The Implementation of Potential Vorticity as a Leading Control Variable in Var.

Ross Bannister, Ian Roulstone, Mike Cullen, Nancy Nichols

Why not use model variables as control parameters?

\[
J[\tilde{x}] = J_B + J_O \\
= \frac{1}{2} \tilde{x}'^T B^{-1} \tilde{x}' + \frac{1}{2} (\tilde{H}[\tilde{x}' + \tilde{x}_B] - \tilde{y})^T R^{-1} (\tilde{H}[\tilde{x} + \tilde{x}_B] - \tilde{y})
\]

where \(\tilde{x}' = \tilde{x} - \tilde{x}_B \)

- \(B \) (in \(\tilde{x} \)-space) contains \(> 10^{14} \) elements and cannot be represented explicitly.
- \(B \) (in \(\tilde{x} \)-space) is badly conditioned
 \[\text{max e.v. / min e.v.} \approx 10^{10}. \]

BADLY CONDITIONED (model space)
Solution: for variational data assimilation vary weights of the eigenvectors of B (instead of components of \tilde{x}).

$$\tilde{\nu} = U^{-1} \tilde{x}$$
$$U^{-1} = \Lambda^{-1/2} L^T$$
$$B = UU^T$$

Λ diagonal matrix of e.values, columns of L are e.functions.

$$J[\tilde{\nu}] = \frac{1}{2} \tilde{\nu}^T \tilde{\nu} + \frac{1}{2} (\tilde{H}[U\tilde{\nu} + \tilde{x}_b] - \tilde{y})^T R^{-1} (\tilde{H}[U\tilde{\nu} + \tilde{x}_b] - \tilde{y})$$

This problem is much better conditioned.

But, this can't be done directly

$$\tilde{\nu} = U^{-1} \tilde{x}$$
$$= U_h^{-1} U_v^{-1} U_p^{-1} \tilde{x}$$

\uparrow ★ parameter transform ★

\uparrow vertical transform

\uparrow horizontal transform

The role of U_p^{-1} is to 'block-diagonalize' the multi-variate correlations.

What parameters?
Existing scheme (pragmatic/engineering approach)

<table>
<thead>
<tr>
<th>Subspace Parameter</th>
<th>(\psi)</th>
<th>Captures most of the flow …</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi)</td>
<td></td>
<td>Captures most of the rest of the flow …</td>
</tr>
<tr>
<td>(\lambda_p)</td>
<td></td>
<td>Captures most of the rest of the flow …</td>
</tr>
</tbody>
</table>

These are orthogonal but not uncorrelated

Proposed scheme (physics approach)

<table>
<thead>
<tr>
<th>Subspace Parameter</th>
<th>(s)</th>
<th>"Balanced" / "slow manifold" (PV) …</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\psi)</td>
<td>(U_p)</td>
<td>Captures most of the rest of the flow …</td>
</tr>
<tr>
<td>(\chi)</td>
<td></td>
<td>Captures most of the rest of the flow …</td>
</tr>
</tbody>
</table>

- These are orthogonal, but are expected to be only weakly correlated.
- The new parameters are thought to evolve independently, each occupying a separate region in normal mode space.

Why not assimilate using only the leading parameter?
What grid staggering for new parameters?

\[PV, \quad \bar{PV}, \quad \nabla \cdot \vec{v}, \quad s, \quad \frac{U}{p}, \quad \chi \]

Met Office Var. Grid Staggering
(black: model variables; red: existing Var. parameters)

Charney-Phillips in vertical
Arakawa C in horizontal

There is one more full level than half levels