Physically consistent responses in the atmospheric hydrological cycle in models and observations

Richard P. Allan
Department of Meteorology/NCAS, University of Reading
Collaborators: Chunlei Liu, Matthias Zahn, David Lavers, Brian Soden
http://www.met.reading.ac.uk/~sgs02rpa
r.p.allan@reading.ac.uk
How should global precipitation respond to climate change?

Climate model projections (IPCC 2007)

- Increased Precipitation
- More Intense Rainfall
- More droughts
- Wet regions get wetter, dry regions get drier?
- Regional projections??

![Precipitation Intensity](chart)

![Dry Days](chart)

![Precipitation Change (%)](chart)
Physical basis: energy balance
Models simulate robust response of clear-sky radiation to warming (~2 Wm\(^{-2}\)K\(^{-1}\)) and a resulting increase in precipitation to balance (~2 %K\(^{-1}\))

Physical basis: Clausius Clapeyron

\[
\frac{1}{q_s} \frac{dq_s}{dT} \approx \frac{1}{e_s} \frac{de_s}{dT} = \frac{L}{R_v T^2} = \begin{cases}
0.14 K^{-1} & T = 200 K \\
0.07 K^{-1} & T = 273 K \\
0.06 K^{-1} & T = 300 K
\end{cases}
\]

- Strong constraint upon low-altitude water vapour over the oceans
- Land regions?

SSM/I Satellite data, Dec 2006

e.g. Allan (2012) Surv. Geophys. in press
Global changes in water vapour

Updated from O’Gorman et al. (2012) Surv. Geophys; see also John et al. (2009) GRL
Extreme Precipitation

- Large-scale rainfall events fuelled by moisture convergence
 - e.g. Trenberth et al. (2003) *BAMS*. But see Wilson and Toumi (2005) *GRL*
 - Intensification of rainfall (~7%/K?)
Observed and Simulated responses in extreme Precipitation

- Increase in intense rainfall with tropical ocean warming
- SSM/I satellite observations at upper range of models

Tropical response uncertain: O’Gorman and Schneider (2009) PNAS....
but see also: Lenderink and Van Meijgaard (2010) ERL; Haerter et al. (2010) GRL
HydEF project:
Extreme precipitation & mid-latitude Flooding

• Links UK winter flooding to moisture conveyor events
e.g. Nov 2009 Cumbria floods

Physical Basis: Moisture Balance

\[P - E \sim (\nabla \cdot (u q)) \] (units of \(s^{-1}\); scale by \((p/g \rho_w)\) for units of mm/day)

If the flow field remains relatively constant, the moisture transport scales with low-level moisture.

Held and Soden (2006) J Climate
Projected (top) and estimated (bottom) changes in P-E

\[
\frac{\delta F}{F} \approx \frac{\delta e_s}{e_s} \approx \alpha \delta T.
\]

\[
\delta(P - E) = -\nabla \cdot (\alpha \delta TF). \sim \alpha \delta T(P - E).
\]

\[
\alpha \approx 0.07 \text{ K}^{-1}.
\]

Fig. 7. The annual-mean distribution of \(\delta(P - E)\) from the ensemble mean of (a) PCMDI AR4 models and (b) the thermodynamic component predicted from (6) from the SRES A1B scenario.
Moisture transports from ERA Interim

- Moisture transport into tropical ascent region
- Significant mid-level outflow
- 2000s: increases in inflow or drift in ERA Interim?
First argument:
\[P \sim Mq. \]
So if \(P \) constrained to rise more slowly than \(q \), this implies reduced \(M \).

Second argument:
\[\omega = \frac{Q}{\sigma}. \]
Subsidence (\(\omega \)) induced by radiative cooling (\(Q \)) but the magnitude of \(\omega \) depends on (\(\Gamma_d - \Gamma \)) or static stability (\(\sigma \)). If \(\Gamma \) follows MALR \(\rightarrow \) increased \(\sigma \). This offsets \(Q \) effect on \(\omega \).
Precipitation bias and response binned by dynamical regime

- Model biases in warm, dry regime
- Strong wet/dry fingerprint in model projections (below)

Contrasting precipitation response expected

- Heavy rain follows moisture (~7%/K)
- Mean Precipitation linked to radiation balance (~3%/K)
- Light Precipitation (~?%/K)
Contrasting precipitation response in wet and dry regions of the tropical circulation

Sensitivity to reanalysis dataset used to define wet/dry regions

Exploiting satellite estimates of precipitation

- HOAPS and TRMM 3B42 are outliers
- Strong sensitivity to ENSO

Liu & Allan (2011) JGR.
Contrasting land/ocean changes relate to ENSO

See also Gu et al. (2007) J Clim

PAGODA: Understanding global changes in the water cycle

Oceans

Land

Above: Current changes in tropical precipitation in CMIP5 models & satellite-based observations

Note realism of atmosphere-only AMIP model simulations

Liu and Allan in prep…
CMIP5 simulated & projected % changes in precipitation

Pre-1988 GPCP ocean data does not contain microwave observations
Transient responses

Andrews et al. (2009) J Climate
Transient responses

• CO$_2$ forcing experiments
• Initial precip response suppressed by CO$_2$ forcing
• Stronger response after CO$_2$ rampdown

Degree of hysteresis determined by forcing related fast responses and linked to ocean heat uptake

HadCM3: Wu et al. (2010) GRL
Forcing related fast responses

- Surface/Atmospheric forcing determines “fast” precipitation response
- Robust slow response to T
- Mechanisms described in Dong et al. (2009) J. Clim
- Hydrological Forcing: $\text{HF}=kdT-d\text{AA}-d\text{SH}$ (Ming et al. 2010 GRL; also Andrews et al. 2010 GRL)
Regional responses in precipitation

Energetic constraints?

• ΔPrecipitation

• ΔDry static energy

Muller and O’Gorman (2011) Nature Climate Change
Implications for monsoon? Levermann et al. (2009) PNAS
Conclusions

- **Robust Responses**
 - Low level moisture; clear-sky radiation
 - Mean and Intense rainfall (roughly)
 - Contrasting wet/dry region responses

- **Less Robust/Discrepancies**
 - Observed precipitation response at upper end of model range?
 - Moisture at upper levels/over land and mean state
 - Inaccurate precipitation frequency/intensity distributions
 - Magnitude of change in precipitation from satellite datasets/models

- **Further work**
 - Decadal changes in global energy budget, aerosol forcing effects and cloud feedbacks: links to water cycle?
 - Separating forcing-related fast responses from slow SST response
 - Are regional changes in the water cycle, down to catchment scale, predictable?