - \overline{\psi_f'}) \right)^T \right\rangle + \left\langle K(y_i - \overline{y}_i) \left(K(y_i - \overline{y}_i) \right)^T \right\rangle \\
&= (I - KH) P_e^i (I - KH)^T + KRK_T^T \\
&= P_e^i - P_e^i H^T K_T^T - KHP_e^i + KHP_e^i H^T K_T^T + KRK_T^T \\
&= P_e^i + K(H P_e^i H^T + R_e) K_T^T - P_e^i H^T K_T^T - KHP_e^i \\
&= P_e^i + P_e^i H^T (H P_e^i H^T + R_e)^{-1} (H P_e^i H^T + R_e) K_T^T - P_e^i H^T K_T^T - KHP_e^i
\end{align*}
\]
\[
\begin{align*}
\mathbf{P}_e' &= \mathbf{K} \mathbf{H} \mathbf{P}_e' \\
&= (1 - \mathbf{K}) \mathbf{P}_e'
\end{align*}
\]

Matrix representation of the ensemble

The forecast states \(\psi_f' \) may be assembled into columns of the \(n \times N \) matrix \(\mathbf{A}' \).
\[
\mathbf{A}' = (\psi_1' \psi_2' \ldots \psi_N')
\]
The analysis states \(\psi_a' \) may be assembled into columns of the \(n \times N \) matrix \(\mathbf{A}'' \).
\[
\mathbf{A}'' = (\psi_1'' \psi_2'' \ldots \psi_N'')
\]
The perturbed observations \(\mathbf{y}_i \) may be assembled into the columns of the \(p \times N \) matrix \(\mathbf{D} \).
\[
\mathbf{D} = (\mathbf{y}_1 \mathbf{y}_2 \ldots \mathbf{y}_N)
\]
The ensemble means, \(\bar{\mathbf{A}}' \), \(\bar{\mathbf{A}}'' \) and \(\bar{\mathbf{D}} \) are matrices that comprise the respective ensemble mean state repeated in each column.
\[
\begin{align*}
\bar{\mathbf{A}}' &= \mathbf{A}' \mathbf{1}_{N \times N} \\
\bar{\mathbf{A}}'' &= \mathbf{A}'' \mathbf{1}_{N \times N} \\
\bar{\mathbf{D}} &= \mathbf{D} \mathbf{1}_{N \times N}
\end{align*}
\]
\[
\mathbf{1}_{N \times N} = \begin{pmatrix}
1/N & 1/N & \ldots & 1/N \\
1/N & 1/N & \ldots & 1/N \\
\ldots & \ldots & \ldots & \ldots \\
1/N & 1/N & \ldots & 1/N
\end{pmatrix}
\]

Matrix representation of the ensemble perturbations from the mean

\[
\begin{align*}
\mathbf{A}'' &= \mathbf{A}' - \bar{\mathbf{A}}' = \mathbf{A}' (\mathbf{I}_{N \times N} - \mathbf{1}_{N \times N}) \\
\mathbf{A}'' &= \mathbf{A}'' - \bar{\mathbf{A}}'' = \mathbf{A}'' (\mathbf{I}_{N \times N} - \mathbf{1}_{N \times N}) \\
\mathbf{Y} &= \mathbf{D} - \bar{\mathbf{D}} = \mathbf{D} (\mathbf{I}_{N \times N} - \mathbf{1}_{N \times N})
\end{align*}
\]
Note: \((\mathbf{I}_{N \times N} - \mathbf{1}_{N \times N})^2 = (\mathbf{I}_{N \times N} - \mathbf{1}_{N \times N}) \)

The error covariance matrices from the matrix representation of ensemble perturbations

\[
\begin{align*}
\mathbf{P}_e' &= \frac{1}{N - 1} \mathbf{A}' \mathbf{A}'^T \\
\mathbf{P}_e'' &= \frac{1}{N - 1} \mathbf{A}'' \mathbf{A}''^T \\
\mathbf{R}_e &= \frac{1}{N - 1} \mathbf{Y} \mathbf{Y}^T
\end{align*}
\]

The analysis equation in terms of the matrix representation of the ensemble

\[
\begin{align*}
\mathbf{A}'' &= \mathbf{A}' + \mathbf{K} (\mathbf{D} - \mathbf{H} \bar{\mathbf{A}}') \\
\mathbf{K} &= \mathbf{P}_e' \mathbf{H}^T (\mathbf{H} \mathbf{P}_e' \mathbf{H}^T + \mathbf{R}_e)^{-1} \\
&= \mathbf{A}' \mathbf{A}'^T \mathbf{H}^T (\mathbf{H} \mathbf{A}' \mathbf{A}'^T \mathbf{H}^T + \mathbf{Y} \mathbf{Y}^T)^{-1} \\
&= \mathbf{A}' (\mathbf{H} \mathbf{A}' \mathbf{A}'^T (\mathbf{H} \mathbf{A}' \mathbf{A}'^T + \mathbf{Y} \mathbf{Y}^T)^{-1}
\end{align*}
\]

These equations do not depend upon explicit knowledge of the forecast error covariance matrix. It is implied by the ensemble of forecast states. Warning: there is a possible rank deficiency if \(N < p \).
The ensemble mean analysis equation in terms of matrix representation of the ensemble

\[
\tilde{A}^a = A^a 1_{N \times N} = A^f 1_{N \times N} + K(D - H\tilde{A}^\prime) 1_{N \times N}
\]

\[
= \tilde{A}^f + K(D - H\tilde{A}^\prime)
\]

The analysis error covariance in terms of matrix representations of the ensemble

\[
P_e^a = \frac{1}{N - 1} A^a A^a^T - \frac{1}{N - 1} A^a (I_{N \times N} - 1_{N \times N}) (I_{N \times N} - 1_{N \times N}) A^a^T
\]

\[
= \frac{1}{N - 1} A^a (I_{N \times N} - 1_{N \times N}) A^a^T
\]

\[
= \frac{1}{N - 1} [A^f + K(D - H\tilde{A}^\prime)] (I_{N \times N} - 1_{N \times N}) [A^f + K(D - H\tilde{A}^\prime)]^T
\]

\[
= P_e^f - P_e^f H^T K - KHP_e^f + KR_e K^T + KHP_e^f H^T K
\]

\[
= (I - KH) P_e^f \quad \text{using analysis beforehand.}
\]

Factorization in terms of \(S\) and \(C\) matrices

The ensemble mean analysis can be written in terms of matrices \(S\) and \(C\).

\[
\tilde{A}^a = \tilde{A}^f + A^a S^T C^{-1} (D - H\tilde{A}^\prime)
\]

where

\[
S = HA^f \quad C = SS^T + (N - 1) R_e
\]

\(S\) is the matrix containing model observation perturbations (calculated from the matrix of forecast perturbations), and \(C\) is \((N - 1)\) times the sum of model observation covariances, \(SS^T\), and observation error covariances, \(R_e\).

The above result can be checked by substitution

\[
\tilde{A}^a = \tilde{A}^f + A^f A^f^T H^T [HA^f A^f^T H^T + (N - 1) R_e]^{-1} (D - H\tilde{A}^\prime)
\]

\[
= \tilde{A}^f + (N - 1) P_e^f H^T [H(N - 1) P_e^f H^T + (N - 1) R_e]^{-1} (D - H\tilde{A}^\prime)
\]

\[
= \tilde{A}^f + P_e^f H^T [HP_e^f H^T + R_e]^{-1} (D - H\tilde{A}^\prime)
\]

\[
= \tilde{A}^f + K(D - H\tilde{A}^\prime) \quad \text{expression is confirmed.}
\]

\(P_e^a\) can also be written in terms of matrices \(S\) and \(C\).

\[
P_e^a = \frac{1}{N - 1} A^a (I - S^T C^{-1} S) A^a^T
\]

This result can also be checked by substitution

\[
P_e^a = \frac{1}{N - 1} A^a A^a^T - \frac{1}{N - 1} A^a A^a^T H^T [HA^f A^f^T H^T + (N - 1) R_e]^{-1} H A^f A^a^T
\]

\[
= P_e^f - P_e^f H^T [H(N - 1) P_e^f H^T + (N - 1) R_e]^{-1} (N - 1) H P_e^f
\]

\[
= P_e^f - P_e^f H^T [HP_e^f H^T + R_e]^{-1} H P_e^f
\]
\[P'_e = KHP'_e \]
\[(I - KH)P'_e \]
expression is confirmed.
The expressions involving \(S \) and \(C \) are useful because the matrices \(S \) and \(C \) are calculable for a given ensemble. Both exist in observation space.

A 'square root' analysis scheme

It is desirable to calculate the square-root of \(P'_e \). The square-root matrix may be regarded as a set of ensemble perturbations that have covariance \(P'_e \). Given that \(C \) is available, write it in terms of its eigenvalue decomposition

\[C = Z\Lambda Z^T \]

where \(\Lambda \) is the (diagonal) matrix of eigenvalues and \(Z \) is the orthonormal matrix of eigenvectors. We assume that all eigenvalues of \(C \) are non-zero, which will allow calculation of its inverse. \(P'_e \) is then written

\[P'_e = \frac{1}{N-1}A'^T(I - S^T Z^{-1} Z^T S) A'^T \]
\[= \frac{1}{N-1}A'^T(I - X^TX) A'^T \]

where \(X = \Lambda^{-1/2}Z^TS \)

Matrix \(X \) may be further written in terms of a singular value decomposition in the following way

\[X = U\Sigma V^T \]

where \(\Sigma \) is the matrix of singular values, \(U \) is the orthonormal matrix of left singular vectors and \(V \) is the orthonormal matrix of right singular vectors. \(P'_e \) is then written

\[P'_e = \frac{1}{N-1}A'^T(I - V\Sigma^TU^T U\Sigma V^T) A'^T \]
\[= \frac{1}{N-1}A'^T(I - V\Sigma^T V) A'^T \]
\[= \frac{1}{N-1}A'^T V(I - \Sigma^T \Sigma)^{1/2} V^T A'^T \]

\(\Sigma^T \Sigma \) is a diagonal matrix of size \(N \times N \). The square-root of the combined diagonal matrix \(I - \Sigma^T \Sigma \) is therefore trivial to compute.

\[P'_e = \frac{1}{N-1}A'^a A'^a^T = \frac{1}{N-1}A'^a V(I - \Sigma^T \Sigma)^{1/2} (I - \Sigma^T \Sigma)^{1/2} V^T A'^a \]
\[\therefore A'^a A'^a^T = [A'^a V(I - \Sigma^T \Sigma)^{1/2}] [A'^a V(I - \Sigma^T \Sigma)^{1/2}]^T \]
\[A'^a = A'^a V(I - \Sigma^T \Sigma)^{1/2} \]