

AN UPDATE ON EARTH'S HEAT INVENTORY

Richard P. Allanr.p.allan@reading.ac.uk@rpallanukLead by Karina von Shuckmann and a cast of thousands, thanks also to Chunlei Liu

INTRODUCTION

- Energy budget fundamental diagnostic of climate change
- Earth's Heat Inventory can be part of Global Stocktake of Paris agreement
- Latest Heat Inventory 1971-2020: von Schuckmann et al. (2023) ESSD
 - Heating of oceans,
 - Heating of land,
 - Melting/heating of ice
 - Warming/moistening of atmosphere
- Is heating increasing? Changes in Earth's Energy Imbalance from satellite

MULTI-DECADAL EARTH RADIATION BUDGET RECORD

- Diagnose global climate forcing and feedback response
- Evaluate regional radiative processes related to climate
- Understand drivers of variability and trends
- Homogeneity, sampling & calibration issues
- Consistency with heat content/sea level e.g.
 Loeb et al. (2012) Nat.
 Geosci; Allison et al.
 (2020) ERC; Cheng et al.
 2017 Sci. Adv.

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

University of

PLANETARY HEATING SINCE THE 1980S FROM MULTIPLE INDEPENDENT DATASETS

Heating:

- 1985-1999: 0.10 ± 0.61 W m⁻²
- 2000–2016 0.62 ± 0.1 W m⁻²

Liu et al. 2020 Clim. Dyn

 Surface temperature determined by upper mixed layer ocean heat e.g. <u>Allan (2018) Nature Clim</u>.

Allison et al. (2020) ERC doi:10.1088/2515-7620/abbb39

See also <u>Cheng et al. 2017 Sci. Adv.</u>

OCEAN HEAT CONTENT

GJ per m² of 60°S-60°N ocean area

Also shown, equivalent Wm⁻² for global surface area

ATMOSPHERIC HEAT CONTENT

HEATING OF THE LAND

*including heat storage within inland water bodies 0.0002 Wm⁻² since 1960, 7 with permafrost thawing accounting for 0.002 Wm⁻² LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

HEAT USED MELTING ICE

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

8

2006-2020 (1971-2020)

University of **Reading**

Earth Syst. Sci. Data, 15, 1675–1709, 2023 https://doi.org/10.5194/essd-15-1675-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Heat stored in the Earth system 1960–2020: where does the energy go?

Karina von Schuckmann¹, Audrey Minière¹, Flora Gues^{2,1}, Francisco José Cuesta-Valero^{3,4},
Gottfried Kirchengast^{5,6}, Susheel Adusumilli⁷, Fiammetta Straneo⁷, Michaël Ablain⁸, Richard P. Allan⁹,
Paul M. Barker¹⁰, Hugo Beltrami¹¹, Alejandro Blazquez¹², Tim Boyer¹³, Lijing Cheng^{14,15},
John Church¹⁷, Damien Desbruyeres¹⁶, Han Dolman¹⁸, Catia M. Domingues¹⁹,
Almudena García-García^{3,4}, Donata Giglio²⁰, John E. Gilson⁷, Maximilian Gorfer⁵,
Leopold Haimberger²¹, Maria Z. Hakuba²², Stefan Hendricks²³, Shigeki Hosoda²⁴,
Gregory C. Johnson²⁵, Rachel Killick²⁶, Brian King²⁷, Nicolas Kolodziejczyk¹⁶, Anton Korosov²⁸,
Gerhard Krinner²⁹, Mikael Kuusela³⁰, Felix W. Landerer²², Moritz Langer^{13,2}, Thomas Lavergne³³,
Isobel Lawrence³⁴, Yuehua Li³⁵, John Lymar²⁵, Florence Marti⁸, Ben Marzeion³⁶, Michael Mayer^{21,37},
Andrew H. MacDougall³⁸, Trevor McDougal¹⁰, Didier Paolo Monselesan³⁹, Jan Nitzbon^{40,41},
Inès Otosaka⁴², Jian Peng³⁴, Sarah Purkey^{7,43}, Dean Roemmich^{7,43}, Kanako Sato²⁴, Katsunari Sato⁴⁴,
Abhishek Savita⁴⁵, Axel Schweiger⁴⁶, Andrew Shepherd⁴⁷, Sonia L Seneviratne⁴⁸, Leon Simons⁴⁹,
Donald A. Slater⁵⁰, Thomas Slater⁵¹, Andrea K. Steiner⁵, Toshio Suga^{52,24}, Tanguy Szekely⁵³,
Wim Thiery⁵⁴, Mary-Louise Timmermans⁵⁸, Inne Vanderkeles^{44,55}, Stefar F.

he contraction in

ACCELERATING CLIMATE CHANGE?

Can we monitor rate of change of heating?? von Shuckmann et al. (2023) ESSD

e.g. <u>Smith et al. (2015) GRL</u> found inconsistencies in trends of heating & related this to ocean observing system

CURRENT ENERGY BUDGET CHANGES

- Large uncertainty in pre-CERES EEI remains
 - Update to using AMIP6 adjustments increases change from ~0.3 Wm⁻² (Liu et al. 2017) to ~0.5 Wm⁻² (Liu et al. 2020) & uncertainty range
- Consistent with ocean heat content changes (<u>Cheng et al. 2017 Sci. Adv.</u>), lower than <u>Resplandy et al. (2019) Sci. Rep.</u> Who have larger range following correction (0.3-1.3 Wm⁻²)
- ERA5 does not capture observed ASR increase after warming slowdown (e.g. <u>Loeb et al. 2018</u>)
 - ↑Heating 2015/16
 - Cloud plus aerosol? Calibration drift?

ROLE OF LOW ALTITUDE CLOUD?

GU ADVANCING EARTH AND SPACE SCIENC

Geophysical Research Letters

RESEARCH LETTER 10.1029/2019GL086705 There is good agreement between

state of the art climate models

The relationship between global

Key Points:

New Generation of Climate Models Track Recent **Unprecedented Changes in Earth's Radiation** Budget Observed by CERES

radiation budget variations observed Norman G. Loeb¹, Hailan Wang², Richard P. Allan³, Timothy Andrews⁴, Kyle Armour³, Jason N. S. Cole⁶, Jean-Louis Dufresne⁷, Piers Forster⁸, by CERES and simulated by seven Andrew Gettelman⁹, Huan Guo¹⁰, Thorsten Mauritsen¹¹, Yi Ming¹⁰ mean net TOA radiation and surface David Paynter¹⁰, Cristian Proistosescu^{12,13}, Malte F. Stuecker¹⁴, Ulrika Willén¹⁵, and temperature is sensitive to changes Klaus Wyser¹⁵ in regions dominated by low clouds

Most models underestimate 1NASA Langley Research Center, Hampton, VA, USA, 2Science Systems and Applications, Inc., Hampton, Virginia, USA hortwave flux changes in respo ³Department of Meteorology and National Centre for Earth Observation. University of Reading. Reading, UK, ⁴Met Office o SST changes over the east Pacific

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

ΔNet

SUMMARY

- Heating of climate system accelerating
- ... but needs to reduce to "net zero")
 - 0.48 Wm⁻² 1971-2020 → 0.74 Wm⁻² 2006-2020
 - •89% in ocean, 5% in land, 4% melting ice, 2% atmosphere
 - 40% of ocean heating in upper 300m; 91% in upper 2000m
- Comparison to independent ocean heat content & sea level rise records good consistency check
- Decreased low altitude cloud in subtropical Pacific contributed to recent additional heating (also decreases in OLR relating to water vapour & trace gases plus ice melt) <u>Loeb et al. 2021 GRL</u>
- Gaps in record major issue in assessing changes in energy budget crucial in understanding radiative forcing, heating of the system and feedback response

