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1.3 Fundamentals of Turbulence

Conceptually, it is useful to think of the airflow within the boundary layer as consisting of three components: the mean wind, waves and turbulence. Turbulence occurs because of the shear in the mean wind, and the temperature stratification can enhance or suppress turbulence. Waves often occur in the nocturnal boundary layer, where the stable stratification supports gravity waves. The flow of air over hills is one source of waves. Turbulence promotes rapid mixing; wave motions do not. Turbulence is the source of much of the complication in modelling and measuring the boundary layer. We now consider

· The nature of turbulence

· How it affects the bulk (mean) properties in the boundary layer

· How it is modelled

· The dynamics of turbulence itself.

1. Reynolds averaging

A plot of a property (wind etc.) measured in the ABL shows high frequency variations due to turbulent motion, superimposed on low frequency variations as weather systems pass through. The easiest way to separate these two components is to think of two components: the instantaneous wind u is the sum of the mean wind 
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 and the turbulence contribution 
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and similarly for ( and other variables. 

( Sketch 1: Illustration of Reynolds averaging.

From observations at a single point, 
[image: image3.wmf]u

 might be a 30-minute average, but in a numerical forecast model it could represent a horizontal spatial average over the 50-100 km represented by a single gridbox.

In meteorology, we are interested in forecasting the mean quantities such as 
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 and 
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, while 
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 and 
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 are inherently random and the instantaneous values cannot be predicted. To determine the effect of the fluctuations on an equation we can replace each variable by the sum of its mean and its fluctuation and solve. So all occurrences of u would be replaced using (1). But by definition 
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, so one might think that the fluctuations average to zero. However, where we have the one fluctuating quantity multiplied by another this is not the case. For example,
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When the average value of the product uv is calculated, the terms 

and 

average out to zero, so
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We are left with an extra term, the covariance of u and w. What does this term mean?

2. Heat transport by turbulence

We now consider how turbulence can transport heat and momentum in the boundary layer. Consider the surface layer on a sunny day with no mean wind.

( Sketch 2: Turbulent heat flux in a convective surface layer.

· Excess heat energy in an individual air parcel: 

· Transport of heat by one eddy:

· Mean heat transport:

But this is just the sensible heat flux! In fact, H is defined at all levels in the ABL, and is the primary mechanism for heat transport through the ABL. H(z=0) is the term in the surface energy budget equation.

So how does this affect the thermodynamic equation? If we neglect the small effects of radiation and molecular diffusion, and consider a boundary layer with no cloud or evaporating precipitation, then instantaneous potential temperature is conserved:
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In the appendix it is described how expanding out the advection terms using Reynolds averaging results in an extra term when we consider the rate of change of horizontal mean potential temperature:
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This simply states that the rate of increase of temperature in a layer is proportional to the sensible heat entering the layer from below minus the sensible heat leaving from above.

To measure H we need rapid response (faster than 10 Hz) measurements of 
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 and 
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· Sonic anemometer provides 
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· Platinum resistance thermometer provides 
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, which is almost identical to 
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From these measurements we calculate 
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; this is known as the eddy correlation method.

As an aside, it turns out that the radiation can be easily added to (5). As with sensible heat flux, the radiative heat flux can be defined at all heights in the atmosphere, so continuing the convention of the surface energy budget that Rn is positive downwards, we obtain:
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Note that in clear air the addition of Rn typically leads to a cooling of 1-3 K per day, whereas H can lead to a warming or cooling of several K per hour. However, at the boundaries of clouds the radiation term can dominate.

3. Momentum transport by turbulence

In the same way as turbulence transports heat it transports momentum. Consider the case when the mean wind is directed in the x direction.

( Sketch 3: Turbulent momentum flux.

· Excess horizontal momentum in an individual air parcel: 
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¢

r


· Vertical momentum transport by one eddy: 
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· Mean momentum flux: 
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Because wind speed invariably increases with height in the surface layer, 
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 is invariably negative. We therefore often use the Reynolds stress 
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. The surface value of 
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 is the drag (force per unit area) of the atmosphere on rough elements of the surface, but is also the drag that roughness elements exert on the wind. It is therefore crucial to represent in weather models.

We can see how this affects the momentum equation by performing the same Reynolds averaging (see the appendix). Neglecting the small effect of molecular diffusion, the x-momentum equation for a small parcel of air is given by
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After Reynolds averaging an extra term is introduced representing the frictional force per unit mass due to turbulence
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and similarly in the other momentum equations. 

4. The turbulence closure problem

What do we do with the extra terms that have appeared in the thermodynamic and momentum equations? We might attempt to find them by writing predictive equations for them, i.e. an equation for (

/( t. However, when we do this (using Reynolds averaging) we find that the equation contains third-order terms such as 

. A predictive equation for this contains even nastier terms that we don’t know what to do with. This problem is known as the turbulence closure problem.

One way to get around the turbulence closure problem is to retain terms up to a particular order and approximate the rest. In the following section we will see an example of a first order closure, where the first moments (

) are retained and the second moments (

) are approximated. Closure approximations can be divided into local schemes, where the unknown quantities are parameterised in terms of local known quantities (such as the mean wind shear and temperature gradient), and non-local schemes, where the unknown quantities depend on the boundary layer properties over a larger region of space.

5. Local first order closure: K theory

We have already seen how the gradient of a quantity tends to determine the direction of the turbulent flux, with heat tending to flow from hot to cold. A simple approximation is to assume that vertical transport is proportional to the gradient of the mean. So for temperature flux:

· Temperature flux: 

· Momentum flux:

In these equations, Kh and Km are the eddy diffusivities (in m2 s-1) for heat and momentum, respectively. This approach is known as K-theory or the flux-gradient method. Note that other scalars tend to have the same eddy diffusivity as heat. The treatment of turbulence in this way is exactly analogous to the way in which molecular diffusion works. If we consider how this would appear in the thermodynamic equation, then assuming Kh to be constant with height we have:
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This term has the same form and hence the same effect as molecular diffusion, in that it tries to mix the profile until it is uniform (i.e. 
[image: image31.wmf]u

 and 
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 independent of z). In a convective boundary layer this is realised: the profile becomes well mixed. However, Kh is typically around 106 times larger than the molecular thermal diffusion coefficient 
[image: image33.wmf]k

, so turbulence is far more efficient at mixing.

However, we still need to know what Kh and Km are. Various approaches have been taken and will be covered in future lectures; Ekman considered the eddy diffusivity to be constant through the ABL, but in the surface layer we can relate it to the distance from the surface and in the rest of the boundary layer it can be related to stability.
( Further reading: Holton p116-121.

Appendix: Reynolds averaging of the advection terms (non-examinable)

The Lagranian derivative of a quantity a (which could be u, ( etc.) can be written as
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By continuity,
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(A2)

so we can add a multiple (a) of the above three terms to the equations of motion without changing anything, as they sum to zero:
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(A3)

By the chain rule for differentiation this may be rewritten as
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We then apply Reynolds decomposition and rewrite a, u, v and w as the sum of the mean and a fluctuating part. When averaged we obtain 
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Note also that the operation of differentiating a quantity does not alter the fact that it averages out to zero over a long enough period. We then expand the derivatives on the left hand side of the equation using the chain rule and use the continuity equation to cancel terms in the reverse of the step used to go from (A1) to (A4) to obtain
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As with almost all other properties of the atmosphere (temperature, mixing ratio, wind speed, pressure etc.), the turbulent flux terms have a much larger gradient in the vertical than the horizontal. We are therefore justified in neglecting all but the last turbulent flux term, to leave
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Comparing (A1) and (A7) we see that if we are to apply the Navier-Stokes equations to an average quantity rather than an instantaneous one at a point in space, we must introduce an extra term due to the vertical transport of that quantity by turbulent eddies.
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