MSc in Data Assimilation, Exam Question for 3d-Var (2007)
 Ross Bannister, Dept. of Meteorology

A common way of assimilating meteorological data is by the method of 'threedimensional variational data assimilation' (or 3d-Var for short), which is a means of estimating the state vector given some observations.
(a) With reference to the way that 3d-Var. works, why is it called a variational method?
(b) A background state is also needed to solve the data assimilation problem.
(i) What is the background state?
(ii) In an operational setting, how is the background state calculated?
(iii) Give a reason why is the background state needed in variational data assimilation?
(c) A 3d-Var. cost function, J, has the following form in terms of the usual symbols

$$
J=\frac{1}{2}\left(\vec{x}-\vec{x}_{B}\right)^{T} \mathbf{B}^{-1}\left(\vec{x}-\vec{x}_{B}\right)+\frac{1}{2}(\vec{y}-\vec{h}[\vec{x}])^{T} \mathbf{R}^{-1}(\vec{y}-\vec{h}[\vec{x}]) .
$$

This method is to be used to assimilate one observation. The domain is a Cartesian grid with $v=N_{x} \times N_{y} \times N_{z}$ points and each point carries two variables - temperature, $T(i, j, k)$, and pressure, $p(i, j, k)$. The observation is in the form of a quantity called potential temperature (θ), which is related to pressure and temperature by the following formula

$$
\theta=\left(\frac{p}{p_{0}}\right)^{-\kappa} T
$$

where p_{0} and κ are positive constants. The observation is labelled y and is coincident with the grid point at position $(\widetilde{i}, \widetilde{j}, \widetilde{k})$. The state vector has the following structure

$$
\vec{x}=\left(x_{1}, \cdots, x_{q}, \cdots, x_{r}, \cdots x_{n}\right),
$$

where q is the index labelling the position in the state vector representing $T(\widetilde{i}, \widetilde{j}, \widetilde{k})$ and r is the index representing $p(\widetilde{i}, \widetilde{j}, \widetilde{k})$.
(i) The state vector has n components. How large is n in this example? [1 mark]
(ii) What is the observation operator written in terms of model quantities? [1 mark]
(iii) Is this operator linear or non-linear? [1 mark]
(iv) Write down the Jacobian matrix of this observation operator. [3 marks]
(d) The Best Linear Unbiased Estimator (BLUE) formula gives an estimate for the analysis increment that 3d-Var. produces. From the general BLUE formula, write down an expression that gives the analysis increment of T and of p at the observation point $(\widetilde{i}, \widetilde{j}, \widetilde{k})$. Let the \mathbf{B} and \mathbf{R} matrices have the following forms

$$
\mathbf{B}=\left(\begin{array}{ccccccc}
B_{11} & \cdots & B_{1 q} & \cdots & B_{1 r} & \cdots & B_{1 n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & . & \vdots \\
B_{q 1} & \cdots & B_{q q} & \cdots & B_{q r} & \cdots & B_{q n} \\
\vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
B_{r 1} & \cdots & B_{r q} & \cdots & B_{r r} & \cdots & B_{r n} \\
\vdots & . & \vdots & \vdots & \vdots & \ddots & \vdots \\
B_{n 1} & \cdots & B_{n q} & \cdots & B_{n r} & \cdots & B_{n n}
\end{array}\right), \quad \mathbf{R}=R_{11} .
$$

(e) Given that \mathbf{B} is a non-sparse matrix, explain with the aid of your workings to (d) how the analysis increments at locations away from point $(\widetilde{i}, \widetilde{j}, \widetilde{k})$ would be affected by the observation.
[2 marks]
(f) Based on your answer to (c), would you expect the BLUE result to give exactly the same result as the $3 \mathrm{~d}-\mathrm{Var}$?
(g) By running a 3d-Var. system to convergence with a single observation whose observation operator is linearly related to the state vector, and by assuming that \mathbf{B} and \mathbf{R} are accurate, what is the expected value of J at the analysis?

