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How will the water cycle change? B Reading

Absorbed sunlight(s) ~ P=Q~S-H
65—-85Wm™

\

b units: thousands of km?*/yr Land precipitation
120+ 10%

Ocean to land water

Ocean precipitation vapour transport
434+ 10% 46 + 10%

Landice
discharge
3 +40%

Land evaporation

Longwave radiative
cooling (Q)
176 - 200 Wm*

74 +10%

Precipitation (P)
78 -98 Wm™?

Ocean evaporation

480 = 10% '
Human

water use
24 + 10%
A

Endorheic ¢
basins
1+30%

River discharge
46 10% ; )

Sensible

Heat (H)
- 17-31
'wWI'n_2

™~

N

Fresh groundwater discharge 0.5 + 70% %i“sngf;‘,fater recharge
NN A Evaporation (E)

| Saline groundwater discharge 4 + 70%
T

Allan et al. (2020) NYAS: see also Abbott et al. (2019) Nature Geosci.
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Observed changes in moisture & precipitation
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Update from Allan et al. (2014) Surv. Geophys.

Small global precipitation
response expected (1-2.5 %/°C)
on energetic grounds (aerosol

cooling & fast adjustments to GHGs
and absorbing aerosol)

ERAS captures water vapour
changes (~7%/°C) since mid-
1990s but not precipitation
Relative humidity decline over
land (Willett et al. 2020 ESSD)
expected from land-ocean
warming contrast (O’'Gorman &
Byrne 2018); underestimated by

models? (Dunn et al. 2017)
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https://doi.org/10.1073/pnas.1722312115
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Amplification of P-E and salinity patterns
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Increased moisture transport (~7%/°C)
from evaporative ocean into weather
systems, monsoons & high latitudes
Amplification of existing P-E and salinity
patterns over ocean e.g. Durack 2015
Over land, complex interaction between
land-ocean warming contrast, vegetation
responses to climate and CO, and
circulation changes, Byrne & O’Gorman 2015
Wetter wet seasons and weather events
More intense dry seasons and droughts



https://doi.org/10.5670/oceanog.2015.03
https://doi.org/10.1175/jcli-d-15-0369.1

Larger seasonal & interannual contrasts In tropics

ol CMIP5 historical = | | | | e Dynamically track wettest 30%,
ECP 45 driest 70% regions each month
nsemble mean

* Tropical land precipitation
increases in wet regime, decreases
in dry regime

* Observed decadal variability
explained by internal variability

* See also Schurer et al. (2020) ERL;
Kumar et al. (2015) GRL
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Liu & Allan (2013) ERL update in Tropical Extremes: Natural Variability & Trends
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http://onlinelibrary.wiley.com/doi/10.1002/2015GL066858/abstract
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Changes in heavy precipitation and flood hazard
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Allan et al. (2020) NYAS:; see also Fowler et al. (2021) Nature Reuv.

Intensification of extreme
precipitation with increasing
moisture (~7% per °C)

» Latent heating strengthens
storms but stabilised
atmosphere

» Flooding also modulated by
catchment characteristics;
glacier and snowmelt; sea
level rise; direct human
influence


http://doi.org/10.1111/nyas.14337

Local-scale factors affecting water cycle change

* |ncreases in atmospheric evaporative demand intensify dry spells

» Land-ocean warming contrast important in explaining declining continental relative

humidity and change in regional precipitation patterns

» \Vegetation-soil-atmosphere feedbacks important in amplifying
* Direct CO, effect on plant growth and water use efficiency

» how these combine regionally uncertain Peters et al. 2018; Lemordant et al. 2018
* Earlier but possibly slower spring snow melt Musselman et al. 2017

» altitude/latitude/catchment dependent Pall et al., 2019; Musselman et al. 2018

» Some rivers increase then decrease flow as glaciers melt then disappear (SROCC)

 Direct human effects: water extraction, irrigation and deforestation
* Irrigation increases local precipitation, deforestation decreases local precipitation
 Urbanisation can delay and intensify precipitation (heat island & aerosol effects)

 Many other factors but circulation change critical



http://www.nature.com/articles/s41561-018-0212-7
http://www.pnas.org/lookup/doi/10.1073/pnas.1720712115
https://doi.org/10.1038/nclimate3225
https://doi.org/10.1175/JCLI-D-18-0529.1
http://www.nature.com/articles/s41558-018-0236-4
https://www.ipcc.ch/srocc/chapter/chapter-2/

Conclusions

More stable/accurate global estimates of precipitation,

evaporation and Earth’s energy budget essential to confirm:

»Global energy and water budgets and coupling

»Water cycle responses to radiative forcing and
subsequent warming

Improved assessment of moisture and energy transports
» Essential in capturing regional water cycle changes
» Require combination of satellite data & simulations
» Intensification of wet and dry weather events

Local scale monitoring of water cycle components

» Cryosphere; surface water; subsurface moisture;
vegetation; direct human influence

»Synergistic use of observations, reanalyses and models

Shifts in atmospheric circulation dominate regionally
» least certain but potentially most impactful
»Combine observing systems with physical understanding
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Fast & slow global precipitation responses to 4xCO,

A MRI-ESM2-0 B IPSL-CMBA-LR
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Global: rapid decline, consistent slow increase with warming (2-3%/°C)
Land: model-dependent rapid response & suppressed increase with warming
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Circulation-related changes

Effect on ANN P-E of a 3 degrees warming (vs 1850-1900)
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Thanks to Stéphane Sénési for P-E@3K figure

Uncertain role of Arctic amplification on

high latitude weather systems e.g.
Henderson et al. 2018; Tang et al. 2014

Poleward migration of subtropical belt
over ocean, complex effects over land
Grise & Davis 2020; Byrne & O’Gorman 2015
Slowing tropical circulation supresses
thermodynamic intensification of
monsoons e.g. IPCC AR5

Contraction and intensification of ITCZ
e.g. Byrne & Schneider, 2016; Su et al., 2020

Region dependent shifts in ITCZ e.g.
Dong & Sutton 2015; Dunning et al. 2018

Poleward, complex migration of storm

tracks/contrasting hemispheric forcing
Watt-Meyer et al., 2019; Zhao et al., 2020
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* Advances in understanding global scale [aEasiss

Atmosphere 13 + 3%

water vapour & precipitation responses

to radiative forcings & subsequent “i. 2

warming R‘ s
* Regionally, thermodynamic increases in g :

moisture drives an intensification of Ocean =

extreme wet and dry events e S Wetlands 14 .

54 £ 90%

* Locally, vegetation, cryosphere, micro- Renewable groundwater 630 £ 70%
. . Non-renewable groundwater 22 000 + 80%
physical and human factors important

* Shifts in atmospheric circulation least
certain but potentially most impactful
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