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These notes give the detailed workings of Fisher's reduced rank Kalman filter (RRKF), which
was developed for use in a variational environment (Fisher, 1998).  These notes are my
interpretation of the method and an outline of how I would implement it.  Fisher's approach uses
flow-dependent information from a Hessian singular vector (HSV) calculation and I propose an
alternative that uses information from an available ensemble, made up of ensemble members
(EMs).

1. What is a reduced rank Kalman filter?

In VAR, the -matrix used is a static representation of forecast error covariances and as such
VAR would be expected to perform poorly in an environment where the actual forecast error
covariance statistics change significantly from case to case (e.g. Fisher, 2007; Bannister, 2008).
The RRKF is an attempt to blend-in to the Var. problem flow-dependent aspects in a
mathematically formal manner.  Two sources of flow-dependent information are considered
here: firstly HSV information (as in Fisher's original formulation (Fisher, 1998)) and secondly
from EM information.

B

A RRKF in this context may be regarded as a modification to the existing -matrix in VAR that
allows the dynamical evolution of a subspace of the state vector (where the subspace is defined
as that spanned by either the HSVs or by the EMs).  Each approach is outlined below.

B

2. Source A of flow-dependent information to blend with the B-matrix
(Hessian singular vectors)

One way of identifying the subspace that will be treated with explicit flow dependence is to use
a HSV calculation.  Let the size of the subspace be , which can be chosen arbitrarily, but
restricted in practice by cost.   represents the number of singular vectors.  The size of the full
model space is  and in these notes it is recognised that .

K
K

N K ≪ N

Fisher defines the subspace by the  most rapidly growing HSVs.  The reason why they are
chosen to be singular vectors of the Hessian will become evident.  In order to specify the
problem that must be solved to compute the HSVs, we introduce two norms as follows.

K

• Let the covariance matrix  be the error covariance of the analysis of the previous cycle.
In order for Fisher's method to work, it must be possible to act with the matrix  (or an
approximation of it).

Pa

Pa−1

• Let the matrix  be the norm used to measure the size of a perturbation.  It must be
possible to act with the matrix .

W
W−1

Let the time of the previous data assimilation cycle be  and the time of the present analysis be
.  States that have no time label are valid at time  by default.

−t
0 0

Let the tangent linear model,  act on perturbations at time  and give a perturbation at
time 

M0 ← −t −t
0

δx = M0 ← −tδx (−t) . (1)
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If  were known, then the size of  according to the -norm would be δx (−t) δx W J1

J1 = δxTW−1δx = δxT (−t) MT
0 ← −tW

−1M0 ← −tδx (−t) . (2)
The HSVs are defined as those  that maximise  subject to the constraint that  is
distributed according to , ie

δx (−t) J1 δx (−t)
Pa

δxT (−t) Pa−1
δx (−t) − const = 0, (3)

for an arbitrary constant, ' '.  The constrained optimisation problem may therefore be posed
as

const

∇x(−t) [J1 − λ (δxT (−t) Pa−1
δx (−t) − const)] = 0, (4)

where  is the Lagrange multiplier.  Differentiating and setting the solutions to  (with
associated Lagrange multiplier ) gives

λ δxk (−t)
λk

MT
0 ← −tW

−1M0 ← −tδxk (−t) = λkP
a−1
δxk (−t) , (5)

which is a generalised eigenvalue problem.  The  are the HSVs.  The set of vectors
 are eigenvectors of  and are thus the right

singular vectors of the matrix .  Let .  Those  with the
largest  define the subspace whose background errors are treated explicitly by the RRKF.

δxk (−t)
Pa−1/2δxk (−t) (W−1/2M0 ← −tPa1/2)T (W−1/2M0 ← −tPa1/2)

W−1/2M0 ← −tPa1/2
sk = M0 ← −tδxk (−t) sk

λk

A general perturbation at time ,  has a part  that lies in this subspace, which can be found
as a linear combination of the .  Identification of this subspace can be simplified by first
constructing an orthogonalized and normalized set of vectors,  (e.g. by the Gramm-Schmidt
procedure, see App. A).  Then

0 δx δxs

sk

s˜ k

δxs = S̃a, (6)
where  is the  matrix of  vectors and  is the -element vector of (as yet unknown)
coefficients.  Orthogonalization should be done with respect to an inner product that non-
dimensionalizes the components (the  inner product achieves this, so this matrix shall be
used) such that

S̃ N × K s˜ k a K

W−1

S̃TW−1S̃ = I, (7)
(the  norm could, in principle be used instead).  The benefit of first orthogonalizing the
vectors is to allow  to be found easily from 

B−1

a δx

a = S̃TW−1δx. (8)
The part of  that is not within the chosen subspace is the residual δx δx¯ s

δx¯ s = δx − δxs, (9)
which is orthogonal to  under the  norm (see App. B).δxs W−1

The way that the HSVs may be used in the RRKF is covered in Sec. 6.

3. Source B of flow-dependent information to blend with the B-matrix
(ensemble members)

Another way of identifying the subspace that will be treated with explicit flow dependence is to
use information extracted from an ensemble.  Let the number of EMs be , which can be chosen
arbitrarily, but restricted in practice by cost.  From the  ensemble members, a -dimensional
subspace can be determined ( ) that will be used to describe the covariances explicitly.

L
L K

K ≤ L

2
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The size of the full model space is  and in these notes it is assumed that .N K, L ≪ N

In a similar way to the procedure for the HSVs in Sec. 2, the EMs may be orthogonalized by the
Gramm-Schmidt procedure (see App. A) and placed in columns of the matrix .  The
relationship between a vector in the -dimensional space spanned by the EMs, , and the model
space, , is given by (6), but where now  is a -element vector and  is the  matrix of
orthogonalized EMs.  Orthogonalization is performed with respect to the  inner product
described by (7) (Eqs. (8) and (9) then follow).

S̃
L a

δxs a L S̃ N × L
W−1

The procedure to use the EMs in the RRKF is a little more involved than the HSV procedure.
The way that the EMs may be used in the RRKF is covered in Sec. 7.

4. The background cost function in the new subspace

The next task is to outline the way that the flow-dependent information, whether from HSVs or
from EMs, can be combined with static error covariance information in the VAR formulation.
The usual background cost function in VAR is Jb

Jb =
1
2

(δx − δxb)T B−1 (δx − δxb) , (10)

where , ,  is the background state and  is a reference (or guess)
state.  The -matrix in (10) is static.  Equation (10) may be written in terms of the components

 and  by substituting (9) into (10).  This gives three parts: (i) a part that involves only the
special subspace that has been identified from the -dimensional subspace introduced in Secs. 2
and 3, (ii) the part that couples this subspace with the rest of the state, and (iii) the part that
involves only the rest of the state

δx = x − xg δxb = xb − xg xb xg

B
δxs δx¯ s

K

Jb =
1
2

(δxs − δxb
s)

T B−1 (δxs − δxb
s) + (δx¯ s − δx¯ b

s)
T B−1 (δxs − δxb

s) +

1
2

(δx¯ s − δx¯ b
s)

T B−1 (δx¯ s − δx¯ b
s) . (11)

This cost function is identical to (10).  The RRKF is constructed by imposing a flow dependent
error covariance matrix for the first two terms  but keeping the static -matrix in the
last term

(B → Pf) B

Jb →
1
2

(δxs − δxb
s)

T Pf−1
(δxs − δxb

s) + α (δx¯ s − δx¯ b
s)

T Pf−1
(δxs − δxb

s) +

1
2

(δx¯ s − δx¯ b
s)

T B−1 (δx¯ s − δx¯ b
s) . (12)

The factor , added by Fisher (1998), is to help ensure that  is convex.  The flow dependent
information provided by the  special vectors will be used to determine the .  It will be
introduced into the problem by a modification to the standard control variable transform used in
VAR.

α Jb

K Pf

5. Control variable transforms stage

It is usual in VAR to make a change of variable from model variables () to control variables
(often named ).  The control variable transform used in standard VAR is here denoted  and in
the RRKF there is an additional transform denoted  as follows

δx
χ L

X

3
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δx = LXχ, (13)
where, by design,  is an orthogonal matrixX

XXT = I, (14)
(see below) and  is the usual control variable transform used in VARL

LX (LX)T = LLT = B. (15)
Substituting (13) into (12) gives

Jb =
1
2

(χs − χb
s)

T XTLTPf−1
LX (χs − χb

s) + α (χ̄s − χ̄b
s)

T XTLTPf−1
LX (χs − χb

s) +

1
2

(χ̄s − χ̄b
s)

T XTLTB−1LX (χ̄s − χ̄b
s) , (16)

where , ,  and .  The matrix  is
not present in standard VAR, but is introduced in (13) to isolate the special subspace identified
in Secs. 2 and 3 from the remainder of the state space.  As it stands, (16) looks complicated to
treat.  Two substitutions are made as follows

χs = XTL−1δxs χb
s = XTL−1δxb

s χ̄s = XTL−1δx¯ s χ̄b
s = XTL−1δx¯ b

s X

XTLTB−1LX = I, (17)

XTLTPf−1
LX = Pf

χ
−1

, (18)
where (17) follows from (14) and (15), and (18) is a definition.  With these substitutions, (16) is

Jb =
1
2

(χs − χb
s)

T Pf
χ

−1
(χs − χb

s) + α (χ̄s − χ̄b
s)

T Pf
χ

−1
(χs − χb

s) +

1
2

(χ̄s − χ̄b
s)

T (χ̄s − χ̄b
s) . (19)

The part of  that is important is derived in Secs. 6 and 7 from the -dimensional subspaces
identified from the HSV or EM calculations respectively.  The key to simplifying (19) is in the
design of .  Let  have the following properties.

Pf
χ

−1
K

X X

•  acting on any vector in the subspace  (where  is a vector that exists entirely
in the special -dimensional subspace) gives a vector that is non-zero only in the first 
elements

XT L−1δxs δxs

K K

XTL−1δxs = ( ) , (20)

α1

…
αK

0
…
0

• and  acting on a vector in the remaining space, , gives a vector that is non-zero
only in the remaining  elements.

XT L−1δx¯ s

N − K

It is possible to define a suitable  that satisfies these conditions by using a sequence of
Householder transformations (see App. C).  The important observation is that in (19), only the
first  columns of  need to be known.

X

K Pf
χ

−1

6. Determination of  for the Hessian singular vectorsPf
χ
−1

The procedure to calculate the first  columns of  using the HSVs is now described.K Pf
χ

−1

4
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Following Fisher (1998) let

Z = Pf−1
S, (21)

where  is the  matrix whose columns are the  and  is the  result after acting
with the inverse of the flow-dependent error covariance matrix.  Equation (21) is now
developed using the definition (18) along the way

S N × K sk Z N × K

Z = Pf−1
LXXTL−1S,

XTLTZ = XTLTPf−1
LXXTL−1S,

= Pf
χ

−1
Iˆ XTL−1S, (22)

XT
(N × N)L

T
(N × N)Z(N × K) = Pf

χ
−1

(N × K)Iˆ (K × N)X
T
(N × N)L

−1
(N × N)S(N × K), (23)

where  is the following non-square quasi-identity matrixIˆ

Iˆ (K × N) = (I(K × K)0(K × N − K)) . (24)
This matrix is included to remove the superfluous zero-elements for rows   of  (by
the design of ).  In (23) and (24), labels have been added to the matrices to indicate their
dimensions.  Equation (22) leads to

i > K XTL−1S
X

XTLTZ (Iˆ XTL−1S)−1 = Pf
χ

−1
, (25)

where the operator inverted is a calculable  matrix, which we assume is non-singular.
Note that (25) is for only part of the inverse covariance matrix and so is not symmetric.  The
matrix yet known is  which is now found from the HSVs (Sec. 2).

K × K

XTLTZ

By the definition of  (21),  isZ XTLTZ

XTLTZ = XTLTPf−1
S, (26)

whose right hand side can be found from (5).  Let columns of a new matrix, , be those 
vectors at time  that evolve into the columns of  (the columns of  are the states  in
(5))

S−t K
t S S−t δxk (−t)

S = M0 ← −tS−t. (27)
This is useful in the derivation to follow.  Write (5) in complete matrix form

MT
0 ← −tW

−1M0 ← −tS−t = Pa−1
S−tΛ, (28)

where  is the diagonal matrix of .  Also important is the propagation of the error covariances
(ignoring the model error contribution)

Λ λk

Pf = M0 ← −tP
aMT

0 ← −t. (29)
These equations can be manipulated to give the matrix in (26) required to complete (25).
Starting from (28)

PaMT
0 ← −tW

−1SΛ−1 = S−t,

M0 ← −tP
aMT

0 ← −tW
−1SΛ−1 = M0 ← −tS−t,

PfW−1SΛ−1 = S,

W−1SΛ−1 = Pf−1
S,

XTLTW−1SΛ−1 = XTLTPf−1
S,

5
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= XTLTZ ,by (26)

∴ Pf
χ

−1
= XTLTW−1SΛ−1 (Iˆ XTL−1S)−1  . (30)by (25)

The right hand side of (30) is known and thus all relevant elements of the background cost
function (19) are now calculable given the HSV results.

7. Completing the calculation with information from the ensemble

The EMs are now used to determine the first  columns of .  Let the columns of  contain
the  raw EMs ( ).  The forecast error covariance matrix in state space is then

K Pf
χ

−1
S

L L ≥ K

Pf =
1

L − 1
SST, (31)

which is too large to compute explicitly.  The transform between the ensemble from the
orthogonalized ensemble subspace and the state space is

S = S̃Ssub, (32)
where  is the  orthogonalized matrix of EMs, as used in (6), and  is the  matrix
of EMs in the orthogonalized ensemble representation.  The orthogonality of  is specified in
(7).  The inverse of (32) is

S̃ N × L Ssub L × L
S̃

Ssub = S̃TW−1S. (33)
The ensemble forecast error covariance matrix in EM subspace is

Pf
L =

1
L − 1

SsubS
T
sub, (34)

which is easily calculable, as are its eigenvectors and eigenvalues.  For reference, the
relationship between  in (31) and  in (34) is, using (32)Pf Pf

L

Pf = S̃Pf
LS̃T. (35)

Interest here is in the  eigenvectors of  with the largest eigenvalues, where .
These are used to define the special -dimensional subspace.  First let  be the  matrix
of all  eigenvectors, where

K Pf
L 0 < K ≤ L

K UL L × L
L

UT
LUL = I  ULUT

L = I, (36)and

and let  be the diagonal  matrix of eigenvalues.  Equation (34) may be decomposed asΛL L × L

Pf
L = ULΛLUT

L. (37)
Similarly, let  be the  matrix of the  eigenvectors with the largest eigenvalues, whereUK L × K K

UT
KUK = I. (38)

The following also holds as long as it acts only on vectors entirely in the column space of UK

UKUT
K = I. (39)

The  largest eigenvalues are assembled into the diagonal matrix .  The  covariance
matrix, but of rank  is then (by analogy to (37))

K ΛK L × L
K

Pf
K = UKΛKUT

K. (40)
These  eigenvectors may be projected back to model space using (6)K

U = S̃UK, (41)
where (as explained in Sec. 3)  is the  matrix of orthogonalized ensemble members.  The
inverse of (41) makes use of (7)

S̃ N × L

6
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UK = S̃TW−1U. (42)
The projection of these  eigenvectors to model space span the special subspace and so the 
columns of  can be used to define the Householder matrix .  Recall the two bullet points at
the end of Sec. 5, where  is a vector that spans this special space.  Appendix C shows how 
can be constructed from .

K L
U X

δxs X
U

The aim of the following procedure is to use information from the EMs to define the first 
columns of  as defined in (18) and used in (19).  In a similar fashion to the HSV approach in
Sec. 6, let

K
Pf
χ

−1

Z = Pf−1
U, (43)

= Pf−1
LXXTL−1U,

XTLTZ = XTLTPf−1
LXXTL−1U,

= Pf
χ

−1
Iˆ XTL−1U, (44)

where  is the  non-square quasi-identity matrix defined by (24).  This has to be included
because  is defined only with the first  columns.  Equation (44) leads to

Iˆ K × N
Pf
χ

−1
K

Pf
χ

−1
= XTLTZ (Iˆ XTL−1U)−1 , (45)

where the operator inverted is a calculable  matrix, which we assume is non-singular.
Note that (45) is for only part of the inverse covariance matrix and so is not symmetric.  The
matrix yet known is  which is now found from the EMs (Sec. 3).

K × K

XTLTZ

The  that is of interest exists only in the -dimensional subspace.  The  that exists in the -
dimensional subspace is (35).  This can be modified to exist in the -dimensional subspace
replacing  in (35) with  found from (40).

Pf K Pf L
K

Pf
L Pf

K

Pf = S̃Pf
LS̃T → S̃Pf

KS̃T = S̃UKΛKUT
KS̃T. (46)

Equation (46) is developed as follows (steps marked with a * need special note - see below)

I = S̃UKΛKUT
KS̃TPf−1

,

S̃TW−1 = UKΛKUT
KS̃TPf−1

,

UT
KS̃TW−1 = ΛKUT

KS̃TPf−1
,

Λ−1
K UT

KS̃TW−1 = UT
KS̃TPf−1

,

UKΛ−1
K UT

KS̃TW−1 = S̃TPf−1
. (47 ∗)

The following, derived from (7) and (39) holds as long as it acts only on vectors entirely in the
column space of S̃

S̃S̃TW−1 = I. (48 ∗)
When used with (47) this gives

UKΛ−1
K UT

KS̃TW−1 = S̃TW−1WPf−1
,

S̃UKΛ−1
K UT

KS̃TW−1 = WPf−1
,

W−1S̃UKΛ−1
K UT

KS̃TW−1 = Pf−1
. (49)

7
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The steps marked with a (*) require special attention as these statements are appropriate only
under special circumstances.  This may require some checking.  Equation (49) is used in the
definition of  (43), which is itself used for the definition of  in (45).  This givesZ Pf

χ
−1

Pf
χ

−1
= XTLTW−1S̃UKΛ−1

K UT
KS̃TW−1U (Iˆ XTL−1U)−1 , (50)

which is a  matrix as required.N × K

8. Differentiating the cost function

The background part of the cost function,  (19), is now defined, where  is found
depending upon whether the HSV or the EM source of information is used.  For the HSV
calculation,  is found from (30) and for the EM calculation,  is found from (50).  For
VAR, the derivatives of  and  (the observation part of the cost function) are required with
respect to each component of the control vector .  Recall that the control vector comprises two
parts: one that describes the special subspace,  (non-zero only in the first  components), and
another that describes the remainder,  (non-zero only in the last  components)

Jb Pf
χ

−1

Pf
χ

−1
Pf
χ

−1

Jb Jo

χ
χs K

χ̄s N − K

χ = χs + χ̄s, (51)
and the gradient vector,  has a similar structure (i.e.  is non-zero only in the first

 components and  is non-zero only in the last  components).   is the total cost
function, which is the sum of the background part,  in (19) and an observation part, .  Let
the three terms defining  in (19) be written separately

∂ J / ∂χ ∂ J / ∂χs

K ∂ J / ∂ χ̄s N − K J
Jb Jo

Jb

J = JI
b + JII

b + JIII
b + Jo, (52)

 JI
b =

1
2

(χs − χb
s)

T Pf
χ

−1
(χs − χb

s) , (53)where

JII
b = α (χ̄s − χ̄b

s)
T Pf

χ
−1

(χs − χb
s) , (54)

 JIII
b =

1
2

(χ̄s − χ̄b
s)

T (χ̄s − χ̄b
s) . (55)and

It is assumed that  has already been found, e.g. by the conventional adjoint method
(e.g. Rodgers, 200x; Bannister 200x).  There are eight contributions to the gradient vector, viz.

, , , , , , , and , where
each contributes to the total gradient vector in the following way

∂ Jo / ∂ δx

∂ JI
b / ∂ χs ∂ JI

b / ∂ χ̄s ∂ JII
b / ∂ χs ∂ JII

b / ∂ χ̄s ∂ JIII
b / ∂ χs ∂ JIII

b / ∂ χ̄s ∂ Jo / ∂ χs ∂ Jo / ∂ χ̄s

∂ J

∂ χ
=

∂ JI
b

∂ χs
+

∂ JI
b

∂ χ̄s
+

∂ JII
b

∂ χs
+

∂ JII
b

∂ χ̄s
+

∂ JIII
b

∂ χs
+

∂ JIII
b

∂ χ̄s
+

∂ Jo

∂ χs
+

∂ Jo

∂ χ̄s
. (56)

Note that derivatives with respect to  give a vector that is non-zero only in the first 
components, and so imply differentiating with respect to the first  components of  only.
Similarly derivatives with respect to  give a vector that is non-zero only in the last 
components, and so imply differentiating with respect to the last  components of  only.

χs K
K χ

χ̄s N − K
N − K χ

It will be useful to expand-out the matrix notation in (53)-(55) as follows (in the following,
ignore the  and  terms for simplicity (they can be put back in later with no loss of
generality).  Whether we are interested in  or  will be controlled by the range of the index (1
to  or  to  respectively)

χb
s χ̄b

s

χs χ̄s

K K + 1 N

JI
b =

1
2 ∑

K

i = 1

(χs)i ∑
K

j = 1

(Pf
χ

−1
)ij (χs)j =

1
2 ∑

K

i = 1

χi ∑
K

j = 1

(Pf
χ

−1
)ij χj, (57)

8
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JII
b = α ∑

N

i = K + 1

(χ̄s)i ∑
K

j = 1

(Pf
χ

−1
)ij (χs)j = α ∑

N

i = K + 1

χi ∑
K

j = 1

(Pf
χ

−1
)ij χj, (58)

JIII
b =

1
2 ∑

N

i = K + 1

χ2
i . (59)

Each contribution in (56) is now addressed in turn.

Contribution (i): ∂ JI
b / ∂ χs

Differentiating (57) with respect to  (components ) givesχ 1 ≤ k ≤ K

∂ JI
b

∂ (χs)k
=

1
2 ∑

K

i = 1

δik ∑
K

j = 1

(Pf
χ

−1
)ij χj +

1
2 ∑

K

i = 1

χi ∑
K

j = 1

(Pf
χ

−1
)ij δkj,

=
1
2 ∑

K

j = 1

(Pf
χ

−1
)kj χj +

1
2 ∑

K

i = 1

χi (Pf
χ

−1
)ik = ∑

K

j = 1

(Pf
χ

−1
)kj χj. (60)

Contribution (ii): ∂ JI
b / ∂ χ̄s

Differentiating (57) with respect to  (components ) givesχ K + 1 ≤ k ≤ N

∂ JI
b

∂ (χ̄s)k
= 0. (61)

Contribution (iii): ∂ JII
b / ∂ χs

Differentiating (58) with respect to  (components ) givesχ 1 ≤ k ≤ K

∂ JII
b

∂ (χs)k
= α ∑

N

i = K + 1

χi ∑
K

j = 1

(Pf
χ

−1
)ij δjk,

= α ∑
N

i = K + 1

χi (Pf
χ

−1
)ik . (62)

Contribution (iv): ∂ JII
b / ∂ χ̄s

Differentiating (58) with respect to  (components ) givesχ K + 1 ≤ k ≤ N

∂ JII
b

∂ (χ̄s)k
= α ∑

N

i = K + 1

δik ∑
K

j = 1

(Pf
χ

−1
)ij χj,

= α ∑
K

j = 1

(Pf
χ

−1
)kj χj. (63)

Contribution (v): ∂ JIII
b / ∂ χs

Differentiating (59) with respect to  (components ) givesχ 1 ≤ k ≤ K

∂ JIII
b

∂ (χs)k
= 0. (64)

Contribution (vi): ∂ JIII
b / ∂ χ̄s

Differentiating (59) with respect to  (components ) givesχ N + 1 ≤ k ≤ N

∂ JIII
b

∂ (χs)k
= ∑

N

i = K + 1

χiδik,

= χk. (65)
Contributions (vii) and (viii):  and ∂ Jo / ∂ χs ∂ Jo / ∂ χ̄s

9
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For this term it is not necessary to distinguish between parts of the state vector.  Using the
definition of the control variable transform in (13), it can be expanded as

δxm = ∑
N

n = 1

Lmn ∑
N

p = 1

Xnpχp. (66)

Therefore

∂ xm

∂ χq
= ∑

N

n = 1

Lmn ∑
N

p = 1

Xnpδpq = ∑
N

n = 1

LmnXnq. (67)

Using the chain rule, and then feeding-in (67) gives

∂ Jo

∂ χq
= ∑

N

m = 1

∂ xm

∂ χq

∂ Jo

∂ δxm
,

= ∑
N

m = 1
∑
N

n = 1

LmnXnq
∂ Jo

∂ δxm
,

= ∑
N

n = 1

XT
qn ∑

N

m = 1

LT
nm

∂ Jo

∂ δxm
. (68)

Equation (68) is equivalent to the matrix operation represented by

∂ Jo

∂ χ
= XTLT ∂ Jo

∂ δx
, (69)

which is the standard result of the adjoint of the control variable transform.
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Appendix A: the Gram-Schmidt procedure

The creation of an orthogonalized set of vectors, , from a set that is made up of non-orthogonal
vectors, , may be performed by the Gram-Schmidt procedure.  The space spanned by each set
of vectors is the same, but the orthogonalized set is more convenient to work with.  Let
orthogonalization be performed with respect to the  inner product.

s˜ i

si

W−1

Let the first vector of the orthogonalized set, , be the first vector of the non-orthogonal set, ,
but normalized to have unit length (under the  norm).

s˜ 1 s1

W−1

s˜ 1 =
1

N1
s1, (A.1)

s˜ T
1W−1s˜ 1 = 1, (A.2)

∴  N1 = sT
1W−1s1. (A.3)

For , the th orthogonalized vector is defined as the th non-orthogonal vector minus
a linear combination of all previous vectors defined (and normalized)

i ≥ 1 i+1 i+1

s˜ i + 1 =
1

Ni + 1 (si + 1 − ∑
i

j = 1

αj,i + 1s˜ j) . (A.4)

The coefficients, , are chosen for orthogonality as followsαj,i + 1

s˜ T
j W−1s˜ i + 1 = δj,i + 1. (A.5)

Performing an inner product of (A.4) with  (where ) givess˜ k 1 ≤ k ≤ i

s˜ T
k W−1s˜ i + 1 =

1
Ni + 1 (s˜ T

k W−1si + 1 − ∑
i

j = 1

αj,i + 1s˜ T
k W−1s˜ j) = 0. (A.6)

This is set equal to zero by (A.5) and by the fact that .  Further use of (A.5) leads tok ≠ i + 1

s˜ T
k W−1si + 1 − αk,i + 1 = 0,

∴  αj,i + 1 = s˜ T
j W−1si + 1. (A.7)

This determines the coefficients.  Let  be the part of (A.4) inside the brackets (i.e. the
unnormalized vector)

t˜ i + 1

s˜ i + 1 =
1

Ni + 1
t˜ i + 1, (A.8)

  t˜ i + 1 = si + 1 − ∑
i

j = 1

αj,i + 1s˜ j, (A.9)where

which can be calculated now that the coefficients are known (A.7).   then follows in a
similar way to (A.2) and (A.3)

Ni + 1

s˜ T
i + 1W

−1s˜ i + 1 = 1, (A.10)

∴  Ni + 1 = t˜ T
i + 1W−1t˜ i + 1. (A.11)

Appendix B: Proof of the orthogonality of the residual in (9)

In these notes a vector in model space,  is divided into a part that is spanned by columns of ,
, and a residual, , given by (9).  Here it is proved that any vector that exists only in the

δx S̃
δxs δx¯ s

11
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spanned space is ' -orthogonal' to one that exists only in the residual.  Mathematically, it is to
be shown that

W−1

δx¯ T
sW−1δxs = 0. (B.1)

First eliminate  using (9)δx¯ s

δx¯ T
sW−1δxs = (δx − δxs)

T W−1δxs. (B.2)
 can be written in terms of  by combining (6) and (8)δxs δx

δxs = S̃S̃TW−1δx. (B.3)
Substituting (B.3) into (B.2) gives

δx¯ T
sW−1δxs = (δx − S̃S̃TW−1δx)T W−1S̃S̃TW−1δx

= δxTW−1S̃S̃TW−1δx − δxTW−1S̃S̃TW−1S̃S̃TW−1δx. (B.4)
Next use the orthogonality of the subspace (7) which proves that each term in (B.4) is equal and
opposite, thus giving zero and proving (B.1)

δx¯ T
sW−1δxs = δxTW−1S̃S̃TW−1δx − δxTW−1S̃S̃TW−1δx = 0. (B.5)

Appendix C: Design of the sequence of Householder transforms

It is now shown how  can be formulated to achieve property (20).  Fisher (1998) states that
this can be achieved with a sequence of Householder transformations.  A single Householder
transformation, , (e.g. Press et al. 1986) may be written as follows

X

P

P = I − 2
uuT

uTu 
, (C.1)

where

u = x ∓ |x | e1. (C.2)
The vector  is arbitrary and  is a vector which is zero valued except for the first element,
which has unit value (the properties of the Householder transformation hold for a general single
element being chosen instead, although here we always choose the first element).   is useful
because it has the following useful properties.

x e1

P

• The Householder transformation is orthogonal

PPT = (I − 2
uuT

uTu ) (I − 2
uuT

uTu )
T

,

= I − 4
uuT

uTu 
+ 4

uuTuuT

uTu uTu
,

= I − 4
uuT

uTu 
+ 4

uuT

uTu
= I. (C.3)

• When acting on the state , which is used to define  in (C.1) and (C.2), the result is a
vector with all but the first element zero

x P

Px = (I − 2
uuT

uTu ) x,

= (I − 2
u (x ∓ |x | e1)T

uTu ) x,

12
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= (I − 2
u (x ∓ |x | e1)T

2xTx ∓ 2 | x | x1
) x,

= x − 2
u (xTx ∓ |x | x1)
2xTx ∓ 2 | x | x1

,

= x − u,

= ± | x | e1. (C.4)
• When acting on a state , which is orthogonal to the state , which is used to define  in

(C.1) and (C.2), the result is a vector with zero in the first element
x¯ x P

 uTx¯ = xTx¯ ∓ |x | eT
1x¯ ,Note

= ∓ | x | x¯ 1, (C.5)

 Px¯ = (I − 2
uuT

uTu ) x¯ ,then

= x¯ ± 2
|x | x¯ 1 (x ∓ |x | e1)
2xTx ∓ 2 | x | x1

,

=
|x|2x¯ ∓ |x | x1x¯ ± |x | x¯ 1x − x¯ 1 | x|2e1

xTx ∓ |x | x1
. (C.6)

Equation (C.6) does not have weight in element 1.  To show this, do a scalar product with e1

eT
1Px¯ =

|x|2x¯ 1 ∓ |x | x1x¯ 1 ± |x | x¯ 1x1 − x¯ 1 | x|2

xTx ∓ |x | x1
= 0, (C.7)

In these equations,  and  are the first components of  and  respectively.  The first property
gives .  These properties can be combined to give  in the following way.
Defining  for the HSV calculation or  for the EM calculation, let

 be a vector of two parts

x¯ 1 x1 x¯ x
P = PT = P−1 X

R(0) = L−1S R(0) = L−1U
XTR(0)

XTR(0) = ( ) , (C.8)A
0

where  is a  matrix consistent with the required property of (20).  In fact, by the way
that  is to be formed,  will turn out to be upper triangular.  Let

A K × K
XT A

XTR(0) = PK… Pk… P2P1R
(0). (C.9)

Each  transformation is Householder-like according to the following, e.g. for Pl P1

P1R
(0) = (I − 2

uuT

uTu ) R(0),  u = r(0)
1 − |r(0)

1 | e(N)
1 , (C.10)

where  is the first column of  and  is the -element vector with all but the first
element zero (which is unity).  This generates a new matrix  which has the form

r(0)
1 R(0) e(N)

1 N
R(1) = P1R(0)

R(1) = ( ) , (C.11)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(1)
22 r(1)

23 … r(1)
2K

0 r(1)
32 r(1)

33 … r(1)
3K

… … … … …
0 r(1)

k2 r(1)
k3 … r(1)

kK

… … … … …
0 r(1)

N2 r(1)
N3 … r(1)

NK

13
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having only the first element non-zero of the first column (since  is designed in terms of the
first column of ).  The aim now is to act with a  element Householder
operator on  excluding the first row and first column

P1

R(0) N − 1 × N − 1
R(1)

P2R
(1) = ( ) R(1),  u = r(1)

2 − |r(1)
2 | e(N − 1)

1 , (C.12)
1 0

0 I − 2uuT

uTu 

where the partitioned-off (lower right) part of  is a  matrix,  is the -
element second column of  (excluding the first component), and  is the -element
vector with all but the first element zero (which is unity).  This generates a new matrix

 which has the form

P2 N − 1 × N − 1 r(1)
2 N − 1

R(1) e(N − 1)
1 N − 1

R(2) = P2R(1)

R(2) = ( ) . (C.13)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(2)
22 r(2)

23 … r(2)
2K

0 0 r(2)
33 … r(2)

3K

… … … … …
0 0 r(2)

k3 … r(2)
kK

… … … … …
0 0 r(2)

N3 … r(2)
NK

The th operator, , has the formk Pk

PkR
(k − 1) = ( ) R(k − 1),  u = r(k − 1)

k − |r(k − 1)
k | e(N − k + 1)

1 , (C.14)
I 0

0 I − 2uuT

uTu 

where the partitioned-off part of  is a  matrix,  is the
-element th column of  (excluding the first  components) and 

is the -element vector with all but the first element zero (which is unity).  After all 
operators have acted, the result is 

Pk N − k + 1 × N − k + 1 r(k − 1)
k

N − k + 1 k R(k − 1) k − 1 e(N − k + 1)
1

N − k + 1 K
R(k) = XTR(0)

R(k) = ( ) . (C.15)

r(1)
11 r(1)

12 r(1)
13 … r(1)

1K

0 r(2)
22 r(2)

23 … r(2)
2K

0 0 r(3)
33 … r(3)

3K

… … … … …
0 0 0 … r(k)

KK

… … … … …
0 0 0 … 0

where the top section is the matrix  in (C.8), and the bottom section comprises zeros.A

It should also be shown that .  From (C.9) this is easy to show given that each pair has
the property that 

XXT = I
PkPT

k = I

PK… Pk… P2P1P
T
1 PT

2 … PT
k … PT

K = I. (C.16)
It remains to be shown that the string of Householder operators  acting on a
state,  (which is orthogonal to all columns of ) gives a state that is zero in the first 
elements.  All  are formed in the same way as shown above (ie with respect to the 
matrices).

PK… Pk… P2P1

r¯ (0) R(0) K
Pk R(k)

First let .  Since  is orthogonal to  (the latter is the vector used to define  in
(C.10)), and by property (C.7), the vector  has zero in the first element.  Next, let

r¯ (1) = P1r¯ (0) r¯ (0) r(0)
1 P1

r¯ (1)

14
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.  By a similar argument, if the vector formed from the last  components of 
is orthogonal to the vector formed from the last  components of  (the latter is the vector
used to define  in (C.12)), and by property (C.7), the vector  will have zero in the first two
elements.  Because the first element of  is always zero, the remaining -component
inner product in question is equal to the full -component inner product as the first element
contributes zero.  The orthogonality test is therefore satisfied if the following -component
inner product is zero

r¯ (2) = P2r¯ (1) N − 1 r¯ (1)

N − 1 r(1)
2

P2 r¯ (2)

P1r¯ (0) N − 1
N

N

(P1r¯ (0))T P1r
(0)
2 = r¯ (0)TPT

1 P1r
(0)
2 = r¯ (0)Tr(0)

2 = 0. (C.17)
This is satisfied because the vector  is orthogonal to  by definition.  These arguments
continue for all  operators.  The final result is a vector of zeros in the first  components.

r¯ (0) r(0)
2

K K
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