The Science of Climate Change

Professor Richard Allan
r.p.allan@reading.ac.uk
@rpallanuk

Department of Meteorology, University of Reading

The Portcullis Trust, RHACC, Richmond-upon-Thames, 6/3/2019
Earth’s Climate has always been changing.
1) Is climate changing now?
THE PLANET IS WARMING

Global annual average temperature anomalies (1850-2018)

1°C above “pre-industrial”

www.metoffice.gov.uk/research/monitoring/climate/surface-temperature
Global average sea level is rising...

Satellite Altimeter data

IPCC (2013)

Figure 13.3

http://sealevel.colorado.edu/
Melting of Arctic Ice

Ice volume anomaly (1000s km3)

Arctic Sea Ice Extent
(Area of ocean with at least 15% sea ice)

Multiyear ice at End of Summer Since 1985
Evidence for current climate change

“Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased.” IPCC (2013)

Top: Differences in global average surface temperature compared to the 1961-1990 average

Middle: Changes in the July-September average summer Arctic sea ice extent

Bottom: Changes in global average sea level compared with 1900-1905 average

Source: IPCC WGI (2013) SPM
2) Is the warming unusual?
Indirect (or “proxy”) observations must be used to piece together past climate. These help us to understand how climate has changed in the past and put current direct observations (top right) in context.

Northern hemisphere proxies

GLOBAL, proxies, [Marcott et al. (2013) Science](#)
Climate change over last 800,000 years

- CO₂
- Antarctic Temperature
- Ice volume proxy
- Sea level

Age (ka)

IPCC (2013) Chap. 5 Fig 5.3

- Africa Exodus
- Europe
- Agriculture
Is the warming unusual?

• Over the last 100 years the globe has warmed by around 1°C

• 1987-2016 likely the warmest 30 year period in N. Hemisphere in past 1400 yrs
 – Comparable warmth in last 1400 years not as coherent in space or time as present

• Last time Arctic was warmer than today was probably 125,000 years ago
 – Previous (very different) interglacial when sea level was 6-9m higher than today
3) Why is it warming?
Changes in greenhouse gases from ice core and modern data

Carbon dioxide, methane and nitrous oxide

IPCC (2007) Summary for Policy Makers Fig. SPM.1
Fossil fuel CO₂ emissions have diluted natural CO₂.
Satellite observations have detected an enhanced greenhouse effect: 1997-1970

Harries et al. 2001, Nature

These results showed for the first time experimental confirmation of the significant increase in the greenhouse effect from trace gases such as carbon dioxide and methane.
HUMAN INFLUENCE ON CARBON CYCLE

Annual transfers, natural and human-made (GtC)

VALUES IN BILLIONS OF TONNES OF CARBON PER YEAR FROM IPCC (2013) Fig. 6.1

Source: IPCC
CO₂ EMISSIONS ARE HEATING PLANET

- Increases in greenhouse gases heat the planet by reducing how easily Earth can cool to space through infra-red emission
- More small pollutant “aerosol” particles cool the planet by reflecting sunlight
- More energy is arriving than leaving: Earth is heating up...

Currently energy is accumulating at rate equivalent to every person currently alive using 20 kettles (2kW) each to boil oceans (or about 300 trillion watts) [Allan et al. (2014)]
Attributing causes of climate change

• How much of recent warming is explained by natural effects?

• Experiments can be performed with complex computer simulations:
 – including just natural factors (ocean circulation, volcanic eruptions, changes in the sun, ...)
 – including natural and anthropogenic factors (e.g. greenhouse gas emissions which cause heating + sulphate aerosol pollutant particles which cause cooling)
Natural factors cannot explain recent warming

See IPCC FAQ 10.1 and SPM Fig. 6
Recent warming can be simulated when man-made factors are included. See IPCC FAQ 10.1 and SPM Fig. 6.
4) What are the predictions?
Future projections to 2100 from climate models

“Continued emissions of greenhouse gases will cause further warming and changes in all components of the climate system. Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.” [IPCC 2013 SPM]

IPCC (2014) **WG1 Summary for Policy Makers**
Change in average surface temperature (1986–2005 to 2081–2100) RCP 8.5 Scenario
European 2003 summer temperatures could be normal by 2040s, cool by 2060s
Arctic sea ice extent is projected to diminish over the 21st century.

94% decrease in September and 34% decrease in February for the RCP8.5 scenario.

IPCC (2013) WG1 Fig. 12.29
Projections of the water cycle

- Increased Precipitation
- More intense rainfall
- More intense droughts
- Intensification of wet and dry events
- Regional projections??

(IPCC WGI (2013))
Water vapour & climate change

• Water vapour is a powerful greenhouse gas
• Water vapour in the air increases with warming
• This increases magnitude of climate change
• Also drives intensification of extreme rainfall events

↑ Nov 2009 Cumbria flooding event

The weather will always generate extreme rainfall events but warming of climate will increase their severity

Long-term commitment to sea-level rise

2.3m sea level rise per °C warming over long term (e.g. 2000 years) [IPCC Fig. 13.14]

Golledge et al. (2015) Nature
How much will planet warm?

CMIP5 projected changes in global mean temperature

Temperature change relative to 1986-2005 [K]

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Year

1960 1980 2000 2020 2040 2060 2080 2100

By Ed Hawkins: see Climate Lab Book

Climate sensitivity and socioeconomic scenario

Climate sensitivity
Summary

- The planet is warming and this is primarily attributable to rising greenhouse gas concentrations
- Greenhouse gases at highest levels for at least 800,000 yrs
- Physics of greenhouse effect well understood
- Substantial changes in global temperature and rainfall patterns are projected using computer simulations
- Predicting regional climate change is a challenge...
 - Will substantial greenhouse gas emissions continue?
 - Are “knock on effects” of warming amplifying or reducing the magnitude of change (e.g. clouds, land surface, ...)?
 - How patterns of atmospheric wind and oceanic circulations respond is crucial for local impacts yet challenging to predict
COP21 Paris Climate Deal

source: http://www.carbonbrief.org/analysis-the-final-paris-climate-deal

- **Target:** global temperature well below 2°C; efforts to limit to 1.5°C
- **Mitigation:** pursue policies aiming to achieve INDC climate pledges; subsequent pledges progressively more ambitious; global stocktake 2018 & then every 5 years; peak global greenhouse gas emissions “as soon as possible”; “balance” between emissions & sinks 2050-2100
- **Adaptation:** $100bn/yr fund for developing countries: new collective quantified goal by 2025; periodic review of adaptive planning of Loss & damage has its own Article in the agreement — now on par with mitigation & adaptation; liability/compensation excluded.
- **Transparency:** "facilitative, non-intrusive, non-punitive” system of review will track countries’ progress; emissions trading allowed; aviation/shipping not included
- **Treaty:** deal entered force 4 November 2016 when more than 55 parties, covering at least 55% of global emissions signed up
Pathways limiting global warming to 1.5°C with no or limited overshoot would require rapid and far-reaching transitions in energy, land, urban and infrastructure (including transport and buildings), and industrial systems (high confidence). These systems transitions are unprecedented in terms of scale, but not necessarily in terms of speed, and imply deep emissions reductions in all sectors, a wide portfolio of mitigation options and a significant upscaling of investments in those options. www.ipcc.ch/sr15