Earth Observation and Data Assimilation QUEST ES4 Spring School, Sept. 2006

Ross Bannister*

*Data Assimilation Research Centre (DARC), NERC National Centre for Earth Observation, Dept. of Meteorology, Univ. of Reading, Reading, RG6 6BB

r.n.bannister@reading.ac.uk

Colour slides available (PDF) via www.met.rdg.ac.uk/~ross/DARC/DataAssim.html Thanks to DARC colleagues: Stefano Migliorini, William Lahoz

1. INTRODUCTION The data assimilation problem

Representation of data

- Values of all variables and at all grid points are assembled in this vector.
- The system's state may be represented as a point in the model's $(5 \times n \times m \times L)$ -dimensional phase space.

The 'observation vector', \vec{y}

- Every measurement to be assimilated is assembled in this vector.
- The observation type, location and time needs to associated with each observation.

These vector structures allow them to be used in matrix equations (later). Ross Bannister, EO and DA, QUEST ES4 2006.

Data assimilation as an inexact and underconstrained inverse problem

- The 'inverse model' approach to data assimilation can deal with '*direct*' (in-situ) and '*indirect*' (remotely sensed) observations.
- The data assimilation problem is termed '*inexact*' because all quantities have errors which must be accounted for.
- The data assimilation problem is termed '*under constrained*' because the state vector is not fully observed.

All models are wrong! All observations are inaccurate!

Combining observational data: 1 unknown, 2 direct observations

<u>Aim</u>: to estimate the value of a scalar, *x*, and its uncertainty.

Information to use: two unbiased direct measurements of x from different instruments.

Quantity	Value	Error*	Std. dev.†	Notes
'truth'	<i>X</i> _t	0	n/a	Abstract, as x_t can never be known precisely
obs. 1	y_1	ε_1	σ_1	σ_1 is the precision of inst. 1
obs. 2	<i>y</i> ₂	ε_2	σ_2	σ_2 is the precision of inst. 2
best est. of 'truth'	X_a	\mathcal{E}_a	σ_a	σ_a is a fn. of σ_1 and σ_2 . $a = $ 'analysis'

*Deviation from 'truth', $y_n = x_t + \varepsilon_n$, n = 1,2. ε_n are not known, only their 'stats'[†]. †Width of the probability density function (PDF), $\sigma_n \equiv \langle (y_n - x_t)^2 \rangle^{1/2} = \langle \varepsilon_n^2 \rangle^{1/2}$. <u>Unbiased</u>: means that repeated measurements are centred about the 'truth', $\langle \varepsilon_n \rangle = 0$, ie $\langle y_n \rangle = x_t$.

$$x_a = \left(\frac{y_1}{\sigma_1^2} + \frac{y_2}{\sigma_2^2}\right) \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}, \qquad \sigma_a = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1/2}$$

- This is simple data assimilation.
- The larger the ' σ ' of a measurement, the smaller its importance.
- Use (i) the 'method of least squares' and (ii) normal (a.k.a. Gaussian) PDFs (see later).
- Beware: the term 'error' is often used to indicate σ . Should use the term 'error statistics'.

Combining observational data: 6 unknowns, >6 indirect observations - orbital determination

<u>Aim</u>: to estimate the six orbital parameters of Venus, \vec{x} , and their uncertainty. <u>Information to use</u>: many indirect measurements.

 $\boldsymbol{x} = (0.7210, 0.0201, 4.23, 88.9, 110.0, 176.6)$ $\sigma = (0.0020, 0.0078, 0.70, 8.1, 50.3, 6.8)$ $\boldsymbol{x}_t = (0.7233, 0.0067, 3.39, 76.7, 131.5, 182.0)$

(a) Assimilation period

(b) Forecast period

Applications of data assimilation

• Keeping dynamical systems 'in touch' with reality.

- Initial conditions for weather or ocean forecasting.
- Reanalysis for scientific studies of climate (e.g. NCEP/NCAR, ERA).
- Inferring information that is difficult or impossible to measure directly, or using data from remote sensing instruments (e.g. satellite sounding, surface carbon flux estimation, solar dynamics).
- Model and observation system evaluation.
- Systems control (e.g. landing a rocket on the moon, shooting a moving target).

CONTENTS OF LECTURES

- 1. Introduction
- 2. Observations
- 3. Models
- 4. Data assimilation fundamentals
- 5. Applications of and problems with data assimilation
- 6. Further reading

2. OBSERVATIONS Types of instrument

Measurements from instruments assimilated routinely (not exhaustive)

		Coverage	Resolution		
Instrument	Quantities measured	Spatial	Temporal	Horiz.	Vert.
In-situ instruments					
Radiosondes	$u, v, T, p, q, (O_3)$	Cont'l N.H., t'sphere	6 hourly	point	point
Surface stations	<i>u</i> , <i>v</i> , <i>T</i> , <i>p</i> , <i>q</i>	Cont'l, surface	6 hourly	point	n/a
Aircraft	<i>u</i> , <i>v</i> , <i>T</i> , <i>p</i> , <i>q</i>	Flight paths, airports	In flight	point	point
Drifting buoys	Drifting buoys u, v, T, p		Hourly	point	n/a
Remote sensing instrumen	ts				
Geostationary sat.	Rad: MW, IR, Vis	Global	15-30 mins	> 1 km	kms
Polar orbiting sat. (nadir)	Rad: MW, IR, Vis	Global	Continuous	>1 km	kms
Polar orbiting sat. (limb)	Rad: MW, IR, Vis	Global	Continuous	100s km	1-2 km
Scatterometer	Radar backscatter	Oceans	Continuous	50 km	n/a

'Rad'=radiances, 'MW'=microwave, 'IR'=infrared, 'Vis'=visible

In operational global weather forecasting there are $\sim 10^6$ observations assimilated per cycle

Coverage

Locations of four example observation types (courtesy Met Office (c) Crown copyright)

Volumes of data and quality control

Why are some observations rejected?

- Observation 'too far' from forecast (large systematic, human, or instrument error),
- Observation did not reach centre in time,
- Satellite radiance data complications due to radiation from land, clouds or precipitation.

Satellite borne instruments

Orbit configurations

Polar orbiter (courtesy WAL)

- Quasi-global coverage.
- Non-continuous sampling of a given location.
- Often used for sounders (e.g. on board EnviSat, EOS Aura, etc).

Geostationary orbit (courtesy NASDA)

- 35 786 km above sea level, latitude 0.0°.
- View 1/4 of Earth's surface (60S-60N).
- Continuous sampling of a given location.
- Often used for imagers (e.g. on board MeteoSat, etc).
- Horiz. resolution degrades poleward.

Satellite borne instruments

Viewing geometries

Limb (left) and nadir (right) viewing geometries

Limb

- Good vertical resolution possible (~1km).
- Poor horizontal resolution.
- Difficulties in constructing observation operator.
- Used mainly in research.

<u>Nadir</u>

- Good horizontal resolution possible.
- Poor vertical resolution (several km).
- Used mainly in operational weather forecasting.

Satellite borne instruments

(not comprehensive!)

Instrument	Expanded name	Platform	Geometry	Orbit	Measures	Pass/Ac	etSensitive to
HIRDLS	High Resolution Dynamics Limb Sounder	EOS Aura	Limb	Polar	?	Passive	T, q, O3, etc
OMI	Ozone Monitoring Experiment	EOS Aura	Nadir	Polar	Vis/UV	Passive	O3, TCO3, etc.
TES	Tropospheric Emission Spectrometer	EOS Aura	Limb/Nadia	rPolar	IR	Passive	T, q, O3, etc
MLS	Microwave Limb Sounder	EOS Aura	Limb	Polar	MW	Passive	T, q, O3, etc
SSM/I	Special Sensor Microwave Imager	DMSP	Nadir	Polar	MW	Passive	TCWV, cloud, precip, surface wind,
							snow, sea ice
HIRS	High resolution InfraRed Sounder	NOAA	Nadir	Polar	IR		T, q, O3, etc
AMSU	Advanced Microwave Sounding Unit	NOAA	Nadir	Polar	MW	Passive	T, q, etc
AIRS	Advanced InfraRed Sounder	EOS Aqua	Nadir	Polar	IR/MW/Vis	Passive	T, q, etc
SBUV	Satellite Backscattered UltraViolet	NOAA	Nadir	Polar	UV	Passive	O3
MIPAS	Michelson Interferometer for Passive Atmospheric Sounding	EnviSat	Limb	Polar	IR/MW	Passive	<i>T</i> , <i>q</i> , O3, etc
GOME	Global Ozone Monitoring Experiment	ERS-2,METO	PNadir	Polar	UV	Passive	O3
SCIAMACHY	SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY	EnviSat	Limb/Nadin	rPolar	IR	Passive	O3, q , clouds, etc
MVIRI	Meteosat Visible and InfraRed Imager	MeteoSat	Nadir	Geost	.Vis/IR/WV	Passive	Cloud, surface, motion vectors
SEVIRI	Spinning Enhanced Visible and InfraRed Imager	MSG	Nadir	Geost	.Vis/IR/WV	Passive	Cloud, surface, motion vectors
GERB	Geostationary Earth Radiation Experiment	MSG	Nadir	Geost	.LW/SW	Passive	
AVHRR	Advanced Very High Resolution Radiometer	NOAA	Nadir	Polar	Vis/IR/WV	Passive	Cloud, surface, motion vectors
ATSR	Along Track Scanning Radiometer	ERS-1, 2	Nadir	Polar	Vis/IR/WV	Passive	SST, surface, clouds, cryosphere
SMOS	Soil Moisture Ocean Salinity	Earth explorer	Nadir	Polar	L-band (1.4GHz)	Passive	Soil moisture, ocean salinity
SCAT	Scatterometer	ERS-1,2	QuasiNadir	Polar	C-band (6GHz)	Active	Surface wind
PR	Precipitation Radar	TRMM	Nadir		Radar		Precipitation
GPS/GLONASS	SGlobal Positioning System		Limb		Refractive index	Active	T, q, p

'Vis'=visible, 'UV'=ultra violet, "IR"=infrared, 'MW'=microwave, TC03=total column ozone, TCWV=total column water vapour, Geost.=geostationary, NEO=near equator orbit

Deriving information from satellite soundings

A one-dimensional example - to show the need for adequate consideration of errors Rodgers (2000)

Make *m* nadir radiance measurements

 $\vec{y} = \begin{pmatrix} L(\nu_1) \\ L(\nu_2) \\ \dots \\ L(\nu_m) \end{pmatrix}$

Forward model (radiative transfer equation)

$$L_{i}(\nu_{i}) = \int_{0}^{\infty} B(\langle \nu \rangle, T(z)) K_{i}(z) dz$$

What is $B(\langle v \rangle, T(z))$ given a set of measurements?

Choose a basis of *m* polynomials to represent *B*,

$$B(\langle \nu \rangle, T(z)) = \sum_{j=1}^{m} w_j z^{j-1}$$

An inappropriate means of computing the w_j (and hence *B*, and hence *T*(*z*)),

$$L_{i}(\nu_{i}) = \sum_{j=1}^{m} C_{ij}w_{j} \qquad C_{ij} = \int_{0}^{\infty} z^{j-1}K_{i}(z) dz$$
$$\vec{y} = \mathbf{C}\vec{w} \qquad \Rightarrow \qquad \vec{w} = \mathbf{C}^{-1}\vec{y}$$

Results of 'exact' inverse problem

Courtesy, Rodgers (2000)

The 'C' operator is ill conditioned 'Exact' methods are inappropriate for real-world inverse problems Need 'inexact' methods that properly account for errors - use the method of least squares - see later.

General principles for deriving information from remotely sensed observations

✓ Use of forward model (a.k.a. observation operator).

- Remotely sensed observations contain information about those model quantities that the operators are sensitive to (e.g. temperature).
- ✓ Account for error statistics (data are *inexact*).
- Need a-priori information (first guess) observations may not constrain all unknowns (*under constrained*).

XExact inversion.

The 'method of least squares' (later) can be used to solve the inexact, ill-conditioned, underconstrained inverse problem.

Deriving chemical species from satellite data

Courtesy Jean Noel Thepaut, ECMWF

Courtesy NASA Goddard

Alternatives for assimilating satellite derived data

- Have hinted that it is possible to derive geophysical information from satellites in a 1d vertical column (called 'retrievals').
- There are a number of options to assimilate satellite data with large 3d weather forecasting models.

3. MODELS

DYNAMICAL CORE (primitive equations)

Met Office "New Dynamics" Unified Model

Semi-Lagrangian advection Typical res: $0.8^{\circ} \times 0.5^{\circ} \times 50$ levs (60km mid-lats) Typical timestep: ~ 15 minutes

- Coupled atmosphere/ocean models exist, but no coupled data assimilation systems exist.
- Component specific models (e.g. carbon cycle) exist.

Summary of observations and models

- Wealth of obs for use in data assimilation.
- Broadly two types of observation:
 - in-situ (geophysical quantities),
 - remotely sensed (e.g. radiances).
- In-situ obs are straightforward to assimilate:
 - good resolution,
 - poor coverage.
- Remotely sensed obs are complicated to deal with:
 - limited resolution,
 - good coverage.
- Geophysical quantities can be derived from remotely sensed observations:
 - off-line retrieval (1d vertical column) or
 - (e.g.) direct assimilation of radiances.
 - 'forward models' predict observations from geophysical quantities).

- Satellite instruments:
 - orbit types (geostationary, polar, sun synchronous),
 - viewing geometry types (nadir, limb),
 - techniques (e.g. passive, active).
- Only a small fraction of observations survives quality control.
- Observation uncertainty is very important.
- Models are an integral part of data assimilation:
 - models (i) predict obs, (ii) provide apriori information and (iii) make forecasts.