
M.Sc. Course on Operational Data Assimilation
Techniques (MTMD02): Solutions for Part I

1. Useful formula related to the Sherman-Morrison-Woodbury formula
Multiply the identity from the left with B−1 + HTR−1H and from the right with R + HBHT

(B−1 + HTR−1H)BHT = HTR−1(R + HBHT).

Take the terms outside of the brackets inside and cancel where appropriate

B−1BHT + HTR−1HBHT = HTR−1R + HTR−1HBHT,

HT + HTR−1HBHT = HT + HTR−1HBHT.

Each side is identical and so the identity is correct.

2. The Euler-Lagrange equations and the method of representers
Substitute the forms (28) and (29) into (23a) and (23b). First (23a):

Wic

{
φB(x, 0) +

M∑
i=1

βiri(x, 0)− I(x)

}
−

M∑
i=1

βiαi(x, 0) = 0.

Use (3) Wic

M∑
i=1

βiri(x, 0)−
M∑
i=1

βiαi(x, 0) = 0,

and now use (27a) to rewrite the l.h.s. Wic

M∑
i=1

βiW
−1
ic αi(x, 0)−

M∑
i=1

βiαi(x, 0) = 0,

where l.h.s. equals r.h.s. A similar procedure for (23b):

Wbc

{
φB(0, t) +

M∑
i=1

βiri(0, t)−B(t)

}
− u

M∑
i=1

βiαi(0, t) = 0.

Use (4) Wbc

M∑
i=1

βiri(0, t)− u
M∑
i=1

βiαi(0, t) = 0,

and now use (27b) to rewrite the l.h.s. Wbc

M∑
i=1

βiW
−1
bc uαi(0, t)− u

M∑
i=1

βiαi(0, t) = 0,

where l.h.s. equals r.h.s.

3. Inner product forms
For shorthand let d = x− xB, and let f = P−1d. Expand the matrix algebra of dTP−1d:

dTP−1d = dTf =

n∑
i=1

difi,

where di is the ith element of d and fi is the ith element of f . Now,

fi =

n∑
j=1

(P−1)ijdj ,
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but since P is diagonal, P−1 is also diagonal and we can write (P−1)ij = (P−1)iiδij = δij/(P)ii (δij is
the Kroneker delta-function). First combining the above two results and then substituting the expression
involving the delta-function leads to:

dTP−1d =

n∑
i=1

di

n∑
j=1

(P−1)ijdj =

n∑
i=1

di

n∑
j=1

δij/(P)iidj =

n∑
i=1

d2i /(P)ii =

n∑
i=1

{(x)i − (xB)i}2 /(P)ii.

4. Forward model example

(a) The state vector x and the observation vector y are

x =

(
Tm
1

Tm
2

)
, y = (F ).

(b) The forward operator is
h(x) =

(
κ(Tm

2 )4
)
,

the Jacobian is H =
(

∂h1

∂x1

∂h1

∂x2

)
=
(

0 4κ(Tm
2 )3

)
,

and its adjoint is HT =

(
0

4κ(Tm2 )3

)
.

5. Maximum likelihood solution (MAP)

(a) Take the logarithm and expand

J = c+
1

2
(y −Hx)TR−1(y −Hx),

(
c = ln

[
(2π)p/2|R|1/2

])
1

2

p∑
i′=1

yi′ −
n∑

j′=1

Hi′j′xj′

 p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj

 .

Di�erentiate w.r.t. xk (use the product rule - looks complicated, but is straightforward)

∂J

∂xk
= −1

2

p∑
i′=1

n∑
j′=1

Hi′j′
∂xj′

∂xk

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj


−1

2

p∑
i′=1

yi′ −
n∑

j′=1

Hi′j′xj′

 p∑
i=1

(R−1)i′i

n∑
j=1

Hij
∂xj
∂xk

,

= −1

2

p∑
i′=1

n∑
j′=1

Hi′j′δj′k

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj


−1

2

p∑
i′=1

yi′ −
n∑

j′=1

Hi′j′xj′

 p∑
i=1

(R−1)i′i

n∑
j=1

Hijδjk,

= −1

2

p∑
i′=1

Hi′k

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj

− 1

2

p∑
i′=1

yi′ −
n∑

j′=1

Hi′j′xj′

 p∑
i=1

(R−1)i′iHik.

Re-index the second summation i′ → i, i→ i′, j′ → j. This becomes

1

2

p∑
i=1

yi −
n∑
j=1

Hijxj

 p∑
i′=1

(R−1)ii′Hi′k.
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Furthermore, note that R (and hence R−1) is symmetric and change the order in which the expressions
occur

1

2

p∑
i′=1

Hi′k

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj

 .

This is identical to the �rst term and so

∂J

∂xk
= −

p∑
i′=1

Hi′k

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj

 = −
p∑

i′=1

HT
ki′

p∑
i=1

(R−1)i′i

yi −
n∑
j=1

Hijxj

 .

This is the derivative with respect to just one component, xk. This is component k of the vector/matrix
expression

∇xJ = −HTR−1(y −Hx).

(b) Setting this to zero (at x = xA) gives

HTR−1(y −HxA) = 0, HTR−1HxA = HTR−1y, xA = (HTR−1H)−1HTR−1y.

Assuming that HTR−1H is positive de�nite, then this xA minimizes J (maximizes L) and so is the
maximum likelihood solution.

6. Minimum (co)variance solution
What x̂ gives minimum error that is unbiased? The error in x̂ is εx = x− x̂, where x is considered the truth.
Let E denote the expectation value (average of doing an experiment many times).

(a) De�ne r as the expectation of x̂

r = E[x̂] = E [b + Ay] = b + AE [y] = b + AHE [x] + AE [ε],

where we have used the proposed form of the solution, x̂ = b + Ay and the relationship between y and
x, y = Hx+ε. For unbiased observations E [ε] = 0 and for an unbiased solution, E [x] = E [x̂](= r). Thus

r = b + AHr, b = (I−AH)r.

This is an expression for b that gives an unbiased solution, i.e.

x̂ = (I−AH)r + Ay = r + A(y −Hr).

(b) The a-posteriori error covariance is

PA = E [εxε
T
x ] = E [(x− x̂)(x− x̂)T],

= E [{x− r−A(y −Hr)}{x− r−A(y −Hr)}T],

= E [{x− r}{x− r}T]− E [{x− r}(y −Hr)TAT]

−E [A(y −Hr){x− r}T] + E [A(y −Hr)(y −Hr)TAT]

Note that y −Hr = Hx + ε−Hr = H(x− r) + ε and let Px = E [{x− r}{x− r}]

PA = Px − E [{x− r}(H(x− r) + ε)TAT]− E [A(H(x− r) + ε){x− r}T]

+E [A(H(x− r) + ε)(H(x− r) + ε)TAT],

= Px −PxH
TAT − E [{x− r}εT]AT −AHPx −AE [ε{x− r}T]

+AHPxH
TAT + AHE [(x− r)εT]AT + AE [ε(x− r)T]HTAT + AE [εεT]AT.

Assume that E [{x− r}εT] = 0, E [ε{x− r}T] = 0 and de�ne E [εεT] = R. The above then simpli�es

PA = Px −PxH
TAT −AHPx + A(HPxH

T + R)AT.
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(c) What is the trace of PA?

tr(PA) =

n∑
i=1

(PA)ii,

=

n∑
i=1

(Px)ii −
n∑
i=1

p∑
j=1

(PxH
T)ij(A

T)ji −
n∑
i=1

p∑
j=1

Aij(HPx)ji +

n∑
i=1

p∑
j=1

p∑
k=1

Aij(HPxH
T + R)jk(AT)ki,

=

n∑
i=1

(Px)ii −
n∑
i=1

p∑
j=1

(PxH
T)ijAij −

n∑
i=1

p∑
j=1

Aij(HPx)ji +

n∑
i=1

p∑
j=1

p∑
k=1

Aij(HPxH
T + R)jkAik.

(d) What matrix A minimizes the trace of PA? Di�erentiate this trace w.r.t. an arbitrary element of matrix
A, Aαβ and then set to zero for stationary value

∂tr(PA)

∂Aαβ
= −

n∑
i=1

p∑
j=1

(PxH
T)ij

∂Aij

∂Aαβ
−

n∑
i=1

p∑
j=1

∂Aij

∂Aαβ
(HPx)ji

+

n∑
i=1

p∑
j=1

p∑
k=1

∂Aij

∂Aαβ
(HPxH

T + R)jkAik +

n∑
i=1

p∑
j=1

p∑
k=1

Aij(HPxH
T + R)jk

∂Aik

∂Aαβ
.

Note that ∂Aij/∂Aαβ = δiαδjβ which makes the above

∂tr(PA)

∂Aαβ
= −(PxH

T)αβ − (HPx)βα +

p∑
k=1

(HPxH
T + R)βkAαk +

p∑
j=1

Aαj(HPxH
T + R)jβ .

The �rst two and the last two terms evaluate to the same values

∂tr(PA)

∂Aαβ
= −2(PxH

T)αβ + 2

p∑
j=1

Aαj(HPxH
T + R)jβ .

This is just element (α, β) of the matrix

∂tr(PA)

∂A
= −2PxH

T + 2A(HPxH
T + R).

(e) The stationary value is when this is zero which gives

A = PxH
T(HPxH

T + R)−1.

(f) Putting this together: using the b found earlier

x̂ = b + Ay = (I−AH)r + Ay = r + A(y −Hr),

and using the A found above x̂ = r + PxH
T(HPxH

T + R)−1(y −Hr).

This is equivalent to x̂ = r + (P−1x + HTR−1H)−1HTR−1(y −Hr).

(g) r resembles the background and Px resembles its error covariance. For the situation with no background,
Px →∞ and so P−1x → 0

x̂ = r + (HTR−1H)−1HTR−1(y −Hr) = (HTR−1H)−1HTR−1y.,

This result for x̂ is the same as xA found in Q. 5.

7. Forward model and null-space example
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(a)

(b) The total column ozone per unit area is the sum of the layerwise ozone amount per unit area summed
over the q − 1 layers

1

4

q−1∑
i=1

(ρi + ρi+1)(φi + φi+1)(zi+1 − zi) =
1

4

q−1∑
i=1

φi(ρi + ρi+1)(zi+1 − zi) +
1

4

q−1∑
i=1

φi+1(ρi + ρi+1)(zi+1 − zi),

=
1

4

q−1∑
i=1

φi(ρi + ρi+1)(zi+1 − zi) +
1

4

q∑
i=2

φi(ρi−1 + ρi)(zi − zi−1).

De�ning ρ̃i = ρi + ρi+1 and ∆zi = zi+1 − zi gives the above as

1

4

q−1∑
i=1

φiρ̃i∆zi +
1

4

q∑
i=2

φiρ̃i−1∆zi−1 =
1

4

{
φ1ρ̃1∆z1 +

q−1∑
i=2

φi [ρ̃i∆zi + ρ̃i−1∆zi−1] + φqρ̃q−1∆zq−1

}
.

(c) Linear interpolation for the second measurement gives (φk + φk+1)/2.

(d) H =

(
¼ρ̃∆z1 ¼[ρ̃2∆z2+ρ̃1∆z1] ¼[ρ̃3∆z3+ρ̃2∆z2] ¼ρ̃3∆z3

½ ½ 0 0

)
(for x = (φ1 φ2 φ3 φ4)T).

(e)

R−1 =

(
0.04 0

0 0.25

)
, H =

(
2.5 4.25 3 1
0.5 0.5 0 0

)
,

R−1H =

(
0.1 0.17 0.12 0.04
0.1 0.1 0 0

)
, HTR−1H =


0.3 0.475 0.3 0.1

0.475 0.7725 0.51 0.17
0.3 0.51 0.36 0.12
0.1 0.17 0.12 0.04

 .

There are two eigenvectors that have zero eigenvalues:

v1 =


0.654
−0.654
0.381

0

 , v2 =


0.079
−0.079
−0.272
0.956

 ,

(each component given to 3 d.p.). These de�ne the null space.

(f) The matrix to calculate now is B−1 + HTR−1H

B−1 =
1

781


189 −186 98 −24
−186 369 −270 98

98 −270 369 −186
−24 98 −186 189

 , B−1+HTR−1H =


0.542 0.237 0.425 0.069
0.237 1.245 0.164 0.295
0.425 0.164 0.832 −0.118
0.069 0.295 −0.118 0.282

 ,

which has eigenvalues (no zero eigenvalues): λ1 = 1.509, λ2 = 0.992, λ3 = 0.291, λ4 = 0.110.
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8. Relationship between covariance and correlation
Expand the matrix notation

COVij =

n∑
k=1

n∑
l=1

ΣikCOVklΣlj ,

but Σik = σiδik leading to COVij =

n∑
k=1

n∑
l=1

σiδikCORklσlδlj = σiCORijσj ,

hence CORij =
COVij

σiσj .
.

9. Structure functions
One way of doing this is to check that Pv =

∑n
i=1 pivi by expanding each side. The jth component of the

left hand side is
∑n
i=1 pjivi (where pji is the jith matrix element of P) and the jth component of the right

hand side is
∑n
i=1(pi)jvi (where (pi)j is the jth component of pi. Now, (pi)j = pji, making the left and right

hand sides equal.

10. Assimilation of a single observation in VAR to probe the background error covariance structure
The OI formula for the analysis increment is

xA − xB = BHT(R + HBHT)−1(y − h(xB)).

A single direct observation at grid-point k means that y = y, h(xB) = xB
k ,

(both scalars). R and HBHT are also both scalars. For the single observation, H will be the 1 × n matrix
with all elements zero except the one for element k: H = (0 0 0 1 0 0 0).

First �nd BHT: BHT =



B1k

B2k

...
Bkk

...
Bn−1,k
Bnk


. Now �nd HBHT: HBHT = Bkk.

Let R = σ2
y (the variance of the single observation). Then, putting this all together

xA − xB =



B1k

B2k

...
Bkk

...
Bn−1,k
Bnk


y − xB

k

σ2
y + Bkk

.

11. Ensemble covariance in matrix form
Let us de�ne η

(i)
B = x

(i)
B − 〈x〉for shorthand. The standard expression for the error covariance matrix of these

N perturbations is:

Pf
(N) =

1

N − 1

N∑
i=1

η
(i)
B η

(i)T
B , which has matrix elements

(
Pf

(N)

)
kl

=
1

N − 1

N∑
i=1

(
η
(i)
B

)
k

(
η
(i)
B

)
l
.
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If we can show that XXT/(N − 1) has these matrix elements then we have answered the question. The k, lth
matrix element of XXT is:

(
XXT

)
kl

=

N∑
i=1

(
X
)
ki

(
XT
)
il

=

N∑
i=1

(
X
)
ki

(
X
)
li
.

From the de�nition of X, the matrix element (X)ki is the kth element of the ith ensemble member: (X)ki =

(η
(i)
B )k. Putting this into the outer product expression above gives:

(
XXT

)
kl

=

N∑
i=1

(
η
(i)
B

)
k

(
η
(i)
B

)
l

=

N∑
i=1

(
η
(i)
B

)
k

(
η
(i)
B

)
l
.

Dividing by N − 1 then concludes that the matrix elements of XXT/(N − 1) are the same as those of the
standard expression. If all matrix elements are the same, then the matrices are the same.

12. Implied covariances

(a) Using the information given, the background error covariance matrices in each space are de�ned as the
following outer product expectations:

Bδx =
〈
δxδxT

〉
, Bδχ =

〈
δχδχT

〉
.

Substituting in the CVT into the �rst de�nition, taking the CVT outside of the averaging brackets, and
then using the second de�nition gives:

Bδx =
〈
Uδχ(Uδχ)T

〉
=
〈
UδχδχTUT

〉
= U

〈
δχδχT

〉
UT = UBδχU

T.

(b) From the lectures, the CVT is chosen to make UTB−1δxU = I (the matrix Bδx is denoted B in the
lectures). Re-arranging this gives:

UTB−1δxU = I,

U−TUTB−1δxUU−1 = U−TU−1,

B−1δx = U−TU−1,

∴ Bδx = UUT.

This means that solving the (simpler) problem of minimizing J [δχ] where δχ has unit-matrix background
error covariances is equivalent to minimizing J [δx] with background error covariance Bδx. Bδx is the
implied background error covariance matrix. This is consistent with putting Bδχ = I in part (a).

13. The generalized chain rule

Write down the information given in expanded form (∇vB
f)i =

∂f

∂(vB)i
, (vB)i =

∑
j

Nij(vA)j .

Furthermore, the gradient with respect to vAis (∇vAf)j =
∂f

∂(vA)j
,

and the generalized chain rule relates the derivatives with respect to each variable

∂f

∂(vA)j
=
∑
i

∂(vB)i
∂(vA)j

∂f

∂(vB)i
.

From the information given, the following is found
∂(vB)i
∂(vA)j

= Nij = (NT)ji.
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Substituting this into the chain rule gives (∇vA
f)j =

∑
i

(NT)ji(∇vB
f)i,

which is just the expanded form of ∇vA
f = NT∇vB

f.

This is a useful result and will be used in Q. 14.

14. Gradient and Hessian of the cost function w.r.t the control variable

(a) Expand JB

JB =
1

2

n∑
i=1

δχ2
i .

Hence, the ith component of the �rst derivative (w.r.t. δχ) is

∂JB
∂δχj

=
1

2

n∑
i=1

∂δχ2
i

∂δχj
=

n∑
i=1

δχi
∂δχi
∂δχj

=
n∑
i=1

δχiδij = δχj ,

which is the jth component of the column vector ∇δχJB by de�nition. The second derivative

∂2JB
∂δχj∂δχk

=
∂δχj
∂δχk

= δij , which is the (i, j)th component of the matrix I.

(b) Expand JO (do this for general - non-diagonal - Rt)

JO(t) =
1

2

p∑
i,j=1

(δy(t)− δym(t))i(R
−1
t )ij(δy(t)− δym(t))j .

Hence, the kth component of the �rst derivative (w.r.t. δym(t)) is (use the di�erentiation product rule)

∂JO(t)

∂δym(t)k
=

1

2

p∑
i,j=1

∂

∂δym(t)k
(δy(t)− δym(t))i (R−1t )ij (δy(t)− δym(t))j ,

= −1

2

p∑
i,j=1

{
(δy(t)− δym(t))i (R−1t )ij

∂δym(t)j
∂δym(t)k

+
∂δym(t)i
∂δym(t)k

(R−1t )ij (δy(t)− δym(t))j

}
,

= −1

2

p∑
i,j=1

(δy(t)− δym(t))i (R−1t )ijδjk −
1

2

p∑
i,j=1

δik(R−1t )ij (δy(t)− δym(t))j ,

= −1

2

p∑
i=1

(δy(t)− δym(t))i (R−1t )ik −
1

2

p∑
j=1

(R−1t )kj (δy(t)− δym(t))j ,

The �rst summation can be re-indexed i→ j and the symmetric property of R−1t used

∂JO(t)

∂δym(t)k
= −1

2

p∑
j=1

(δy(t)− δym(t))j (R−1t )kj −
1

2

p∑
j=1

(R−1t )kj (δy(t)− δym(t))j .

Both summations are shown to be equal, hence

∂JO(t)

∂δym(t)k
= −

p∑
j=1

(R−1t )kj(δy(t)− δym(t))j .

This is the kth component of the column vector

∇δym(t)JO(t) = −R−1t (δy(t)− δym(t)) .
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Di�erentiating again w.r.t. δym(t)l gives

∂2JO(t)

∂δym(t)k∂δym(t)l
= −

p∑
j=1

∂

∂δym(t)l
(R−1t )kj (δy(t)− δym(t))j ,

=

p∑
j=1

(R−1t )kj
∂δym(t)j
∂δym(t)l

=

p∑
j=1

(R−1t )kjδjl = (R−1t )kl,

which is the (k,l)th component of the matrix
∂2JO(t)

∂δym(t)2
= R−1t .

(c) This is done by simple substitution.

(d) This is done by simple substitution.

(e) The total gradient of the cost function is

∇δχJ = ∇δχJB +

T∑
t=0

∇δχJO(t) = δχ−UT
T∑
t=0

MT
t←0H

T
t R
−1
t (δy(t)−HtMt←0Uδχ) .

The total Hessian of the cost function is

∂2J

∂δχ2
=

∂2JB
∂δχ2

+

T∑
t=0

∂2JO(t)

∂δχ2
I +

T∑
t=0

UTMT
t←0H

T
t R
−1
t HtMt←0U.

15. E�cient form of the 4D-VAR gradient

(a) Writing out contributions to the summation on separate lines gives

∇δχJO = −UT
{
HT

0 R
−1
0 r(0)+

MT
1←0H

T
1 R
−1
1 r(1) +

MT
1←0M

T
2←1 . . .M

T
T−2←T−3 ×

MT
T−1←T−2H

T
T−1R

−1
T−1r(T − 1) +

MT
1←0M

T
2←1 . . .M

T
T−1←T−2M

T
T←T−1H

T
TR
−1
T r(T )

}
.

(b) MT
1←0 is used in all but the �rst line, MT

2←1 is used in all but the �rst and second lines, etc. Identifying
the adjoint matrices that are common to many lines provides the 'trick' that is used to write the e�cient
form of the gradient.

16. The NMC method

(a) The information given in the question in mathematical form is

B =
〈
η48η48T

〉
, B =

〈
η24η24T

〉
,

〈
η48η24T

〉
= 0.

The error covariance of the forecast di�erence is, by substitution〈
(xf48 − xf24)(xf48 − xf24)T

〉
=
〈
(η48 − η24)(η48 − η24)T

〉
=
〈
η48η48T

〉
−
〈
η48η24T

〉
−
〈
η24η48T

〉
+
〈
η24η24T

〉
=
〈
η48η48T

〉
+
〈
η24η24T

〉
= 2B.

(b) None of the assumptions is likely to be valid. Forecast errors are expected to grow with the length of
the forecast and so the assumption that each of

〈
η48η48T

〉
and

〈
η24η48T

〉
are the same will not be true.

Forecast errors are also likely to be correlated in time (e.g. an error in one part of the atmosphere at 24
hours is likely to be correlated with an error at 48 hours, especially downstream of the �ow). Additionally,
the B-matrix is meant to represent the error covariance of forecasts of a particular range, e.g. 6 or 12
hours. The NMC method uses two forecasts of di�erent lengths and neither of 6 or 12 hours in range.
[N.B. the reason why the NMC method usually uses a di�erence between the forecasts of 24 hours is to
cancel out diurnal biases.]
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