Climate change and the global water cycle

Richard P. Allan r.p.allan@reading.ac.uk @rpallanuk
Department of Meteorology/NCAS, University of Reading
www.met.reading.ac.uk/~sgs02rpa

Climate-KIC – TheJourney. University of Reading 22nd August 2013
“Observational records and climate projections provide abundant evidence that freshwater resources are vulnerable and have the potential to be strongly impacted by climate change, with wide-ranging consequences for human societies and ecosystems.”

IPCC (2008) Climate Change and Water
Water resources

- Most water on Earth is **salty**
- Most **fresh water** is locked away in **glaciers** or is deep in the **ground**
- Water that is usable depends strongly on the **water cycle**
Hydrological Cycle

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

Kevin Trenberth and co-authors (2007) J Hydromet
How will global precipitation respond to climate change?

Observations

Simulations:

- RCP 8.5
- Historical
- RCP 4.5

Allan et al. (2013) Surv. Geophys

Climate model projections

- Increased Precipitation
- More Intense Rainfall
- More droughts
- Wet regions get wetter, dry regions get drier?
- Regional projections??

IPCC WGI (2007)
The role of water vapour

- **Physics:** Clausius-Clapeyron

- Low-level water vapour concentrations increase with atmospheric warming at about 6-7%/K
Extreme Precipitation

- Large-scale rainfall events fuelled by moisture convergence
 - e.g. Trenberth et al. (2003) *BAMS*
- Intensification of rainfall with global warming
 - e.g. Allan and Soden (2008) *Science*
Extreme precipitation & mid-latitude flooding

UK winter flooding linked to “Atmospheric Rivers” (ARs) e.g. Nov 2009 Cumbria floods

Climate change response: intensification of AR events
Contrasting precipitation response expected

- Heavy rain follows moisture (~7%/K)
- Mean Precipitation linked to energy balance (~3%/K)
- Light Precipitation (-?%/K)

The Rich Get Richer...

- Wet regions become wetter, already dry regions drier
- Observations and detailed computer simulations (CMIP5)

Liu & Allan (2013)
Environmental Research Letters
Challenge: Regional projections

Changes in circulation systems are crucial to regional changes in water resources and risk yet predictability is poor.

How will catchment-scale runoff and crucial local impacts and risk respond to warming?

What are the important land-surface and ocean-atmosphere feedbacks which determine the response?
Conclusions

- Global precipitation will rise with warming ~2-3%/K
 - Constrained by energy budget
- Heavy rainfall becomes more intense
 - Fuelled by increased water vapour (~7%/K)
- Wet get wetter, dry get drier
 - More flooding, more drought?
- Regional projections are a challenge
 - Sensitive to small changes in atmospheric circulation
- How do we make large-scale projections relevant for small scale impacts?