
4. DATA ASSIMILATION FUNDAMENTALS
... [the atmosphere] "is a chaotic system in which errors introduced into
the system can grow with time ... As a consequence, data assimilation is a
struggle between chaotic destruction of knowledge and its restoration by
new observations."

Leith (1993)
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The vector notation for fields and data and the need for an a-
priori

The 'state vector', xå

uå

vå

θå

på

qå

λ1

λn

φ1

φm

ℓ 1

ℓ L

uå  zonal wind field

vå  meridional wind field

θå  potential temperature

på  pressure

qå  specific humidity

λ longitude

φ latitude

ℓ  vertical level

NWP models:  elements > 107 (5 × n × m × L)

The 'observation vector', yå

y1

y2

y3

yN

NWP models:  elements~106

The 'forward model', hå

yå = hå [xå ] + εå

• No. of obs. << No. of (unknown) elements in .xå
• This is an under-constrained (and inexact) inverse problem.
• Need to fill-in the missing information with prior knowledge.

An 'a-priori' state (a.k.a. 'first guess', 'background', 'forecast') is needed to make the assimilation problem
well posed.
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Vectors and matrices
Vector/matrix notation is a powerful and compact way of dealing with large volumes of data.

•A matrix operator acts on an input vector to give
an output vector, e.g.

xå (2) = Axå (1) ( ) = ( )( )x(2)
1

x(2)
2

…
x(2)

N

A11 A12 … A1N

A21 A22 … A2N

… … … …
AN1 AN2 … ANN

x(1)
1

x(1)
2

…
x(1)

N

•Matrix products do not commute in general, e.g.

xå (3) = ABCxå (1) ≠ CBAxå (1)

•Some matrices can be inverted (must be 'square'
and non-singluar), e.g.

  ( ) = ( ) ( )x(1)
1

x(1)
2

…
x(1)

N

(A−1)11 (A−1)12 … (A−1)1N

(A−1)21 (A−1)22 … (A−1)2N

… … … …
(A−1)N1 (A−1)N2 … (A−1)NN

x(2)
1

x(2)
2

…
x(2)

N

(matrices are complicated to invert, ie .)(A−1)ij ≠ A−1
ij

•The matrix transpose make rows into columns and
columns into rows (also for vectors), e.g.

A = ( ), AT = ( )A11 A12 … A1N

A21 A22 … A2N

… … … …
AN1 AN2 … ANN

A11 A21 … AN1

A12 A22 … AN2

… … … …
A1N A2N … ANN

xå = ( ) ,  xå T = (x1, x2, … xN)

x1

x2

…
xN

•The inner product ('scalar' or 'dot' product), e.g.

xå (2)Txå (1) = x(2)
1 x(1)

1 + x(2)
2 x(1)

2 +… +x(2)
N x(1)

N = scalar
•The outer product (a matrix), e.g.

xå (2)xå (1)T = ( )x(2)
1 x(1)

1 x(2)
1 x(1)

2 … x(2)
1 x(1)

N

x(2)
2 x(1)

1 x(2)
2 x(1)

2 … x(2)
2 x(1)

N

… … … …
x(2)

N x(1)
1 x(2)

N x(1)
2 … x(2)

N x(1)
N
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Early data assimilation ("objective analysis")
The method of "successive corrections"

Bergthorsson & Doos (1955), Cressman (1959)

 obs.    grid-point

• Analysis is a linear combination of nearby
observations, and an a-priori.

• Analysis → obs. (obs-rich regions).
• Analysis → a-priori (obs-poor regions).

✔ Simple scheme to develop.
✔ Computationally cheap.
✔ Use a-priori in absence of observations.

✘ Poor account of error statistics of obs and
a-priori.

✘ Direct observations only.
✘ Anomalous spreading of obs. information.
✘ No multivariate relations (e.g. geostrophy).
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'Optimal' Interpolation (OI)
Introduced in the 1970s - a more powerful formulation of data assimilation

xå A = xå B + K (yå − hå [xå B])

•  is a rectangular matrix operator (the 'gain matrix').K

•  depends upon the error covariance matrices  and , and linearization .K B R H
• .  The Best Linear Unbiased Estimator (BLUE).K = BHT (HBHT + R)−1

•  : observation error covariance matrix.R

• Describes the error statistics of the observations (see later).
•  : background error covariance matrix.B

• Describes the error statistics of the a-priori state (see later).
•  : linearized observation operator.H

• .hå [xå B + δxå ] ≈ hå [xå B] + Hδxå
✔ Account taken of a-priori and obs. error

statistics.
✔ Allows assimilation of some indirect

obs.
✔ Use a-priori in absence of obs.
✔ Works as an inverse model.

✘ Too expensive for single global solution.
✘ Difficult to know .B
✘ No consistency with the equations of

motion.
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Types of errors

1. Random errors
Data Arising from
Obs. Noise
Forecast Stochastic processes in model,

     init. conds.
Assim. Input data

E.g. repeated measurement of temperature:

truth

mean

spread (ref. 'error statistics')

2. Systematic errors
Data Arising from
Obs. E.g. reading errors
Forecast Model formulation, init. conds.
Assim. Input data, formulation

E.g. As before but with biased thermometer:

truth

mean

spread

Biases should be corrected where possible.

3. Representativeness error
Data Arising from
Assim. Unresolved variability

E.g. Interpolation of model grid values to location
of observation (forward operator ):hå [xå ]

V11

V12

V21

V22

obs
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Probability distribution functions
• Error statistics are described by a probability density function (PDF).
• PDFs of random and representativeness errors are often expressed together.
• They are often approximated by the normal (Gaussian) distribution.

A scalar (ie a single piece of information), y
P

(y
)

σ

½y¿ y

P(y) ∝ exp−
(y − 〈y〉)2

2σ2

: 〈y〉Mean

: σ2Variance

( : σ)Std. dev.

A vector (multiple pieces of information), xå
x2

P ( )

x1

xå

½ ¿xå

xå = ( )x1

…
xN

P(xå ) ∝ exp(−1
2

(xå − 〈xå 〉) B−1 (xå − 〈xå 〉))
: 〈xå 〉Mean

: B = ( )Covariance

〈δx2
1〉 〈δx1δx2〉 … 〈δx1δxN〉

〈δx2δx1〉 〈δx2
2〉 … 〈δx2δxN〉

… … … …
〈δxNδx1〉 〈δxNδx2〉 … 〈δx2

N〉

  = 〈δxå δxå T〉         δxå = xå − 〈xå 〉where
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Example of covariances: forecast as the a-priori
•  is a forecast and so the equations of motion will influence strongly the covariance patterns.xå B

Example: Geostrophic error covariances

Geostrophic balance:

v = −
1
ρf

∂p

∂ x
 u =

1
ρf

∂p

∂ y

Courtesy, Univ. of Washington

Pressure-pressure covariances assumption:

〈δpiδpj〉 = σ2 exp−
r2

ij

2L2
  2L ∼ 750 km
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Variational data assimilation

The 'method of least squares' - simple version

J (xå ) = (xå − xå B)2 + (yå − hå [xå ])2

J : cost function (a scalar)

xå B : a-priori (background) state

yå : observations

hå [xå ] : observation operator (forward model)

xå :  xå A = xå |min J =variable "analysis"

Carl
Fredrich
Gauss

1777-1855

The 'method of least squares' - considering error
statistics

J (xå ) =
1
2

(xå − xå B)T B−1 (xå − xå B) +

1
2

(yå − hå [xå ])T R−1 (yå − hå [xå ])

B : background error covariance matrix

R : observation error covariance matrix

• This is the form used in operational weather
forecasting, deriving satellite retrievals, etc.

• Non-Euclidean  norm.L2

• Assumes perfect forward model, unbiased
data.

• This is consistent with a Gaussian model of
error statistics (next slide).

• 'Var.' is efficient enough to solve the global
problem.

Ross Bannister, EO and DA, QUEST ES4 2006. Page 31 of 51



The Bayesian view of data assimilation

Bayes' Theorem



   P(xå | yå ) =

P(yå | xå )P(xå )
P(yå )

P(yå , xå ) = P(xå | yå )P(yå )
P(xå , yå ) = P(yå | xå )P(xå )

∝ P(xå ) P(yå | xå )

Rev. Thomas
Bayes

1702-1761

P(xå | yå ) ∝ exp(−1
2

(xå − xå B)T B−1 (xå − xå B)) exp(−1
2

(hå [xå ] − yå )T R−1 (hå [xå ] − yå ))
∝ exp− (1

2
(xå − xå B)T B−1 (xå − xå B) +

1
2

(hå [xå ] − yå )T R−1 (hå [xå ] − yå ))
⇒ ,  JMaximum likelihood Minimum penalty

J [xå ] =
1
2

(xå − xå B)T B−1 (xå − xå B) +
1
2

(hå [xå ] − yå )T R−1 (hå [xå ] − yå )

xå A = xå |min J = "analysis"
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Minimising the cost function

The problem reduces to a (badly conditioned) optimisation problem in -dimensional phase space.107

J [xå ] =
1
2

(xå − xå B)T B−1 (xå − xå B) +
1
2

(hå [xå ] − yå )T R−1 (hå [xå ] − yå )

x1

x2
xå A

xå B

• Descent algorithms minimize  iteratively.J
• They need the local gradient,  of the cost function at each iteration.∇xå J
• The adjoint method is used to compute the adjoint.
• The curvature  (a.k.a. inverse Hessian, ) at  indicates the error statistics of the analysis.−1 (∇2

xå J)−1 xå A

• A very badly conditioned problem.
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Algebraic minimization of the cost function
Under simplified conditions the cost function can be minimized algebraically.

Assume that the linearization of the forward model is reasonable

hå [xå ] ≈ hå [xå B] + H (xå − xå B)

J [xå ] =
1
2

(xå − xå B)T B−1 (xå − xå B) +
1
2

(H (xå − xå B) − (y − hå [xå B])å )T R−1 (H (xå − xå B) − (y − hå [xå B])å )

1. Calculate the gradient vector

∇xå J = ( ) = B−1 (xå − xå B) + HTR−1 (hå [xå ] − yå )

∂ J / ∂ x1

∂ J / ∂ x2

∂ J / ∂ xN

2. The special  that has zero gradient minimizes  (this cost function is quadratic and convex)xå J

∇xå J|xA
= 0

xå A = xå B + (B−1 + HTR−1H)−1 HTR−1 (yå − hå [xB
å ])

= xå B + BHT (R + HBHT)−1 (yå − hå [xB
å ])

This is the OI formula with the BLUE!
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Types of data assimilation

Sequential data assimilation methods

• Data assimilation performed at each batch
of observations.

• Model forecast made between batches (for
background).

• E.g. OI, KF*, EnKF*, etc.

✓ Explicit formula used for analysis.

✗ Very expensive.

1d-Var

• Data assimilation performed for vertical
profile only, where satellite makes
observations.

• Used as a 'pre-main-assimilation' step to
produce vertical profiles of model
quantities (retrievals) from satellite
radiances.

* Kalman Filter (KF) and Ensemble Kalman Filter (EnKF).
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3d-Var

• Data assimilation performed every 6 hours.
• 6 hour model forecast between analysis

times (for background).
• Adequate for re-analysis.

✓ Relatively cheap.

✗ Observations within  hours are not at
analysis time†.

±3

✗ No dynamical constraint used.

t = 0t = −3 t = +3 t = +6

3d-Var.
time window

4d-Var

• Data assimilation performed every 6 (12)
hours.

• 6 (12) hour model forecast between
analysis times (for background).

• Used (e.g.) by ECMWF and Met Office for
operational weather forecasting.

✓ Model used as a dynamical constraint.
✓ Observations are compared to the model

trajectory at the correct time.

✗ Perfect model assumption‡.
✗ Expensive, but not unfeasible.

4d-Var.
time window

t = 0t = −3 t = +3 t = +6

† 3dFGAT '3d First Guess at Time' is half-way between 3d and 4d-Var.
‡ 'Strong constraint' - it is possible to use 4d-Var with a model under the 'weak-constraint' formulation.
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The 4d-Var cost function

4d-Var.
time window

t = 0t = −3 t = +3 t = +6

yå t = 1

yå t = 2

yå t = 3

…

J [xå 0] =
1
2

(xå 0 − xå B)T B−1 (xå 0 − xå B) +

1
2 ∑

t

(hå t [xå t] − yå t)
T R−1

t (hå t [xå t] − yå t)

• The observation vector comprises subvectors,  for time .yå t t
• The observation operator  acts on model state .hå t xå t

• Vary  in the minimization - the state at the start of the 4d-Var. cycle.xå 0

• Future states in the cycle are computed with the forecast model, .xå t = M
t ← 0
å xå 0

• Forward model is the composite operator .hå t M
t ← 0

• Important issues:

• Tangent linear model (and its adjoint) needed and can be difficult to find.
• Forecast model can be highly non-linear (e.g. sensitive dependence in model's convection

scheme - on/off 'switches').
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Assimilation of sequences of satellite images in 4d-Var
(Courtesy Samantha Pullen, Met Office)

Sequence of observed brightness temperatures

                                                      

Sequence of simulated brightness temperatures
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'4d-Var.' demonstration with a double pendulum

m1

m2

m3

θ1

θ2

l1

l2

l 3

xå = ( )θ1

θ2

θ̇1

θ̇2

L = T − V  
d
d t ( ∂L

∂ θ̇i
) =

∂L

∂ θi

V = gm1l1 cosθ1 − gm2l2 cosθ1 −
gm3 (l2 cosθ1 + l3 cosθ2)

T = ½ m1 (x˙ 2
1 + y˙ 2

1) +
½ m2 (x˙ 2

2 + y˙ 2
2) + ½ m3 (x˙ 2

3 + y˙ 2
3)

• Demonstrate '4d-Var' with an OSSE - 'Observation System Simulation Experiment'.
• Also known as a 'twin experiment'.

• Choose a set of initial conditions and run the model (truth).
• Add random noise to generate pseudo-observations.
• Forget the truth and try to recover it by assimilating the observations.
• Use observations of  and  only (no observations of  and ).θ1 θ2 θ̇1 θ̇2
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OSSE demonstration (double pendulum) - truth run
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OSSE demonstration (double pendulum) - '4d-Var.' run
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'4d-Var.' analysis
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OSSE demonstration (double pendulum) - 'obs insertion' run
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'Insertion' run
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Issues with data assimilation
• Data assimilation is a computer intensive process.

• For one cycle, 4d-Var. can use up to 100 times more computer power than the forecast.

• The -matrix (forecast error covariance matrix in Var.) is difficult to deal with.B

• Assimilation process is very sensitive to .B

• Least well-known part of data assimilation.

• In operational data assimilation,  is a  matrix.B 107 × 107

• Need to model the -matrix - use technique of 'control variable transforms'.B

• In reality  is flow dependent.  Practically,  is quasi-static.B B

• Data assimilation replies on optimality.  Issues of suboptimality arise if:

• Actual error distributions are non-Gaussian,

•  or  are inappropriate.B R

• Forward models are inaccurate or are non-linear.

• Data have biases.

• Cost function has not converged adequately (in Var.).

• Assimilation can introduce undesirable imbalances.

• Quantities not constrained by observations can be poor (e.g. diagnosed quantities):

• Precipitation.

• Vertical velocity, etc.
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