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• Bennett A.F., 2002, Inverse Modeling of the Ocean and Atmosphere
(Euler-Lagrange equations and representers - sections 1.2, 1.3).

• Daley R., 1991, Atmospheric Data Analysis (historical aspects and basic
ideas - chapters 1, 13).

• Kalnay E., 2003, Atmospheric Modeling, Data Assimilation and Pre-
dictability (basic aspects of data assimilation - chapter 5).

• Lewis J.M., Lakshmivarahan S., Dhall S.K., 2006, Dynamic data as-
similation: a Least Squares Approach (applications - chapters 3,4, data
assimilation algorithms - chapter 19).

• Schlatter T.W., 2000, Variational Assimilation of Meteorological Obser-
vations in the Lower Atmosphere: a Tutorial on How it Works, Journal
of Atmospheric and Solar-Terrestrial Physics 62, pp. 1057-1070.

• Mathematics Aide Memoir handout.

Note that page numbers on the slides and on the handouts do not always match.
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1. Introduction

1(a) Inverse problems

Field Example inverse problem to be solved

Medical diagnosis What is the 3-D structure of biological tissues from X-ray images (CAT
scan)?

Seismology Determination of subterranean properties from seismic data (e.g. porosity,
hydrocarbon content)

Astrophysics Determination of the internal structure of the Sun from surface observations
Astronomy Orbit determination from observations
Astronautics Landing a spacecraft safely on another planet

Parameter estimation Determination of unknown model parameters
Atmospheric pollution What is the source/sink �eld of an atmospheric pollutant?
Atmospheric retrievals What is the vertical pro�le of atmospheric quantities from remotely sensed

observations?
Weather forecasting What are the initial conditions (e.g. u, v, T , p, q, cloud, SST, salinity) of an

atmosphere or ocean forecast model that agrees with the latest observations?

Alternative names: data assimilation, retrievals, inverse modelling, history matching, data fusion, maximum entropy.
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1(b) Notation

xA analysis state
xB background state
δx incremental state
Sometimes x and y are for only one time
x-vectors have n elements in total
y-vectors have p elements in total

Example use of these vectors:

x = xt + η, x,xt,η ∈ Rn y(t) = ht(x
t(t)) + ε y(t), ε ∈ Rp ht : Rn → Rp

ymo(t) = ht(x(t)) will be called 'model observations'. This is the forward problem. Inverse problem tries to do opposite.
Always assume that we can solve the forward problem (�what are the model observations given a model state�).
EXERCISE IN MATRIX MANIPULATION - PROBLEM 1.
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WHETHER x REFERS TO A RANGE OF TIMES OR JUST t = 0 DEPENDS UPON THE CONTEXT.
ALSO USE RESULTS THAT GIVE THE GRADIENT AND HESSIAN OF A COST FUNCTION - PROBLEM 2.
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1(c) History of data assimilation in meteorological operations and the data assimilation

cycle

Subjective 'data assimilation' 1910s, 1920s

• LF Richardson (Weather Prediction by Numerical Process,
1922) attempted a hind-cast (by hand!) for 20th May
1910.

• Primitive equation-based forecast model: resolution ∆λ =
3◦, ∆φ = 1.8◦, 5 vertical levels.

• 'Data assimilation' was done for mass variables (T, p) sep-
arately from wind variables (u, v) (i.e. univariate) by in-
terpolating observations subjectively.

• A disastrous forecast: ∆P/∆t ≈ 145 hPa /6 hours.

• Catastrophic growth rate not due to the model, but due
to inadequate data assimilation � the mass and wind were
out of balance.

• Bjerknes, 1911, described the analysis problem as, �The
ultimate problem in Meteorology�.
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Successes in NWP, 1940s, 1950s

• Success with �ltered dynamical models containing bal-
anced motion only (e.g. barotropic vorticity equation),
even with subjective analysis - Charney Fjörtoft, von Neu-
mann, 1950.

• BVE is less accurate than the primitive equations, but is
insensitive to imbalances in the initial conditions (there are
no gravity waves in the BVE).

• ENIAC (Electronic Numerical Integrator and Computer)
- (~0.2 ms to add two numbers, ~2.5 ms to multiply to
numbers, inputs and outputs via punched cards).

• [We now use primitive equations for NWP, but with DA
that inhibits imbalance.]



8

Beginnings of objective analysis: polynomial �tting, late 1940s

• Fit a polynomial expansion to observations.

• Made no account of observation accuracy.

• Di�erent variables treated independently (univariate).

• Direct observations only.

• Unrealistic values in data voids.
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Cressman analysis / method of successive corrections, 1950s, 1960s

• Use prior knowledge (a background state).

• Provides information in data voids.

• Prior knowledge can come from climatology or a previous
forecast.

• Latter leads on to the 'data assimilation cycle'.

x0
i = �rst guess (background)

xn+1
i = xni +

∑Kn
i

k=1W
n
ik(yk − x̃nk)∑Kn

i

k=1 (W n
ik + ε2k)

• xni estimate of �eld at grid point i after the nth iteration.

• x̃nk �eld value at grid location closest to observation k.

• W n
ik weight of in�uence of observation k on grid point i

(reduces with distance).

• Kn
i number of observations within distance Rn of grid

point i.

• yk kth observation value.

• εk controls the degree of in�uence of the observations on
the analysis (diminishing in�uence as ε→∞).
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Nudging (Newtonian relaxation), 1970s - present

• Allows the analysis to be combined with the background
state smoothly.

• Relies on an intermediate analysis, xint (e.g. from SCM).

• xint to be introduced over a timescale τ .

• Model equations:
∂x

∂t
= f(x),

• ... are modi�ed to:

∂x

∂t
= f(x)− x− xint

τ
.

'
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Example with a scalar (x) for a persistence model (f(x) = 0):

dx

dt
= −x− xint

τ
,

⇒ x(t) = xint + (x(0)− xint) exp− t
τ
.
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Optimal interpolation, 1970s / 1980s

�
�

�
�

xA = xB + BHT(R + HBHT)−1(y − h(xB))

• A formal way of combining observations and models.

• Intimately related to method of least squares.

• Represents uncertainties of all information.

• Too expensive to solve for the global system (solve for
patches and glue together for 'global' analysis).

• Need accurate estimates of B and R matrices.

• xA analysis state (posterior) ∈ Rn.

• xB background state (prior) ∈ Rn.

• B background error covariance matrix (accounts for un-
certainty in xB) ∈ Rn×n.

• y observation vector ∈ Rp.

• h observation operator Rn → Rp.

• H Jacobian of h ∈ Rp×n.

• R observation error covariance matrix (accounts for un-
certainty in y) ∈ Rp×p.
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Variational methods (VAR), 1990s / 2000s

• Broadly speaking (in the case of 3D-VAR) a way of solving
the OI equations e�ciently.

• Construct a cost functional, J [x] as the sum of squares of
deviations from data.

• Analysis is de�ned as the x that minimizes J [x].

• B is not applied as an explicit matrix, but is instead
modelled (see later).

• E�cient enough for a truly global analysis.

• Still need accurate estimates of B and R matrices. B is
usually static.

• Variants: 1D-VAR / 3D-VAR / 4D-VAR / etc. (see later).

• Example for strong constraint 4D-VAR:

J(x) =
1

2
(x− xB) TB−1 (x− xB) +

1

2

T∑
t=0

(y(t)− ht[Mt←0(x)])T R−1
t ×

(y(t)− ht[Mt←0(x)]) ,

where x is the state vector at t = 0.

Part I of this course is mainly about variational methods.
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Ensemble methods 2000s / 2010s

• The spread in an ensemble of N background forecasts has
information about background uncertainty, member i x(i).

• Flow-dependent background error covariances, Pf .

• Formulation starts with the OI equation (B → Pf), but
for an ensemble of states.

• Does not need the Pf-matrix explicitly.

• Severe rank de�ciency problems with Pf due to undersam-
pling (use, e.g., localization techniques to overcome).

• Deterministic (square-root) and non-deterministic (non-
square-root) formulations exist - see part II of the course.

Pf ≈ Pf
(N) =

1

N − 1

N∑
i=1

〈(
x(i) − 〈x〉

)(
x(i) − 〈x〉

)T
〉
,

〈x〉 ≈ 1

N

N∑
i=1

x(i).
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Hybrid methods 2010s

• Combine the robustness of the B-matrix with the �ow-dependence of the Pf-matrix.

• Most simple is the arithmetic average:
PH = αB + (1− α)Pf

(N)

• Solve a VAR-like problem but B→ PH.

• Still need localization methods.

• Other approaches exist too.

• Uses methods that avoid the need to hold large matrices explicitly.
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The data assimilation cycle
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1(d) The scale/challenges of the operational problem

• The atmosphere is large ∼ 5 billion km3.

• All forecasts are wrong (even if models were perfect - chaos) and all observations are imperfect.

• n is very large, e.g. nλ ≈ 1000, nφ ≈ 800, nl ≈ 70, nparam = 6, ∴ n ∼ nλ × nφ × nl × nparam ∼ O(350× 106).

• Do not have the computer power to deal with matrices B, Pf , etc. O(n× n) ∼ O(1017).

• Do not have enough information to completely determine B, Pf , etc.

• Huge numbers of diverse observations from all over the world and from satellites, p ∼ O(106).

• Many observations are indirect, and they are sparse in some places (especially over oceans and in upper parts of the
atmosphere).

• A sensible analysis must be found even if observations are unavailable.

• Some observations have problems (e.g. instrument biases).

• Model and observation operators may be non-linear (M, h).

• For VAR methods, need linearizations (M, H), and their adjoints (MT, HT), and we usually don't know these operators
as explicit matrices.

• Model and observation operators are imperfect (�model error�) and the model state cannot represent �ow on all scales
(�representivity error�).

• The conditioning of the minimization problem can be very bad leading to ine�ciencies and inaccuracies in determining the
solution (see later).
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2. Variational techniques

2(a) The Euler-Lagrange equations

This section teaches us formally about the variational solution of an inverse problem, backward (or adjoint) variables and the
strong and weak constraint formulations. The method of representers, used to solve the Euler-Lagrange equations, is introduced.

Statement of problem

What is the optimal state, φ(x, t) of the 1-D system whose dynamics are governed by

∂φ

∂t
+ u

∂φ

∂x
− F = e, (1)

which lies close to some given observations, some initial conditions and some boundary conditions?The symbols have the following
meanings:

• φ unknown tracer concentration,

• u known, but constant advection speed,

• F known source �eld, which may vary in time and space

• e unknown model error, which may vary in time and space.
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The (imperfectly known) information we have about the system is (see Fig.):

• φ(x, 0) ≈ I(x) imperfectly known initial conditions (i.c.s), 0 ≤ x ≤ L,

• φ(0, t) ≈ B(t) imperfectly known boundary conditions (b.c.s), 0 ≤ t ≤ T , and

• ym imperfect observation of the system (a direct observation of φ(xm, tm)), 1 ≤ m ≤ p.

The error standard deviations of all the data are speci�ed as:

• W−1/2
ic a-priori i.c. error standard deviation,

• W−1/2
bc a-priori b.c. error standard deviation,

• W−1/2
ob observation error standard deviation, and

• W−1/2
e model error error standard deviation.

The a-priori state φB(x, t) satis�es the known bits of the problem (the speci�ed i.c.s and b.c.s, and (1) with e = 0):

∂φB

∂t
+ u

∂φB

∂x
− F = 0, φB(x, 0) = I(x), φB(0, t) = B(t). (2)
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Strong vs weak constraint formulations of the problem

• Strong constraint: impose the known parts of the system equations exactly (i.e. we assume that e = 0, even though in
reality e 6= 0). We still allow for imperfections in the other pieces of information though (i.c.s, b.c.s and obs.).

� Construct a cost function measuring the departure between an arbitrary �eld φ, and the i.c.s, b.c.s and obs.

� Impose (1) (e = 0) as a constraint using the method of Lagrange multipliers.

� Minimum of the cost function leads to strong constraint Euler-Lagrange equations.

• Weak constraint: impose the system equations approximately (i.e. allow for the fact that e 6= 0). Also allow for
imperfections in the other pieces of information (i.c.s, b.c.s and obs).

� Construct a cost function measuring the departure between φ and the i.c.s, b.c.s, obs. and the system equation.

� Minimum of the cost function leads to weak constraint Euler-Lagrange equations.

� Can control the degree to which the system equations are satis�ed with a parameter, We.

� Is equivalent to the strong constraint formulation when We →∞.

The weak constraint formulation is the most general, so we look only at that.

The weak constraint formulation

The weak constraint formulation imposes the known parts of the system equations approximately (that is we acknowledge that
there is unknown model error). In order to �nd the optimal solution to the problem in this formulation, construct a functional
J [φ] which measures the total departure between φand each of the i.c.s, the b.c.s, the obs., and the known parts of the system
equations:

J [φ] = Wic

L∫
x=0

dx{φ(x, 0)− I(x)}2 +Wbc

T∫
t=0

dt{φ(0, t)−B(t)}2 +

Wob

p∑
i=1

{φ(xi, ti)− yi}2 +We

L∫
x=0

dx

T∫
t=0

dt

{
∂φ

∂t
+ u

∂φ

∂x
− F

}2

. (3)



20

We ask the question: what φ(x, t) makes J [φ] stationary?

Variations of J Construct variations of J about some reference �eld φ̂, i.e. J [φ̂+ δφ] = J [φ̂] + δJ |φ̂, where:

δJ |φ̂ =

L∫
x=0

dx

T∫
t=0

dt
∂J

∂φ
|φ̂δφ+O(δφ2),

= 2Wic

L∫
x=0

dx{φ̂(x, 0)− I(x)}δφ(x, 0) + 2Wbc

T∫
t=0

dt{φ̂(0, t)−B(t)}δφ(0, t) +

2Wob

p∑
i=1

{φ̂(xi, ti)− yi}δφ(xi, ti) +

(∗) 2We

L∫
x=0

dx

T∫
t=0

dt

{
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

}{
∂δφ

∂t
+ u

∂δφ

∂x

}
+O(δφ2). (4)

De�ne: µ̂(x, t) = We

(
∂φ̂

∂t
+ u

∂φ̂

∂x
− F

)
. (5)

(*) in (4) is then: 2

L∫
x=0

dx

T∫
t=0

dt µ̂

{
∂δφ

∂t
+ u

∂δφ

∂x

}
.

Changing form We would like to have terms to do with δφ at di�erent positions and times. The line marked (*) in (4) is not
in the required form as it involves derivatives of δφ in space and time. Use the integration by parts formula to rewrite (*). In
generic form the integration by parts formula is:

b∫
a

v
du

dx
dx = [uv]ba −

b∫
a

u
dv

dx
dx. (6)
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Using this to rewrite the �rst term in (*):

T∫
t=0

dt µ̂
∂δφ

∂t
= [δφ(x, t)µ̂(x, t)]T0 −

T∫
t=0

dt δφ
∂µ̂

∂t
,

= δφ(x, T )µ̂(x, T )− δφ(x, 0)µ̂(x, 0)−
T∫

t=0

dt δφ
∂µ̂

∂t
, (7)

and the second term in (*):

L∫
x=0

dx µ̂u
∂δφ

∂x
= u[δφ(x, t)µ̂(x, t)]L0 −

L∫
x=0

dx uδφ
∂µ̂

∂x
,

= uδφ(L, t)µ̂(L, t)− uδφ(0, t)µ̂(0, t)−
L∫

x=0

dx uδφ
∂µ̂

∂x
. (8)

Note also for the observation term:

{φ̂(xi, ti)− yi}δφ(xi, ti) =

L∫
x=0

dx

T∫
t=0

dt {φ̂(xi, ti)− yi}δφ(x, t)δ(x− xi)δ(t− ti). (9)
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These make (4) into:

δJ |φ̂ = 2Wic

L∫
x=0

dx
{
φ̂(x, 0)− I(x)

}
δφ(x, 0) + 2Wbc

T∫
t=0

dt
{
φ̂(0, t)−B(t)

}
δφ(0, t) +

2Wob

L∫
x=0

dx

T∫
t=0

dt

p∑
i=1

{
φ̂(xi, ti)− yi

}
δ(x− xi)δ(t− ti)δφ(x, t) +

2


L∫

x=0

dx µ̂(x, T )δφ(x, T )−
L∫

x=0

dx µ̂(x, 0)δφ(x, 0)−
L∫

x=0

dx

T∫
t=0

dt
∂µ̂

∂t
δφ(x, t)+

T∫
t=0

dt uµ̂(L, t)δφ(L, t)−
T∫

t=0

dt uµ̂(0, t)δφ(0, t)−
T∫

t=0

dt

L∫
x=0

dx u
∂µ̂

∂x
δφ(x, t)

+O(δφ2). (10)

The Euler-Lagrange equations for the weak constraint formulation Setting the linear part of (10) to zero, using the
model equation (1), and de�nition (21) gives Euler-Lagrange equations for the weak constraint:'

&

$

%

∂φ̂

∂t
+ u

∂φ̂

∂x
− F = W−1

e µ̂, (11)

Wic{φ̂(x, 0)− I(x)} − µ̂(x, 0) = 0, (12)

Wbc{φ̂(0, t)−B(t)} − uµ̂(0, t) = 0, (13)

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)−
(
∂µ̂

∂t
+ u

∂µ̂

∂x

)
= 0, (14)

µ̂(x, T ) = 0, (15)

µ̂(L, t) = 0. (16)

(11) is known as the forward equation, and (12)/(13) are its initial/boundary conditions. (14) is known as the backward
equation, and (15)/(16) are its conditions. Note that the strong constraint is a limit of the weak constraint when W−1

e → 0. The
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solution to these Euler-Lagrange equations for φ̂ solves the original problem that we posed in Section 1 (with the acknowledgement
of an imperfect model). The next section outlines how these equations can be solved using the method of representers.

Solving the weak-constraint Euler-Lagrange equations using the method of representers

The forward equation (11) is solved for φ̂(x, t) 'upwards and to the right' (since the conditions for φ̂ are given for x = 0 and

t = 0, see Fig.), and the backward equation (14) is solved for µ̂(x, t) 'downwards and to the left' (since the conditions for φ̂ are
given for x = L and t = T , see Fig.).

Problem: In order to solve (11) for φ̂(x, t), µ̂(x, t) is needed, but in order to solve (14) for µ̂(x, t), φ̂(x, t) is needed! The set of
Euler-Lagrange equations must be all solved together.

The way that we will solve the Euler-Lagrange equations is by the method of representers. In this method we de�ne a set of
forward and backward 'representer functions' which will solve a set of modi�ed equations which we shall propose. We then form
the solution of the full Euler-Lagrange equations as a special linear combination of the representer functions.

Recipe for the solution using the method of representers

1. Solve the background problem (2) for φB(x, t). This is an exercise in solving partial di�erential equations (PDEs) analytically
or numerically.

2. De�ne the p forward representer functions and the p backward representer functions (one each per observation) as:

Forward representer function ri(x, t)
Backward representer function αi(x, t)

}
1 ≤ i ≤ p.

The modi�ed equations that these representers satisfy are based on the Euler-Lagrange equations, but have φ̂→ ri, µ̂→ αi,
F = 0, I(x) = 0, B(t) = 0 and replace the observations with a single impulse at the position and time of the ith
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observation (Wob

∑p
i=1{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti)→ δ(x− xi)δ(t− ti)).

∂ri
∂t

+ u
∂ri
∂x

= W−1
e αi, (17)

Wicri(x, 0)− αi(x, 0) = 0, (18)

Wbcri(0, t)− uαi(0, t) = 0, (19)

δ(x− xi)δ(t− ti)−
(
∂αi
∂t

+ u
∂αi
∂x

)
= 0, (20)

αi(x, T ) = 0, (21)

αi(L, t) = 0. (22)

3. Start with the backward representers. Solve (20), (21) and (22) for each i 'downwards and to the left' (again an exercise
in solving PDEs). This gives the p backward representers, αi(x, t). In the modi�ed equations, the backward representers
do not depend upon the forward representers, ri(x, t).

4. Now �nd the forward representers. Solve (17), (18) and (19) for each i 'upwards and to the right' (again an exercise in
solving PDEs). This gives the p forward representers, ri(x, t), which can be found because the αi are now known.

5. Look for a solution of φ̂(x, t) (the �eld that we are really interested in) that is a linear combination of the forward representer
functions:

φ̂(x, t) = φB(x, t) +

p∑
i=1

βiri(x, t), (23)

where the βi are the coe�cients which are determined by insisting that φ̂(x, t) satis�es the Euler-Lagrange equations.
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6. To make (23) satisfy the Euler-Lagrange equations, act with ∂/∂t+ u∂/∂x on (23), then use (11), (2) and (17):

∂φ̂

∂t
+ u

∂φ̂

∂x
=

∂φB

∂t
+ u

∂φB

∂x
+

p∑
i=1

βi

(
∂ri
∂t

+ u
∂ri
∂x

)
,

⇒ F +W−1
e µ̂ = F +

p∑
i=1

βiW
−1
e αi,

⇒ µ̂(x, t) =

p∑
i=1

βiαi(x, t). (24)

7. Substitute (24) into (14), then use (23) and (20):

Wob

p∑
i=1

{φ̂(xi, ti)− yi}δ(x− xi)δ(t− ti) =

p∑
i=1

βi

(
∂αi
∂t

+ u
∂αi
∂x

)
,

⇒ Wob

p∑
i=1

{φB(xi, ti) +

p∑
j=1

βjrj(xi, ti)− yi}δ(x− xi)δ(t− ti) =

p∑
i=1

βiδ(x− xi)δ(t− ti). (25)

8. Equate coe�cients of impulses in (25):

Wob

{
φB(xi, ti) +

p∑
j=1

βjrj(xi, ti)− yi

}
= βi,

⇒ Wob {φB(xi, ti)− yi}+

p∑
j=1

{Wobrj(xi, ti)− δij} βj = 0, (26)

where δij is the Kronecker delta-function. This is the equation that we have to solve for the βi coe�cients. Once these are
known, the solution can be built using (23).
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Finding the coe�cients Equation (26) is the remaining equation to solve. We will use some linear algebra (vectors and
matrices) to do this. This is a standard procedure in a wide range of numerical analysis problems. Let the vectors y ∈ Rp, β ∈ Rp

and φob
B ∈ Rp (bold symbols) represent the following collections of information:

y =


y1

y2
...
yp

 , β =


β1

β2
...
βp

 , φob
B =


φB(x1, t1)
φB(x2, t2)

...
φB(xp, tp)

 .

These represent (respectively) the observations, the (as yet) unknown coe�cients that we are trying to �nd and the background
values at the observation positions and times. The equations represented by (26) (1 ≤ i ≤ p) may be written in linear algebraic
form:

Wob

(
φob

B − y
)

+ (WobP− I)β = 0,

where P ∈ Rp×p is

P =


r1(x1, t1) r2(x1, t1) · · · rp(x1, t1)
r1(x2, t2) r2(x2, t2) · · · rp(x2, t2)

...
... . . . ...

r1(xp, tp) r2(xp, tp) · · · rp(xp, tp)

 ,

and I ∈ Rp×p is the identity matrix. All of these vectors and matrices are known except for β. Providing that the matrix
WobP− I is full rank, then the solution is found to be

β = Wob (WobP− I)−1 (y − φob
B

)
.

PROBLEM 3 ON METHOD OF REPRESENTERS.

2(b) Error covariance matrices

In the Euler-Lagrange equations, we used, e.g., W
−1/2
ic and W

−1/2
ob . These are the standard deviations of the errors in the initial

conditions, I(x), and the observations, yi, respectively. Increasing (decreasing) the value of W
−1/2
ic will decrease (increase) the

weight that the information that I(x) holds in the inverse problem (similarly for W
−1/2
ob and the information in yi).
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If we represent I(x), yi and φ(x, t) as the vectors xB, x and y (respectively), then the initial condition and observation terms
in (3) take the form of inner products:

Wic

L∫
x=0

dx{φ(x, 0)− I(x)}2 → (x(0)− xB)TPf−1(x(0)− xB),

Wob

p∑
i=1

{φ(xi, ti)− yi}2 → (h(x)− y)TR−1(h(x)− y),

where h(x) in this case returns a vector of model observations at each observation's position and time and

Pf =


σ2

B 0 · · · 0

0 σ2
B · · ·

...
...

... . . . ...

0
... · · · σ2

B

 , σB = W
−1/2
ic ; R =


σ2

O 0 · · · 0

0 σ2
O · · ·

...
...

... . . . ...

0
... · · · σ2

O

 , σO = W
−1/2
ob .

(PROBLEM 4 TO SHOW THAT THESE FORMS ARE EQUIVALENT.) (In the case of the initial conditions we have moved from
the continuous to a discrete system.)

In this case the initial condition uncertainty is homogeneous (σB does not change with position or time) and initial condition
errors at di�erent locations are not correlated (Pf is diagonal), and observation uncertainty is constant (σO does not change with
observation) and observation errors are not correlated (R is diagonal). The former situation in particular is not at all realistic (from
now on Pf will be assumed not to be diagonal), but the roles of the error covariance matrices still have the e�ect of weighting the
information that it represents the error covariances of (large value in error covariance matrix → smaller weight of the information
in the data assimilation).

2(c) Cost functions and simpli�cations for operational assimilation

The Euler-Lagrange approach to solving the inverse problem is tricky to apply to complicated models. In operational systems, a
cost function is formulated and then minimized using descent algorithms. Here we consider some standard forms of cost functions,
starting from the most general and progressively getting simpler (and hence easier and cheaper to deal with).
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Weak constraint 4D-VAR

The form of the cost function that is as general as we will consider accounts for as many sources of error as possible (background
error, observation error, model error). This is WC 4D-VAR: (WRITE THIS ON THE BOARD AS WELL AS SHOWING ON THE
SCREEN - FOR COMPARISON WITH SC 4D-VAR.)

Jwc[x] =
1

2
[x(0)− xB(0)]T Pf−1 [x(0)− xB(0)] +

1

2

T∑
t=0

[y(t)− ht (x(t))]T R−1
t [y(t)− ht (x(t))] +

1

2

T∑
t=1

T∑
t′=1

[x(t)−Mt←t−1 (x(t− 1))]T (Q−1)tt′ [x(t′)−Mt′←t′−1 (x(t′ − 1))] .

Here x is called the control variable and is the 4D state vector:

The �rst term penalizes mis�t to the background state at t = 0 under the Pf norm.
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The second term penalizes mis�t to the observations at each time under the Rt norm.
The third term penalizes mis�t to the solution of the numerical model at each pair of times under the Qtt′ norm. Given the

state vector at neighbouring times, x(t) and x(t− 1), we want x(t) to be close to Mt←t−1 (x(t− 1)).
Weak constraint 4D-VAR gives a 4D solution that is close to the a-priori, close to the observations and close to a model

trajectory. It does not need to follow a model trajectory exactly.
For the Fig.

• If the background were used as a forecast then the forecast would not agree well with the observation.

• In this example the observation is a direct observation of the state (the curves between each time level are just for e�ect).

• The weak constraint analysis is in terms of the state at each time.

• Want to minimize the deviation between x(0) and xB(0), between x(4) and the observation, and minimize the jumps at
each time in x(t).

Even though we have considered this a general cost function, we have still made some assumptions:

• Assume that the errors in the quantities (a-priori, observations, numerical model) are random (e.g. unbiased), and obey
Gaussian statistics.

• Assume that the error covariance matrices Pf , Rt and Qtt′ correctly describe the error covariances.

• Assume that the observation operator ht is perfect.

• Assume that all observations are instantaneous, i.e. have the form ht (x(t)) and not ht (x(t),x(t− 1),x(t− 2), . . .). An
example of the latter kind of operator is for rainfall accumulation.

• Assume that the observation errors are uncorrelated in time.

Simpli�cation 1: Assume model errors are uncorrelated in time (white noise)

(Q−1)tt′ → δtt′(Q
−1)tt.
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Simpli�cation 2: Static forecast error covariance matrix

Pf → B

• Pf : this matrix changes with the �ow (e.g. recognizes areas that are forecast well and those that are forecast badly). This
matrix is almost impossible to determine well.

• B: this matrix is static (doesn't change from one time window to the next). It contains information on the climatological
average error covariances of forecasts. This matrix is still di�cult to determine, but is possible to approximate.

This is pragmatic choice - the information that would be present in Pf is extremely important, but is not technologically possible
to deal with currently. Q is also a very di�cult matrix to deal with (hence simpli�cation 3).
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Simpli�cation 3: Assume that the numerical model is perfect (strong constraint 4D-VAR)

If we assume that the model is perfect (or at least good enough over the time window), then we only need to determine the initial
conditions. The control vector is now the 3D state at the start of the time window:

x = x(0),

and the state at later times is found from the numerical model:

x(t) = Mt←0(x).

The SC 4D-VAR cost function now has just background and observation terms:

Jsc[x] =
1

2
(x− xB)TB−1(x− xB) +

1

2

T∑
t=0

[y(t)− ht (Mt←0(x))]T R−1
t ×

[y(t)− ht (Mt←0(x))] ,

Mt←0(x) =

{
Mt←t−1 (· · ·M2←1 (M1←0(x))) t > 0

I t = 0
.

This is equivalent to making Qtt → 0 in the weak constraint
cost function.
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The strong constraint is useful when model errors introduced over the time window are negligible compared to other errors.
For use with global-scale weather models, SC 4D-VAR has T = 12 hours typically, for use with mesoscale weather models, SC
4D-VAR has T = 6 hours, for use with convective-scale weather models, SC 4D-VAR has T = 3 hours.

Potential problems with the SC 4D-VAR formulation

• The real world is not a model trajectory.

• The SC 4D-VAR may have to make a less realistic analysis at t = 0 (than for WC 4D-VAR at t = 0) to be close to an
observation at a later time. This is an example of aliasing (where one error can project onto another - in this case the
(inevitable, but neglected) model error can be (wrongly) interpreted as background error.
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Simpli�cation 4: Incremental data assimilation

In the previous formulations, the operators ht and M can be non-linear functions. This means that the cost function is no longer
a quadratic function of the control variable, x. Algorithms that minimize functions in multi-dimensions are almost always designed
for quadratic functions. A solution is to linearize the operators and the deal with increments to the control variable, which are
assumed to behave linearly.

De�ne (for time t) a full state x(t), a reference state xref
k (t), and an increment δx(t):�

�
�
x(t) = xref

k (t) + δx(t).

Linearizing the forecast model:

x(t) = Mt←t−1(x(t− 1)),

xref
k (t) + δx(t) = Mt←t−1

(
xref
k (t− 1) + δx(t− 1)

)
,

' Mt←t−1

(
xref
k (t− 1)

)
+ Mt←t−1δx(t− 1),

δx(t) = Mt←t−1δx(t− 1),

where the reference state

xref
k (t) ≡ Mt←t−1

(
xref
k (t− 1)

)
,

and Mt←t−1 ≡
∂Mt←t−1 (x(t− 1))

∂x(t− 1)

∣∣∣∣
xref
k

∈ Rn×n,

with matrix elements

{Mt←t−1}ij =
∂ {Mt←t−1 (x(t− 1))}i

∂ {x(t− 1)}j

∣∣∣∣∣
xref
k

.

Linearizing the observation operator:

ymo(t) = ht(x(t)),

= ht
(
xref
k (t) + δx(t)

)
,

' ht
(
xref
k (t)

)
+ Htδx(t),

' ymo
ref,k(t) + Htδx(t),

δymo(t) = Htδx(t),

where δymo(t) ≡ ymo(t)− ymo
ref,k(t),

and Ht ≡
∂ht(x(t))

∂x(t)

∣∣∣∣
xref
k

∈ Rp×n,

with matrix elements

{Ht}ij =
∂ {ht(x(t))}i
∂ {x(t)}j

∣∣∣∣∣
xref
k

.

(PROBLEM 5 FOR AN EXAMPLE OF LINEARIZING A NON-LINEAR OPERATOR.)
By writing the background as a perturbation with respect to the reference state, xB(t) ≡ xref

k (t) + δxB(t), and de�ning
δy(t) ≡ y(t)− ht

(
Mt←0(x

ref
k )
)
, the strong constraint cost function becomes:
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J4Dinc[δx] =
1

2
(δx− δxB)TB−1(δx− δxB) +

1

2

T∑
t=0

[δy(t)−HtMt←0δx]T R−1
t [δy(t)−HtMt←0δx] .

• The control variable is δx = δx(0) in this incremental formulation.

• Later we will call δy(t)−HtMt←0δx the residual vector, r(t).

• J4Dinc[δx] is exactly quadratic in δx and so is easier to minimize than J4D[δx].

• If the value of δx that minimizes this is δxA ('inner loop'), then the analysis is

xA = xref
k + δxA.

• Set xref
k+1(t) = xA and repeat ('outer loop').

Simpli�cation 5: 3D-VAR, with the �rst guess at the appropriate time (3D-FGAT)

This is the same cost function as for SC 4D-VAR, but with Mt←0 → I:

J3DFGAT[δx] =
1

2
(δx− δxB)TB−1(δx− δxB) +

1

2

T∑
t=0

[δy(t)−Htδx]T R−1
t [δy(t)−Htδx] ,

where, recall
δy(t) ≡ y(t)− ht

(
Mt←0(x

ref
k )
)
.

In 3D-FGAT, the non-linear nature of the model and observation operators are accounted for for the reference state, but linear
corrections do not include the linear model Mt←0.
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Simpli�cation 6: 3D-VAR

In 3D-VAR there is no time evolution accounted for at all. Now δy ≡ y−h
(
xref
k

)
, where observations spread throughout the time

window lose their time label and are considered to be at one time. In order for the errors introduced by the 3D-VAR approximation
to be as small as possible, observations should be as close as possible in time to the analysis time. The 'zero of time' used in
3D-VAR is shifted with respect to that of 4D-VAR.

Potential problems in going from 4D-VAR to 3D-VAR

• The real world is not static.

• Signi�cant errors are introduced if the di�erence in the model observations h
(
xref
k

)
and ht

(
Mt←0(x

ref
k )
)
are signi�cant

compared to the observation errors.
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2(d) Optimal interpolation and physical space analysis systems

Optimal interpolation

If the observation operator is linear (h(x) = Hx), and the reference state is taken as the background, xref = xB then the state
that minimizes the 3D-VAR cost function is given by the optimal interpolation (OI) or best linear unbiased estimator (BLUE)
formula:

xA = xB + BHT(R + HBHT)−1do
b,

where do
b = y − h(xB) is called the innovation vector. Using this explicit form for the analysis is less e�cient than running a

3D-VAR procedure, but it is useful for two reasons:

1. As it is equivalent to VAR (for linear h), it is a useful formula for understanding the way that VAR works.

2. It has a very similar form to the analysis step in the Kalman Filter, and is a starting point for derivations of the ensemble
Kalman Filter equations.

Note that the OI formula can be written in a way that is equivalent to 4D-VAR too.

Physical space analysis system

A physical space analysis system is a variational method that is equivalent to evaluating the OI equation/running 3D-VAR, but
is more e�cient when p� n. Instead of minimizing a cost function with respect to the n-dimensional 3D-VAR control vector x
(or δx in the incremental formulation), PSAS minimizes an alternative cost function with respect to a new p-dimensional control
vector that we shall call w. Start with the OI formula:

1. Calculate the innovation, do
b.

2. Calculate w∗ = (R + HBHT)−1do
b (see below for how to do this e�ciently).

3. Act with BHT and add to xB

xA = xB + BHTw∗.

A di�cult part is in step 2 as it requires the inverse of a p × p matrix (even though p � n, p can still be large). This matrix
inversion can be avoided by solving the following new variational problem with respect to w:

J [w] =
1

2
wT(R + HBHT)w −wTdo

b.
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The minimum of this cost function is the special value of w = w∗ as in step 2.

3. A-priori information and the B-matrix

3(a) The null space of the observation operator and the importance of a-priori information

Recall that the state vector and the observations are related via the observation operator (forward problem):

y = h(xt) + ε,

= Hxt + ε if the obs. operator is linear,

y, ε ∈ Rp h,H : Rn → Rp,

and assume (unbiased) Gaussian statistics:
〈ε〉 = 0,

〈
εεT
〉

= R.

The PDF for ε given x is the truth is the Gaussian:

Pε(ε|x) =
1

(2π)p/2|R|1/2
exp−1

2
εTR−1ε

= C exp−1

2
(y −Hx)T R−1 (y −Hx) = Py(y|x),

C =
1

(2π)p/2|R|1/2
.

In the inverse problem, we treat x as the variable instead of ε or y and de�ne the likelihood function, L(x|y) = Py(y|x). Note
that the cost function is de�ned as JO(x) = − lnL(x|y). The maximum likelihood solution is equivalent to the minimum variance

solution given by:

xML/MV =
(
HTR−1H

)−1
HTR−1y.

(PROBLEMS 6 & 7 TO FIND THE FOLLOWING RESULT BY USING EACH METHOD) If p < n (or, more strictly, if rank(H) <
n) then the inverse problem of estimating x from y is ill-posed. How can we show this? Do an eigenvalue decomposition of the
operator that is inverted, HTR−1H:

HTR−1H = VΛVT,
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V is the orthogonal matrix of eigenvectors, VTV = I, and Λ is the diagonal matrix of eigenvalues. The rank of HTR−1H is the
number of non-zero eigenvalues. Inverting both sides and using the orthogonal property of V (VT = V−1):(

HTR−1H
)−1

= VΛ−1VT.

Say the rank of VΛVT is q(< n), then

Λ =



λ1

λ2
. . .

λq
0

0
. . .


, Λ−1 =



λ−1
1

λ−1
2

. . .
λ−1
q

∞
∞

. . .


.

The solution has a meaning only within the subspace (space of eigenvectors) de�ned by the non-zero eigenvalues. The space
spanned by the eigenvectors with zero eigenvalue is called the null space. This is how the rank de�ciency issue manifests itself in
the data assimilation problem. In real problems, usually p < n and so this is an issue in operational data assimilation.

The MAP/MV analysis is not unique when there is a null space. Let x(1) be one solution of the inverse problem. Let us take
the Taylor expansion of JO(x):

JO(x(1) + δx) = JO(x(1)) +
∂JO

∂x
δx +

1

2
δxT∂

2JO

∂x2
δx,

= JO(x(1)) + 0 +
1

2
δxTHTR−1Hδx.

(At the minimum of JO, the gradient ∂JO/∂x = 0. The Hessian ∂2JO/∂x2 = HTR−1H.) δx represents a departure from x(1).
Let this be in the direction vk, which is the kth eigenvector of HTR−1H, where k > q (i.e. is within the null space so λk = 0).
Then

JO(x(1) + αvk) = JO(x(1)) + 0 +
α2

2
vT
kHTR−1Hvk = JO(x(1)) + 0 + 0,

i.e. the state x(1) + αvk has exactly the same cost (and likelihood) as x(1) (is equally likely).
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Physical example of an observation operator and null space

Let

x =

(
u
v

)
=

(
uniform zonal wind − ↔+

uniform meridional wind l+
−

)
,

y = measurement of wind component in a direction θ from E,

σ2
y = Error variance of measurement.

This measurement is given e.g. by a Doppler radar instrument.
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û is the unit vector in the line of sight of the radar beam,

û =

(
cos θ
sin θ

)
.

The model observation is therefore the projection of the wind, x along û:

H =
(

cos θ sin θ
)
, R = σ2

y,

HTR−1H =

(
cos θ
sin θ

) σ−2
y

(
cos θ sin θ

)
= σ−2

y

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

The eigenvalue and eigenvector matrices of this are:

Λ =

(
σ−2
y 0
0 0

)
, V =

(
cos θ − sin θ
sin θ cos θ

)
.

The �rst eigenvalue This eigenvalue, λ1 = σ−2
y and eigenvector v1 =

(
cos θ sin θ

)T
. This is the direction being observed.

The second eigenvalue This eigenvalue, λ2 = 0 and eigenvector v2 =
(
− sin θ cos θ

)T
. This is the null space of the

observing system. It is perpendicular to the direction being observed. Replacing x→ x + αv2 does not a�ect Hx. (PROBLEM
8 IS ANOTHER EXAMPLE OF A FORWARD MODEL)
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A-priori information The use of a-priori information eliminates the null space. Instead of dealing with L(x|y), we de�ne
Px(x|y) and deal with that. Px(x|y) (the posterior distribution) is found via Bayes' theorem:

Px(x|y) =
Px(x)Py(y|x)

Py(y)
.

(Again the cost function is de�ned as − lnPx(x|y). Assuming that Px(x) (the prior distribution) obeys Gaussian statistics
(mean xB and covariance Pf) this has a maximum at x = xA:

xA = xB + PfHT
(
R + HPfHT

)−1
(y − h(xB)),

= xB +
(
Pf−1 + HTR−1H

)−1
HTR−1(y − h(xB)),

by the Shermann-Morrison-Woodbury formula. The important matrix is now Pf−1+HTR−1H instead of HTR−1H. A-priori
information �lls data voids, and it also regularizes the problem in the way described here (like Tikhonov regularization).

3(b) The role of the background error covariance matrix

We saw in Sec. 2(b) that error covariance matrices weight the information according to the uncertainty of the data via the
variances, σ2

B. Covariance matrices also have a non-local e�ect due to correlations between errors at di�erent positions and di�erent
variables (PROBLEM 9 EXPLORES THE RELATIONSHIP BETWEEN COVARIANCE AND CORRELATION). Background error
covariances are special because the background state �lls the model space. Here are some other e�ects of the background error
covariance matrix.

• Pf allows the analysis increments to be smooth and balanced.

δxA = PfHT
(
R + HPfHT

)−1
(y − h(xB)),

= Pfv, where v = HT
(
R + HPfHT

)−1
(y − h(xB)),

=
n∑
i=1

pivi.

Here pi is the ith column of Pf and vi is the ith component of v (SEE PROBLEM 10 TO SHOW THIS). The pi can
be interpreted as states (i.e. �elds) and are called structure functions. This says that the analysis is a linear combination
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of structure functions. Structure functions tend to be smooth and (if they are realistic) close to a state of balance
(see Sec. 3d). THIS IS THE PATTERN OF THE ANALYSIS INCREMENT AFTER ASSIMILATION OF A SINGLE
PRESSURE OBSERVATION. THE EFFECT OF THE PRESSURE OBSERVATION IS NON-LOCAL AND MULTIVARIATE.
SEE PROBLEM 11.

• The analysis increments lie in the space spanned by Pf .
The spaced spanned by Pf is the space occupied by the sample of error states used to de�ne Pf :

Pf =
〈
(xB − xt)(xB − xt)T

〉
,

=
〈
ηBη

T
B

〉
,

≈ Pf
(N) =

1

N − 1

N∑
i=1

η
(i)
B η

(i)T
B , where η

(i)
B is the ith error sample,

=
1

N − 1
XXT, where X ∈ Rn×N and the ith column of X is η

(i)
B , (*)

∴ δxA = Pf
(N)v,

=
1

N − 1

N∑
i=1

η
(i)
B η

(i)T
B v =

1

N − 1

N∑
i=1

(
η

(i)T
B v

)
η

(i)
B ,

which is a linear combination of the sample states used to determine Pf . Thus the analysis increments cannot lie outside
of the sample space (this is especially a problem with the ensemble Kalman �lter). This highlights the need for a good
quality and large sample set (ideally N & n, although not practical). (*) THIS NOTATION IS INTRODUCED HERE
AS IT WILL BE USEFUL LATER - SEE PROBLEM 12 TO SHOW THIS.

In practical situations, the background error covariance matrix is too large to invert, or even to store, so we need to have e�cient
ways of modelling its e�ect. Some notes:

• We normally deal with a static version of the background error covariance matrix, i.e. Pf → B.

• There are spatial aspects of the background error covariance matrix (how does background error at one position correlate
to background error at another position?).
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• There are multivariate aspects of the background error covariance matrix (how does background error in one variable correlate
to background error in another?).

• We can see both of these aspects in the last Fig.
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3(c) Spatial aspects (inverse Laplacians, di�usion operators)

Inverse Laplacians

Consider the following form of a B-matrix for a single �eld
(univariate):

B = σ2
Bγ

(
1 +

l4

2
(∇2)2

)−1

,

∴ B−1 = σ−2
B γ−1

(
1 +

l4

2
(∇2)2

)
,

(where l is the (chosen) correlation length-scale and γ is a scalar
to ensure that B has the right magnitude). To help understand
this covariance model, what is the result of acting with B on an
arbitrary function f(x) in 1-D?

Let g(x) = B{f(x)} = σ2
Bγ

(
1 +

l4

2

d4

dx4

)−1

f(x).

This can be easily solved in Fourier space:

f(x) =
1√
2π

∫
dk f̄(k)eikx g(x) =

1√
2π

∫
dk ḡ(k)eikx,

f(x) = σ−2
B γ−1

(
1 +

l4

2

d4

dx4

)
g(x),∫

dk f̄(k)eikx = σ−2
B γ−1

(
1 +

l4

2

d4

dx4

)∫
dk ḡ(k)eikx,

=

∫
dk σ−2

B γ−1

(
1 +

l4k4

2

)
eikxḡ(k).

Multiply each side by e−ik
′x, integrate over x, and use orthogo-

nality of complex exponentials:

f̄(k) = ḡ(k)σ−2
B γ−1

(
1 +

l4k4

2

)
,

or ḡ(k) = σ2
Bγ

(
1 +

l4k4

2

)−1

f̄(k).

The Fourier transformed equations are easy to invert because the
derivatives disappear in Fourier space. Inverse Fourier transform
this to get the result in x-space:

g(x) = I.F.T.

{
σ2

Bγ

(
1 +

l4k4

2

)−1

f̄(k)

}
,

= I.F.T.
{
c̄(k)f̄(k)

}
,

=
1

2π

∫
dx′ c(x− x′)f(x′),

by the convolution theorem of Fourier transforms. c(x) is the
inverse Fourier transform of σ2

Bγ/(1 + l4k4/2). [γ would be
chosen such that c(0) = 2πσ2

B.]
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Note: Doing a convolution is the continuous space analogue of acting with a covariance matrix which has all rows the same
but shifted (i.e. homogeneous structure functions - a symmetric Toepliz matrix). The convolution in discrete space is:

gi =
∑
j

Cijfj, where Cij = c|i−j|,

g = Cf ,
g1

g2

g3

g4
...
gn

 =


c0 c1 c2 c3 · · · cn−1

c1 c0 c1 c2 · · · cn−2

c2 c1 c0 c1 · · · cn−3

c3 c2 c1 c0 · · · cn−4
...

...
...

...
...

...
cn−1 cn−2 cn−3 cn−4 · · · c0




f1

f2

f3

f4
...
fn

 .

Summary of inverse Laplacians: The di�erential operator B−1 = σ−2
B γ−1

(
1 + l4(∇2)2/2

)
(as it appears in the cost

function) can be relatively easily evaluated. The structure functions (rows or columns of B) implied by this covariance model are
revealed by doing a Fourier analysis and are found to be equal to the inverse Fourier transform of σ2

Bγ(1 + l4k4/2)−1. The Fig.
shows this function in spectral and real spaces for when l is small and l is large. In practice the value of l is chosen to be realistic
for the assimilation variable in question.
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Di�usion operators

Consider the following di�usion equation for integration from
t = 0 to T :

∂g(x, t)

∂t
− κ∂

2g(x, t)

∂x2
= 0,

κ : di�usion co-e�cient, initial condition g(x, 0) = f(x).

The di�usion equation can be integrated analytically in Fourier
space. For wavenumber k:

∂ḡ(k, t)

∂t
+ κk2ḡ(k, t), ḡ(k, 0) = f̄(k).

Integrate from t = 0 to T :∫ T

t=0

d ln ḡ(k, t) + κk2

∫ T

t=0

dt = 0,

ln ḡ(k, T )− ln ḡ(k, 0) + κk2T = 0,

ḡ(k, T ) = f̄(k) exp(−κk2T ).

To �nd the solution in real space, inverse Fourier transform the
above. The right hand side is a product of functions in Fourier

space, so use the convolution theorem again:

g(x, T ) =
1

2π

∫
dx′ f(x′) c(x− x′).

c(x) is here the inverse Fourier transform of exp(−κk2T ), which
is
√
π/κT exp(−x2/4κT ) (a Gaussian function with length-

scale
√

2κT ). The solution is thus:

g(x, T ) =
1√

4πκT

∫
dx′ f(x′) exp(−(x− x′)2/4κT ).

Note the correspondence between the convolution and action
with a homogeneous covariance matrix (as in the previous section
on inverse Laplacians), which means that the structure functions
have the form:

1√
4πκT

exp(−(x− x′)2/4κT ).

Summary of di�usion operators: Integrating the di�usion equation from initial condition f(x) at t = 0 to time T is
equivalent to acting with a covariance operator (B) on f(x) which has structure functions - e.g. when the the standard deviation
�eld, σ, is constant - equal to σ2/

√
4πκT exp(−x2/4κT ). The inverse B-matrix that appears in the cost function can be dealt

with by integrating the di�usion equation backwards in time.

Summary: If we are willing to assume a particular spatial structure of the covariances then we can use various methods to
simulate the e�ect of the background error covariance matrix without the need to store an explicit matrix. There are other methods
in addition to those mentioned, e.g. recursive �lters.
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3(d) Multivariate aspects and balance

We have already seen an example of a multivariate aspect of the background error covariance matrix (see Fig. of the structure
functions). How can we model this without resort to an explicit matrix?

The horizontal momentum equations are as follows:

∂u

∂t
+ u · ∇u = fv − 1

ρ

∂p

∂x
,

∂v

∂t
+ u · ∇v = −fu− 1

ρ

∂p

∂y
, u =

(
u
v

)
.

Example with perfect geostrophic balance

For �ows with small Rossby number, Ro = U/fL � 1, the momentum equations approximate to the following diagnostic
equations:

v =
1

fρ

∂p

∂x
, u = − 1

fρ

∂p

∂y
,

(this is geostrophic balance).
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Assume:

• Geostrophic balance (in incremental form):

δv =
1

fρ

∂δp

∂x
= Gvδp, δu = − 1

fρ

∂δp

∂y
= Guδp.

• Pressure-pressure correlations are homogeneous, isotropic and have correlation length-scale
√

2L. The pressure-pressure
correlations between positions i (xi, yi) and j (xj, yj) are:

µij = exp−
r2
ij

2L2
, r2

ij = (xi − xj)2 + (yi − yj)2.
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• Standard deviation of pressure errors: σp (constant).

• Constant density, ρ.
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Now derive the multivariate error covariances between positions i and j:

p− p covs: 〈δpiδpj〉 = σ2
pµij (by de�nition),

p− u covs: 〈δpiδuj〉 = − 1

fρ

〈
δpi

∂δpj
∂yj

〉
= − 1

fρ

∂

∂yj
〈δpiδpj〉 = −

σ2
p

fρ

∂µij
∂yj

,

p− v covs: 〈δpiδvj〉 =
1

fρ

〈
δpi

∂δpj
∂xj

〉
=

1

fρ

∂

∂xj
〈δpiδpj〉 =

σ2
p

fρ

∂µij
∂xj

,

u− p covs: 〈δuiδpj〉 = − 1

fρ

〈
∂δpi
∂yi

δpj

〉
= − 1

fρ

∂

∂yi
〈δpiδpj〉 = −

σ2
p

fρ

∂µij
∂yi

,

u− u covs: 〈δuiδuj〉 =
1

f 2ρ2

〈
∂δpi
∂yi

∂δpj
∂yj

〉
=

1

f 2ρ2

∂2

∂yi∂yj
〈δpiδpj〉 =

σ2
p

f 2ρ2

∂2µij
∂yi∂yj

,

u− v covs: 〈δuiδvj〉 = − 1

f 2ρ2

〈
∂δpi
∂yi

∂δpj
∂xj

〉
= − 1

f 2ρ2

∂2

∂yi∂xj
〈δpiδpj〉 = −

σ2
p

f 2ρ2

∂2µij
∂yi∂xj

,

v − p covs: 〈δviδpj〉 =
1

fρ

〈
∂δpi
∂xi

δpj

〉
=

1

fρ

∂

∂xi
〈δpiδpj〉 =

σ2
p

fρ

∂µij
∂xi

,

v − u covs: 〈δviδuj〉 = − 1

f 2ρ2

〈
∂δpi
∂xi

∂δpj
∂yj

〉
= − 1

f 2ρ2

∂2

∂xi∂yj
〈δpiδpj〉 = −

σ2
p

f 2ρ2

∂2µij
∂xi∂yj

,

v − v covs: 〈δviδvj〉 =
1

f 2ρ2

〈
∂δpi
∂xi

∂δpj
∂xj

〉
=

1

f 2ρ2

∂2

∂xi∂xj
〈δpiδpj〉 =

σ2
p

f 2ρ2

∂2µij
∂xi∂xj

.
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Note the following �rst and second derivatives of µ:

∂µij
∂xi

= −µij
(xi − xj)

L2

∂µij
∂xj

= µij
(xi − xj)

L2
,

∂µij
∂yi

= −µij
(yi − yj)
L2

,

∂µij
∂yj

= µij
(yi − yj)
L2

,

∂2µij
∂xi∂xj

=
µij
L2

(
1− (xi − xj)2

L2

)
,

∂2µij
∂yi∂yj

=
µij
L2

(
1− (yi − yj)2

L2

)
,

∂2µij
∂yi∂xj

= −µij
(xi − xj)(yi − yj)

L4
,

∂2µij
∂xi∂yj

= −µij
(xi − xj)(yi − yj)

L4
.

Example structure functions giving the output �eld (p, u or v
down the side) associated with a point in the centre of the do-
main (either of p, u or v along the top). Red is positive, blue is
negative.

Summary: If we are willing make some assumptions (e.g. that the �ow is geostrophic) then we can use various methods
to simulate the e�ect of the background error covariance matrix without the need to store an explicit matrix. There are other
methods in addition to those mentioned, e.g. recursive �lters.

3(e) Control variable transforms and the implied B-matrix

The method of control variable transforms (CVTs) is a general and powerful means of modelling the background error covariance
matrix.

The strong constraint 4D-VAR incremental cost function with the background as the reference state:
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J [δx] =
1

2
δxTB−1δx +

1

2

T∑
t=0

[δy(t)−HtMt←0δx]T R−1
t [δy(t)−HtMt←0δx] .

In this form all variables will inevitably have correlated background errors (the B-matrix is non-diagonal). If we try to minimize
this cost function variationally with respect to δx, then we have to deal with a prohibitively large B-matrix. Consider the following
change of variables:

δx = Uδχ,

δχ = U−1δx,

where U is the CVT and δχ is new control variable (just a di�erent representation of the increment). The cost function is, in
terms of δχ:

J [δχ] =
1

2
δχTUTB−1Uδχ +

1

2

T∑
t=0

[δy(t)−HtMt←0Uδχ]T R−1
t [δy(t)−HtMt←0Uδχ] .

The point of making this transform is to simplify the representation of the background error covariance matrix. Choose U such
that:

UTB−1U = I.

What does this mean?

In model space background error cov matrix is
〈
δηx

Bδη
xT
B

〉
= B,

In control space background error cov matrix is
〈
δηχ

Bδη
χT
B

〉
= I.

These forms imply that B = UUT (U is like a 'square-root' of B) (SEE PROBLEM 13 TO SHOW THIS).
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Solving a variational problem using CVTs involves the following steps:

• Assume that we know the CVT, U, and its adjoint and that they are practical to apply.

• Minimize J [δχ] with respect to varying δχ. The cost function is:

J [δχ] =
1

2
δχTδχ +

1

2

T∑
t=0

[δy(t)−HtMt←0Uδχ]T R−1
t [δy(t)−HtMt←0Uδχ] .

• The analysis increment in control variable space that minimizes the above is δχA.

• The analysis in model space is xA = xB + UδχA.

• This is equivalent to minimizing the original cost function J [δx] with the implied background error covariance matrix
Bimp = UUT.

A possible form of the CVT is:
U = VΛ1/2,

where V is the matrix of eigenvectors (columns of V) of B, and Λ is the (diagonal) matrix of eigenvalues, i.e. that B = VΛVT.
Check:

Bimp = UUT = VΛ1/2ΛT/2VT = VΛVT = B.

Example of the CVT method to model horizontal background error covariances (e.g. for pressure, p)

• Assume that the eigenfunctions are Fourier modes ∼ exp ikx (columns of V). This means that VT (actually V† ≡ VT∗) is
the matrix version of the Fourier transform and V is the matrix version of the inverse Fourier transform (V is an orthogonal
matrix).

• Assume that the eigenvalues are a prescribed function of wavenumber (diagonal elements of Λp).
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Matrix form Up = VΛ1/2
p ,

Integral form δx(r) = Upδχ(k) =
1

2π

∫ ∫
dk exp(ik · r)λ1/2

p (k)δχ(k),

k = 2D wavenumber

(
kx
ky

)
, r = 2D position

(
x
y

)
,

Matrix form (adjoint) U†p = Λ1/2
p V†,

Integral form (adjoint) δχ̂(k) = U†pδx̂(r) = λ1/2
p (k)

1

2π

∫ ∫
dr exp(−ik · r)δx̂(r).

(THE INTEGRAL FORM IS USEFUL BECAUSE IT ALLOWS US TO USE FOURIER TRANSFORM FORMULAE.) What is the
B-matrix that is implied by this transform?

Bimp = UpU
†
p.

Let δx2(r2) = Bimpδx1(r1),

= UpU
†
pδx1(r1),

=
1

2π

∫ ∫
dk exp(ik · r2)λ

1/2
p (k) λ1/2

p (k)
1

2π

∫ ∫
dr1 exp(−ik · r1)δx1(r1),

=

∫ ∫
dr1

1

4π2

∫ ∫
dk exp(ik · [r2 − r1])λp(k)δx1(r1),

=

∫ ∫
dr1

(
1

4π2

∫ ∫
dk exp(ik · [r2 − r1])λp(k)

)
δx1(r1),

=

∫ ∫
dr1Bimp(r2, r1)δx1(r1),

Bimp(r2, r1) = StrucFunc(r2 − r1) =
1

4π2

∫ ∫
dk exp(ik · [r2 − r1])λp(k),

StrucFunc(∆r) =
1

4π2

∫ ∫
dk exp(ik ·∆r)λp(k).

The structure functions implied by this CVT are homogeneous. They are found to be proportional to the Fourier transform of the
function λp(k) (called the variance spectrum, and which is often prescribed).
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• Now assume that λ(k) is a function only of the total wavenumber, K: K2 = k2
x + k2

y = k · k.
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See Fig. for de�nitions of angles and lengths in real and
Fourier spaces. Note the following:

∆r =

(
∆x
∆y

)
= ∆r

(
cos θx
sin θx

)
,

k =

(
kx
ky

)
= K

(
cos θk
sin θk

)
,

dk = KdKdθk.

The structure functions in this case become:

StrucFunc(∆r, θx) =
1

4π2

∫ ∫
dk exp(ik ·∆r)λp(k),

=
1

4π2

∫
KdKλp(K)

∫ 2π

θk=0

dθk exp iK∆r(cos θx cos θk + sin θx sin θk),

=
1

4π2

∫
KdKλp(K)

∫ 2π

θk=0

dθk exp iK∆r(cos[θk − θx]).

Since the integral over θk is over a full period of the cosine function, it is independent of θx. The structure functions implied by this
CVT are not just homogeneous but also isotropic. (THIS METHOD IS DEMONSTRATED IN THE COMPUTER PRACTICAL
FOR PART I.)

Example of the CVT method to model multivariate (balanced) error covariances

• Assume that the eigenfunctions of the p−p error covariance matrix are Fourier modes, and the eigenvalues are a prescribed
function of wavenumber (diagonal elements of Λp). This is the model of spatial covariances described above, Up.

• Assume that the pressure and wind increments are in geostrophic balance, δv = Gvδp, δu = Guδp.
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• Let the model space be (δp, δu, δv)T and the the control variable be just one �eld, δχ (corresponding to pressure).

This means that δp = Upδχ. Now, constructing the multivariate CVT and the implied background error covariance matrix:

δx = Uδχ, δp
δu
δv

 =

 I
Gu

Gv

 Upδχ
,

Bimp = UUT,

=

 I
Gu

Gv

 UpU
T
p

(
I GT

u GT
v

)
,

=

 UpU
T
p UpU

T
pGT

u UpU
T
pGT

v

GuUpU
T
p GuUpU

T
pGT

u GuUpU
T
pGT

v

GvUpU
T
p GvUpU

T
pGT

u GvUpU
T
pGT

v

 .

Gu, Gv, GT
u and GT

v can each be coded as an algorithm in a subroutine (each has an input �eld and an output �eld), avoiding
the need to store as explicit matrices.

What is the saving of this CVT method of modelling
B compared to an explicit matrix method?

• No. of grid points: nx × ny.

• No. of pieces of information in δx: 3× nx × ny.

• No. of pieces of information in δχ: nx × ny.

• No. of independent elements in explicit B: ∼
1
2 (3× nx × ny)2 ∼ 9

2n
4
x (assuming nx ∼ ny).

• No. of pieces of information needed for CVT: ∼
No. of total wavenumbers needed to know λp(K) ∼√
2nx.

If nx = 1000, then

• No. of independent elements in explicit B: ∼ 5× 1012.

• No. of pieces of information needed for CVT: ∼ 1500.

Operational CVTs



59

• The Met O�ce use a similar approach in its operational 4D-VAR and 3DFGAT systems. Geostrophic balance (imposed
weakly) and hydrostatic balance are used. The spatial component includes a similar approach as shown above (spectral
space) for the horizontal structure of background error covariances, and vertical modes (empirical orthogonal functions) for
the vertical structure. Lorenc A.C., Ballard S.P., Bell R.S., Ingleby N.B., Andrews P.L.F., Barker D.M., Bray J.R., Clayton A.M., Dalby T., Li D., Payne T.J.,
Saunders F.W., The Met O�ce global 3-dimensional variational data assimilation scheme, Q.J.R.Meteor.Soc. 126 pp.2991-3012 (2000).

• The ECMWF use similar balance relationships, but use a spatial component that makes use of wavelets. Fisher M., Andersson E.,
Developments in 4d-Var and Kalman �ltering, ECMWF Research Report No. 347 pp.36 (2001).

• The di�usion operator approach is used in ocean data assimilation systems. Weaver A.T., Deltel C., Machu E., Ricci S., Daget N., A
multivariate balance operator for variational ocean data assimilation, Q.J.R.Meteor.Soc. 131 pp.3605-3626 (2005).

3(f) Conditioning of the variational problem

The rate of convergence of the variational problem is a�ected strongly by the conditioning of the variational problem. Consider
the case when δx is the control variable. A Taylor expansion of J(x) with respect to perturbations δx about x is:

J(x + δx) = J(x) +
∂J

∂δx

∣∣∣∣
x

δx +
1

2
δxT ∂2J

∂δx2

∣∣∣∣
x

δx.

gradient Hessian

vector matrix

(1× 1) (1× 1) (1× n)(n× 1) (1× n)(n× n)(n× 1)

The Hessian matrix is an n × n matrix that describes all possible second derivatives of J with respect to the control variable
elements:

∂2J

∂δx2
=


∂2J
∂x21

∂2J
∂x1∂x2

· · · ∂2J
∂x1∂xn

∂2J
∂x2∂x1

∂2J
∂x22

· · · ∂2J
∂x2∂xn

...
... . . . ...

∂2J
∂xn∂x1

∂2J
∂xn∂x2

· · · ∂2J
∂x2n

 ,

and describes the eccentricity and orientation of the ellipsoids that describe surfaces of constant J in phase space. In particular,
the condition number is important:

κ = condition number =
maximum eigenvalue of the Hessian

minimum eigenvalue of the Hessian
.
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• If κ ≈ 1, then the variational problem is well conditioned and it will be possible for the solution to be found to a high
accuracy.

• If κ� 1, then the variational problem will converge slowly and it is hard for the solution to be found to a high accuracy.

The gradient vectors are the direction in phase space (either δχ or δx) that points in the direction of steepest ascent at the
particular position. It is thought that κ is extremely large for operational problems posed in the δx formulation. If the problem is
posed in the δχ formulation then the principle is the same (but replace δx → δχ in the above formulae). The following table
compares weak constraint 4D-VAR with δχ and δx as the control variable.

δχ δx

Hessian I +
∑T

t=0 UTMT
t←0H

T
t R−T

t HtMt←0U B−1 +
∑T

t=0 MT
t←0H

T
t R−T

t HtMt←0

min eigenvalue λχmin & 1 λxmin ≥ 0

max eigenvalue λχmax λxmax � 1 in practice

condition No. λχmax/1 ∼ λχmax λxmax/0
+ →∞
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4. Operational algorithms

We now have enough information to understand the standard operational algorithm using a CVT, given in the Fig. for incremental
strong constraint 4D-VAR. The descent algorithm is a method to use the gradient vector to adjust δχ to reduce the value of J .
Examples of descent algorithms are: method of steepest descent (very ine�cient), conjugate gradient method (quite e�cient).

'
(STEP 4 BELOW IS DONE IN PROBLEM 14. A VERSION OF THE GRADIENT FORMULA THAT IS EXTREMELY

EFFICIENT TO COMPUTE IS DEVELOPED IN PROBLEM 15.)

1. Run xB forward in time 0 → T . Calculate the model observations, ymo(t) = ht(Mt←0(xB)), and the innovations,
δy(t) = y(t)− ymo(t).

2. Set the initial value of δχ = 0, and the loop counter l = 0.
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3. Calculate the residual vector at time t and for loop l in the time window, r(t) = δy(t)−HtMt←0Uδχ.

4. Calculate the gradient of JO for loop l.

5. Calculate the gradient of J for loop l.

6. Use a descent algorithm to calculate a change to the control variable increment, ∆δχ, such that δχ + ∆δχ reduces the
value of the cost function.

7. Update δχ→ δχ + ∆δχ and increment l: l→ l + 1.

8. If we decide that we have 'converged', go to step 9, otherwise go to step 3.

9. Obtain the analysis, xA = xB + Uδχ.

10. Make a weather forecast for x days ahead and store the forecast after time T (e.g. 1, 3, 6, 12 hours) as the background
state for the next cycle.

(THE ITERATIVE NATURE IS THE VARIATIONAL ASPECT OF THE METHOD.)

5. Measuring the B-matrix

• We now have techniques to compress the n × n B or Pf matrix, as long as we are willing to make assumptions about its
properties (e.g. homogeneous, isotropic, balanced). These are called error covariance models.

• We still have the problem of determining the parameters in a covariance model (e.g. the λ(K))?

• Need a population of sample forecast error states. Ideally we have N samples of forecast error, η
(i)
B = x

(i)
B −xt, 1 ≤ i ≤ N .

Focus now not on determining λ(K), but instead on how we can estimate B explicitly from data. There are two problems:

� Have background states available, but don't know the truth. This is a fundamental problem. Instead propose members
that are proxies for forecast error.
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� Need su�cient members of the sample to determine B well enough (N & n). This is a practical problem. Practically,
we will never have enough members, so there will be consequences (e.g. see Sec. 3b). (If we are determining λ(K)
from the data then fewer members are needed.)

Recall:

Pf =
〈
ηBη

T
B

〉
≈ Pf

(N) =
1

N − 1

N∑
i=1

η
(i)
B η

(i)T
B .

We will here focus on methods of generating proxies of forecast error. Here background states (and hence background error states)
are valid at t = 0. For the purposes of this section, we will assume linear (and perfect) observation operators.

5(a) Analysis of innovations

Innovation "O-B" = δy = y −HxB,
y = Hxt + ε,
xB = xt + ηB,

 y −HxB = Hxt + ε−H (xt + ηB) ,
y −HxB = ε−HηB.

measureable unmeasureable

Then: 〈
(y −HxB) (y −HxB)T

〉
=
〈

(ε−HηB) (ε−HηB)T
〉
,

= R + HBHT,

(assuming that observation and background errors are uncorrelated). In order to see this more clearly, let us move away from the
vector/matrix notation and assume that when H = Hi, the observation operator represents a direct measurement of a model
variable (vi at position ri), i.e. HixB = vi(ri). Now consider two measurements as follows.

model variable position observation innovation

measurement 1 v1 r y1 y1 − v1(r) = ε1 − ηv1(r)

measurement 2 v2 r + ∆r y2 y2 − v2(r + ∆r) = ε2 − ηv2(r + ∆r)

If we make repeat measurements and repeat draws from an equivalent background state then the expectation of the product
of these innovations is

〈(y1 − v1(r)) (y2 − v2(r + ∆r))〉 = 〈(ε1 − ηv1(r)) (ε2 − ηv2(r + ∆r))〉 .
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Then for ∆r 6= 0 or v1 6= v2, assuming that observation and background errors are uncorrelated, and assuming that observation
errors at di�erent positions are uncorrelated leads to:

〈(y1 − v1(r)) (y2 − v2(r + ∆r))〉 = 〈ηv1(r)ηv2(r + ∆r)〉 ,

(background errors at di�erent positions are fundamentally correlated). This method of estimating the structure of background
error covariances is called the analysis of innovation method or the Hollingsworth and Lonnberg method.

(b)(a)

• The H+L method was popular in the 1980s and 1990s.

• It replies on a huge number of direct (in-situ) observations.

• Not useful in practice to probe �ow dependence of B, or B in unobserved regions.

• Hollingsworth A., Lonnberg P., The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind �eld, Tellus 38A pp.111-136
(1986). Lonnberg P., Hollingsworth A., The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and
wind errors, Tellus 38A pp.137-161 (1986).

5(b) The NMC method

THIS IS NAMED AFTER THE NATIONAL METEOROLOGICAL CENTRE IN THE USA (NOW CALLED NCEP - THE NA-
TIONAL CENTER FOR ENVIRONMENTAL PREDICTION).

Propose a proxy for forecast error:
ηNMC ≈ x48

f (0)− x24
f (0).
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The di�erence between two forecasts, starting from analyses at di�erent times, but valid at the same time. Use a population
of such forecast di�erences over a time period to estimate forecast errors:

B ≈ 1

2

〈(
x48

f (0)− x24
f (0)

) (
x48

f (0)− x24
f (0)

)T
〉
.

This assumes ergodicity (that taking forecast errors over time is equivalent to sampling from the PDF at one time). SEE PROBLEM
16 TO SEE HOW THE FACTOR OF 1/2 APPEARS. Notes:

• The averaging over time means that only a climatological estimate of forecast errors is possible with the NMC method.

• The usual forecast length of a background state is 6 or 12 hours (or shorter for some applications). The NMC usually uses
12 and 24-hour forecasts. We might therefore expect the forecast di�erence to overestimate forecast error variances and
overestimate correlation length-scales.

• In poorly observed regions however, the NMC method is likely to underestimate forecast error variances for the following
reason:

x24
f (0) = M0←−24 (xA(−24)) ,

x48
f (0) = M0←−24 (M−24←−48 (xA(−48))) ,

but xA(−24) = K−24 (M−24←−48 (xA(−48))) ,

where K−24(xB) represents the result of doing DA at t = −24 with background xB.
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Note the expected properties of K−24:

K−24(xB) =

{
≈ xB ∆r � L

background state modi�ed by observations elsewhere

where ∆r � L means regions that are a distance from the nearest observations much greater than the background error
correlation length-scale. These regions are largely una�ected by the data assimilation. Focusing on these regions only:

xA(−24) ≈ M−24←−48 (xA(−48)) ,

∴ x24
f (0) ≈ M0←−24 (M−24←−48 (xA(−48))) = x48

f (0),

∴ ηNMC ≈ 0.

5(c) Monte-Carlo (ensemble) method

Generate an ensemble that ideally simulates all known
sources of forecast error.
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For the ith ensemble member (1 ≤ i ≤ N):

x(i)(t+ δt) = Mt+δt←t

(
x(i)(t)

)
+ e(i)(t),

integrated from t = −T to t = 0. The following sources of error
are considered:

• Initial condition error, δx
(i)
A (−T ), e.g.:

x(i)(−T ) = xA(−T ) + δx
(i)
A (−T ),

where

1

N − 1

N∑
i=1

δx
(i)
A (−T )δx

(i)T
A (−T ) ≈ PA(−T ).

All errors inherited from previous DA cycles are represented
as initial condition errors.

• Model error, the integrated e�ect of e(i)(t). The model
error is unknown, but can be included stochastically dur-
ing the integration of the model. Practical methods of
implicitly approximating model error include:

� Multi-model/multi-physics methods (these use dif-
ferent models, di�erent parameterizations or di�er-
ent parameter values of the parameterizations for
each ensemble methods to approximate the e�ect
of e(i)(t)).

� Stochastic kinetic energy backscatter (SKEB) meth-
ods (forecast models do not represent the energy well
at scales close to the grid-scale - leading to signi�-
cant model errors; SKEB injects kinetic energy into
the model to try to make up for this).

� Stochastically perturbed tendencies (SPT) (tenden-
cies from the - imperfect - parametrization schemes
are scaled and added as possible model errors).

• Other errors (e.g. boundary condition perturbations for
limited area models, perturbations to the unknown forc-
ings of the model).

This is called the system simulation method, which attempts to represent the unknowns as an ensemble of possibilities. This
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has parallels to ensemble Kalman �lter methods, but here we are generating possible forecasts to help estimate Pf or B:

Pf
(N)(0) =

1

N − 1

N∑
i=1

η(i)(0)η(i)T(0) (�ow dependent),

where, e.g. η(i)(0) = x(i)(t)− 1

N

N∑
i=1

x(i)(t) is the ith forecast error,

or B ≈ 1

NC − 1

N∑
i=1

C∑
c=1

η(i,c)(0)η(i,c)T(0) (�ow independent),

where, e.g. η(i,c) = x(i,c)(t)− 1

N

N∑
i=1

x(i,c)(t) is the ith forecast error of the cth cycle.

This is a very expensive method and relies on being able to simulate well the possible errors.

6. Hybrid (var/ensemble) formations

6(a) Basic ideas

Let us consider the pros and cons of variational data assimilation and ensemble data assimilation (such as the ensemble Kalman
�lter discussed in part II of this course).
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VARIATIONAL DATA
ASSIMILATION

ENSEMBLE KALMAN
FILTER

1. E�ciency Good Good
2. Data voids Reverts to the background state,

xB

Reverts to the background state,
xB

3. Processing Continuous (within assimilation
window)

Intermittent

4. Scaling for parallel
computing

Limits to scaling No limits to scaling

5. Errors in inputs Allows for errors in xB and y Allows for errors in xB and y
6. Errors in model Accounted for in WC 4D-VAR Accounted for
7. Indirect observations Yes Yes
8. Balance and smoothness
of analysis

Yes No, unless N is su�ciently large *

9. Flow dependent
background error
covariance matrix

No, Pf is approximated by B Yes, Pf is approximated by Pf
(N) *

10. Rank of background
error covariance matrix

Full rank rank ≤ N *

* These issues are related. The aim of hybrid data assimilation is to combine VAR with an ensemble to get the best bits of
each approach.
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Variational assimilation structure function

• Full rank, but not �ow dependent.

Ensemble-derived structure function (N = 24)

co
rr

el
at

io
n

(c) v−p correlation (NAE)

longitude

24−members

15−members

05−members

theoretical

• Flow dependent, but rank de�cient.

In the hybrid solution, we solve a VAR-like problem but B→ PH:

PH = αB + (1− α)Pf
(N), where 0 ≤ α ≤ 1.
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6(b) Incorporating a simple hybrid scheme in VAR

In order to use PH = αB + (1 − α)Pf
(N) in variational assimilation, PH needs to be made compatible with the control variable

transform (CVT).

Recall from 3(e), B is modelled by minimizing the cost func-
tion with respect to a control variable δχ:

J [δχ] =
1

2
δχTδχ +

1

2

T∑
t=0

[δy(t)−HtMt←0Uδχ]T R−1
t ×

[δy(t)−HtMt←0Uδχ] ,

where δx = Uδχ,

and
〈
δχδχT

〉
= I,

and the implied background error covariance matrix is:

Bimp = UUT.

Now consider the following cost function and modi�cation to the
control variable and its CVT:

JH[δχH] =
1

2
δχT

varδχvar +
1

2
δχT

ensδχens +

1

2

T∑
t=0

[
δy(t)−HtMt←0U

HδχH
]T

R−1
t ×[

δy(t)−HtMt←0U
HδχH

]
,

where δx = UHδχH,

and
〈
δχHδχHT

〉
= I,

but now δχH =

(
δχvar

δχens

)
, δχvar ∈ Rn, δχens ∈ RN ,

and UH =
( √

αU
√

1−α
N−1X

)
.

What is the implied background error covariance matrix of this scheme?

BH
imp =

〈
δxδxT

〉
= UH

〈
δχHδχHT

〉
UHT = UHUHT,

=

( √
αU

√
1−α
N−1X

) ( √
αUT√

1−α
N−1X

T

)
= αUUT +

1− α
N − 1

XXT,

= αB + (1− α)Pf
(N).

The �rst term contains UUT, which is the implied background error covariance matrix from the pure variational scheme, and the
second term contains XXT/(N − 1), which is the ensemble-derived background error covariance matrix (we used this notation
in section 3(b), and in problem 12).
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6(c) Incorporating a localized hybrid scheme in VAR

The ensemble contribution to the hybrid covariance is noisy when N is small. How can we mitigate this noise?

• A statistical result tells us that the error in the sample correlation between two variables x and y has expectation
(1− cor2(x, y))/

√
N − 1.

• For a given N , sampling errors are expected to be largest when the correlations are close to zero.

• Correlations are expected to be smaller at larger separations.

• 'Localization' arti�cially reduces covariances between variables separated by large distances.

Let x = ηB(r1) and y = ηB(r2). The raw covariance between x and y is:

Pf
(N)(r1, r2) =

1

N − 1

N∑
i=1

η
(i)
B (r1)η

(i)
B (r2).

For the covariance actually used in the hybrid scheme, we wish to multiply this by a moderation function that decreases with
separation between r1 and r2: Ω(r1, r2) = prescribed function of |r1 − r2|, 0 ≤ Ω(r1, r2) ≤ 1. The covariance used is then:

Pf,l
(N)(r1, r2) = Pf

(N)(r1, r2)Ω(r1, r2).

This is for a particular matrix element. For the whole covariance matrix, introduce the Schur product of matrices:

Pf,l
(N) = Pf

(N) ◦Ω, Ω ∈ Rn×n.

How do we incorporate this into the CVT?

This section is provided for information only. In outline:

• We know that Pf
(N) = 1

N−1XXT, Pf
(N) ∈ Rn×n, X ∈ Rn×N .

• Now suppose that we can decompose Ω in terms of M members in Y: Ω = 1
M−1YYT, Ω ∈ Rn×n, Y ∈ Rn×M .
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• Then the localized background error covariance matrix is:

Pf,l
(N) = Pf

(N) ◦Ω,

=

(
1

N − 1
XXT

)
◦
(

1

M − 1
YYT

)
,

=
1

(M − 1)(N − 1)

(
XXT

)
◦
(
YYT

)
.

• It is possible to construct a new matrix XΩ such that Pf,l
(N) = 1

(N−1)(M−1)XΩXT
Ω, XΩ ∈ Rn×NM .

• This new matrix has the form:

XΩ =

 ↑ ↑ ↑ ↑ ↑ ↑
η

(1)
B ◦ y(1) η

(1)
B ◦ y(2) · · · η

(1)
B ◦ y(M) η

(2)
B ◦ y(1) · · · η

(2)
B ◦ y(M) · · · · · · η

(N)
B ◦ y(M)

↓ ↓ ↓ ↓ ↓ ↓

 ,

where η
(i)
B is the ith column of X and y(j) is the jth column of XΩ. There are other compact ways to write this matrix:

Buehner M., Ensemble derived stationary and �ow dependent background error covariances: Evaluation in a quasi-operational NWP setting, Q.J.R.Meteor.Soc. 131

pp.1013-1043 (2005).

• The localized hybrid scheme is then the same as the unlocalized one, but with

� the N -element part of the control vector δχH relaced with an NM -element control vector, and

�
√

1−α
N−1X in the CVT replaced with

√
1−α

(N−1)(M−1)XΩ.

N.B. There are other ways of representing a hyrid system in terms of control variables: Lorenc A.C., The potential of the ensemble Kalman �lter

for NWP - a comparison with 4d-Var, Q.J.R.Meteor.Soc. 129 pp.3183-3203 (2003).

7. Data assimilation diagnostics

• What can go wrong with a data assimilation scheme? For a strong constraint 4D-VAR, e.g.:
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� Incorrect error covariance matrices.

� Non-Gaussian or biased errors in the background or the observations.

� Errors in M, h, M or H.

� Strong non-linearities in M or h.

� Variational procedure not converged to the minimum.

� Background and observation errors are correlated.

• How can we assess if a given data assimilation scheme is sub-optimal? E.g. for variational data assimilation:

� Bennett-Talagrand diagnostic.

� Desrozier's diagnostics.

7(a) The Bennett-Talagrand theorem1

Twice the cost function value at the minimum (i.e. at the analysis) for an optimal assimilation system is a random variable
that obeys χ2 statistics and therefore has a particular expectation value2. Statistics tells us that the expectation value of a χ2

distribution that results from a �t of ν degrees of freedom to q pieces of data is E(2Jmin) = q− ν. The data assimilation problem
tries to �t ν = n pieces of information to q = n + p pieces of information (the background state and the observations). Then,
E(2Jmin) = n+ p− n = p. Therefore the expected value of Jmin is

E(Jmin) =
p

2
.

If a given assimilation run does not give a value of Jmin close to this value then it is an indication that something is wrong with
the data assimilation. This can also be proved directly for the data assimilation problem (the Bennet-Talagrand theorem).

1Based on notes by T. Payne, Met O�ce
2For any one assimilation, there will be one value of the cost function at the minimum, so what do we mean by the �expected value of the cost function at the minimum�?

Imagine doing a very large number of assimilations of the same situation, but each with slightly di�erent backgrounds and observations (where perturbations are consistent with
the background and observations error covariance matrices). This is like doing di�erent data assimilation runs in parallel universes. The expected value of the cost function at
the minimum is the average of these experiments.
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This section is provided for information only. Assume a data assimilation system that is optimal (e.g. all error covariance
matrices are correctly speci�ed). Then

xa − xb = K(y −Hxb) where K = BHT
(
R + HBHT

)
. (27)

We wish to evaluate the expected value of the cost function at its minimum, x = xa. This expected value is written E [J(xa)]
and the cost function at the analysis is (given a speci�c background state and set of observations)

J(xa) = Jb(xa) + Jo(xa), (28)

where Jb(xa) =
1

2
(xa − xb)T B−1 (xa − xb) , (29)

and Jo(xa) =
1

2
(y −Hxa)

T R−1 (y −Hxa) . (30)

The analysis, background and observation errors are (again given a speci�c background state and set of observations)

εa = xa − xt, εb = xb − xt, εo = y −Hxt. (31)

The analysis error can be developed as follows using (27) and (31):

εa = xa − xb + εb = K (y −Hxb) + εb,

= K (y −H(xb − xt)−Hxt) + εb,

= K (εo −Hεb) + εb = (I−KH) εb + Kεo. (32)

Equations (29) and (30) are inner products. To evaluate them, the following identity is useful

uTCv =
∑
i,j

uiCijvj = tr
(
CvuT

)
. (33)

The background term

The expectation of the background term (29) is, using (33):

E [Jb(xa)] =
1

2
E
[
tr
(
B−1(xa − xb)(xa − xb)T

)]
=

1

2
tr
(
B−1E

[
(xa − xb)(xa − xb)T

])
,

=
1

2
tr
(
B−1E

[
(εa − εb)(εa − εb)T

])
, (34)
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where (31) have been used for the last line. Part of the last line is the expression E [(εa− εb)(εa− εb)T] which may be developed
using (32)

E
[
(εa − εb)(εa − εb)T

]
= E

[
εaε

T
a + εbε

T
b − εaε

T
b − εbε

T
a

]
,

= (I−KH)E
[
εbε

T
b

]
(I−KH)T + KE

[
εoε

T
o

]
KT + E

[
εbε

T
b

]
−(I−KH)E

[
εbε

T
b

]
− E

[
εbε

T
b

]
(I−KH)T,

= (I−KH)B(I−KH)T + KRKT + B− (I−KH)B−B(I−KH)T,

= B + KHB(KH)T −B(KH)T −KHB + KRKT + B−B

+KHB−B + B(KH)T,

= KHB(KH)T + KRKT.

These steps assume that background and observation errors are mutually uncorrelated. Using the de�nition of K (27) turns the
above into:

E
[
(εa − εb)(εa − εb)T

]
= BHT(HBHT + R)−1HB(BHT(HBHT + R)−1H)T

+BHT(HBHT + R)−1R(BHT(HBHT + R)−1)T,

= BHT(HBHT + R)−1HBHT(HBHT + R)−1HB

+BHT(HBHT + R)−1R(HBHT + R)−1HB,

= BHT(HBHT + R)−1HB = KHB.

Inserting this into (34) gives

E [Jb(xa)] =
1

2
tr(B−1KHB). (35)

Note the following identity, which holds for matrices E and F, where E is r × s and F is s× r

tr(EF) =
r∑
j=1

s∑
i=1

EjiFij =
s∑
i=1

r∑
j=1

FijEji = tr(FE), (36)

i.e., the order of the operators inside the trace can be reversed. Applying this to (35) gives

E[Jb(xa)] =
1

2
tr(KH). (37)
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The observation term

The expectation of the observation term (30) is, using (33):

E [Jo(xa)] =
1

2
E
[
tr
(
R−1(y −Hxa)(y −Hxa)

T
)]
,

=
1

2
tr
(
R−1E

[
(y −Hxa)(y −Hxa)

T
])
,

=
1

2
tr
(
R−1E

[
(εo −Hεa)(εo −Hεa)

T
])
. (38)

where (31) have been used for the last line. Part of the last line is the expression E [(εo − Hεa)(εo − Hεa)
T] which may be

developed using (32):

E [(εo −Hεa)(εo −Hεa)
T] = HE [εaε

T
a ]HT + E [εoε

T
o ]−HE [εaε

T
o ]− E [εoε

T
a ]HT,

= H{(I−KH)E [εbε
T
b ](I−KH)T + KE [εoε

T
o ]KT}HT

+E [εoε
T
o ]−HKE [εoε

T
o ]− E [εoε

T
o ]KTHT,

= H{(I−KH)B(I−KH)T + KRKT}HT + R−HKR−RKTHT,

= HBHT + HKHB(KH)THT −HB(KH)THT −HKHBHT

+HKRKTHT + R−HKR−RKTHT.

These steps assume that background and observation errors are mutually uncorrelated. Using the de�nition of K (27):

E [(εo −Hεa)(εo −Hεa)
T] = HBHT + HBHT(HBHT + R)−1HBHT(HBHT + R)−1HBHT

−HBHT(HBHT + R)−1HBHT −HBHT(HBHT + R)−1HBHT

+HBHT(HBHT + R)−1R(HBHT + R)−1HBHT + R

−HBHT(HBHT + R)−1R−R(HBHT + R)−1HBHT.

Merging the 2nd and 5th terms leads to

E [(εo −Hεa)(εo −Hεa)
T] = HBHT + HBHT(HBHT + R)−1HBHT

−HBHT(HBHT + R)−1HBHT −HBHT(HBHT + R)−1HBHT

+R−HBHT(HBHT + R)−1R−R(HBHT + R)−1HBHT.
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Further simpli�cations can be made by merging the 3rd and 6th terms and the 4th and 7th terms

E [(εo −Hεa)(εo −Hεa)
T] = HBHT + HBHT(HBHT + R)−1HBHT −HBHT −HBHT + R,

= HBHT
{

(HBHT + R)−1HBHT − I
}

+ R. (39)

Consider the term inside the curly brackets in the above:

(HBHT + R)−1HBHT − I = (HBHT + R)−1HBHT − (HBHT + R)−1(HBHT + R),

= (HBHT + R)−1[HBHT −HBHT −R],

= −(HBHT + R)−1R.

Using this to rewrite (39):
E [(εo −Hεa)(εo −Hεa)

T] = −HBHT(HBHT + R)−1R + R,

and then substituting this into (38) and then using (36) gives

E [Jo(xa)] =
1

2
tr
(
R−1[−HBHT(HBHT + R)−1R + R]

)
,

=
1

2
tr
(
−HBHT(HBHT + R)−1 + I

)
,

=
1

2
tr (−HK + I) =

1

2
(−tr(HK) + p) =

1

2
(−tr(KH) + p) , (40)

where p is the number of observations.

The sum of the background and observation terms

The sum of the background and observation terms is (using (28), (37) and (40)):

E(J(xa)) = E(Jb(xa)) + E(Jo(xa)) =
1

2
(tr(KH)− tr(KH) + p) =

p

2
.

This is a very involved derivation, but leads to the very simple result that the expectation of the minimum of the cost function
has value equal to half the number of observations. Some people have called this the Bennett-Talagrand theorem. If the value of
the cost function at the minimum does not have this value in practice then this is an indication that the error characteristics of
the data assimilation do not match those of the actual data, or other things are wrong with the set-up like the forward operator,
H. Note that this result applies to systems that are Gaussian and linear.
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Desrozier's Diagnostics3

Desrozier diagnostics use the following quantities calculated for a data assimilation run (all in observation space):

• Innovations (observation minus background): do
b = y −Hxb.

• Analysis increment (analysis minus background):da
b = Hδxa.

• Residuals (observation minus analysis): do
a = y −Hxa.

The covariances of these quantities reveals the consistency (or inconsistency) of the data assimilation. E.g. for 3D-VAR:
Covariance Actual result (sub-optimal) Result if optimal

E{do
bd

o
b

T} R + HBHT R + HBHT

E{da
bd

o
b

T} HB̂HT(HB̂HT + R̂)−1(R + HBHT) HBHT

E{do
ad

o
b

T} (I−HB̂HT(HB̂HT + R̂)−1)(R + HBHT) R

E{da
bd

o
a
T} HB̂HT(HB̂HT + R̂)−1(R + HBHT)(I−HB̂HT(HB̂HT + R̂)−1)T HAHT

Here B and R are the true background and observation error covariances matrices, and B̂ and R̂ are the ones assumed for
the data assimilation. H is assumed perfect.

This section is provided for information only. Proofs of these results are as follows. Consider a sub-optimal variational data
assimilation scheme where the speci�ed statistics (indicated with hats) may have been given incorrectly. Consider the following
analysis increment that result:

δxa = xa − xb = K̂do
b,

where the Kalman gain used in the assimilation is

K̂ = B̂HT(HB̂HT + R̂)−1, (41)

and do
b is the innovation vector (observation minus background - see below). B̂ and R̂ are the (potentially incorrect) background

and observation error covariance matrices that are actually speci�ed in the data assimilation (and K̂ is the Kalman gain that

3Desroziers G., Berre L., Chapnik B., Poli P., 2005, Diagnostics of observation, background and analysis-error statistics in observation space. Q.J.R. Meteorol. Soc. 131,
3385-3396.
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follows). B and R (without the hats) are the correct background and observation error covariance matrices and K is the correct
Kalman gain (27) that follows. We now examine various 'di�erence statistics' in observation space.

O-B, A-B, O-A expressions

The 'observation minus background' di�erence in observation space is:

do
b = y −Hxb ≈ εo −Hεb, (42)

where εo is the observation error, and εb is the background error as in (31). We now express other important di�erences in terms
of the innovations. The 'analysis minus background' di�erence in observation space is:

da
b = Hδxa = HK̂do

b, (43)

and the 'observation minus analysis' di�erence in observation space is:

do
a = y −Hxa = y −H(xb + δxa)

= do
b −HK̂do

b = (I−HK̂)do
b. (44)

The vector do
b is otherwise known as the 'innovation vector' and the vector do

a is otherwise known as the 'residual vector'. The key
thing is that these vectors are measurable directly from an existing data assimilation system. We will now use their equivalents in
the above to see what we can learn about the system.

Measured statistics

Now we have these expressions, let us look at their covariance statistics.

O-B \ O-B statistics Assuming that background and observation errors are uncorrelated, the covariance matrix between do
b

and do
b are4:

E{do
bd

o
b

T} = E{(εo −Hεb)(εo −Hεb)T},
= E{εoε

T
o } − E{εoε

T
b }HT −HE{εbε

T
o }+ HE{εbε

T
b }HT,

= R + HBHT. (45)
4The E operator performs an average over a population of realizations of the assimilation system (as though we had access to results from parallel universes). In practice

though we do not have access to parallel universes so instead the average is taken between pairs of di�erent observations that have (say) similar separations.
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A-B \ O-B statistics Using (43), (45) and (41), the covariance matrix between da
b and do

b are:

E{da
bd

o
b

T} = HK̂E{do
bd

o
b

T} = HK̂(R + HBHT),

= HB̂HT(HB̂HT + R̂)−1(R + HBHT).

If B̂ = B and R̂ = R then this becomes

E{da
bd

o
b

T} = HBHT(HBHT + R)−1(R + HBHT) = HBHT. (46)

O-A \ O-B statistics Using (44), (45) and (41), the covariance matrix between do
a and do

b are:

E{do
ad

o
b

T} = (I−HK̂)E{do
bd

o
b

T} = (I−HK̂)(R + HBHT),

= (I−HB̂HT(HB̂HT + R̂)−1)(R + HBHT).

If B̂ = B and R̂ = R then this becomes:

E{do
ad

o
b

T} = (I−HBHT(HBHT + R)−1)(R + HBHT) = R. (47)

A-B \ O-A statistics Using (43), (44), (45) and (41), the covariance matrix between da
b and do

a are:

E{da
bd

o
a
T} = HK̂E{do

bd
o
b

T}(I−HK̂)T = HK̂(R + HBHT)(I−HK̂)T,

= HB̂HT(HB̂HT + R̂)−1(R + HBHT)(I−HB̂HT(HB̂HT + R̂)−1)T.

If B̂ = B and R̂ = R then this becomes:

E{da
bd

o
a
T} = HBHT(I−HBHT(HBHT + R)−1)T.

By writing I = (HBHT + R)(HBHT + R)−1 then the above becomes:

E{da
bd

o
a
T} = HBHT((HBHT + R)(HBHT + R)−1 −HBHT(HBHT + R)−1)T,

= HBHT([HBHT + R−HBHT](HBHT + R)−1)T,

= HBHT(R(HBHT + R)−1)T,

= HBHT(HBHT + R)−1R.
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Note that the inverse Hessian has the form A−1 = B−1 + HTR−1H and the Sherman-Morrison-Woodbury formula in terms of
A−1 is A−1BHT = HTR−1(R + HBHT). This makes the above into:

E{da
bd

o
a
T} = HAHT, (48)

which is the analysis error covariance matrix in observation space.
These results are important because they allow the error statistics to be checked. If (46), (47) or (48) are not satis�ed then

the assumptions that B̂ = B and R̂ = R may not be correct. Even in this case, these equations can help us to improve the error
statistics in the ways discussed in the Desroziers et al. paper.


