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1. Introduction

Diabatic processes are critical for the evolution of the
atmosphere through the modification of mesoscale
circulations and vice versa. Diabatic processes cannot be
directly resolved in numerical weather forecast and
climate model but have to be parameterised in terms of
resolved variables at grid scale. Nevertheless, the
parameterised version of diabatic processes plays a
similar role in shaping the evolution of a model’s
atmosphere. Basic research comparing the ways in
which diabatic processes interact in numerical models
and in the real atmosphere is paramount to improve the
quality of weather and climate forecasts.

2. Effects produced by
parameterisation differences

Even though different short-range simulations of a single
system can lead to broadly-similar results when certain
large-scale variables are assessed, important differences
can appear in other dynamically meaningful fields.
Figure 1 shows a trajectory analysis of a warm conveyor
belt simulated with two models: the Met Office Unified
Model (MetUM) and the COnsortium for Small-scale
MOdeling (COSMO) model (Martinez-Alvarado et al.
2014).

« The similarity in pressure and specific humidity is
remarkable (Fig. 1a,b).

« However, there are differences in

temperature (Fig. 1c).

potential

«  MetUM trajectories reach higherisentropic levels.

It can be shown that these differences are mainly due
to differences in the convection parameterisation
rather than differences in the dynamical core.
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Figure 1. Trajectory analysis on simulations of a warm
conveyor belt as part of low-pressure system in the
North Atlantic between 23-25 November 2009: (a)
pressure, (b) specific humidity and (c) potential
temperature. The models used to simulate this
system were COMSO (red lines) and the MetUM
(black lines). Solid lines represent the median of the
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3. Same parameterisation, different parameters
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Another example is provided by two simulations of a single case, in which the
same convection parameterisation scheme (based on Gregory and Rowntree,
1990) was used (Martinez-Alvarado and Plant 2013). The first simulation
(STDCON) uses standard parameter settings while the second (REDCON) has an
increased CAPE closure time-scale, effectively reducing the strength of
parameterised convection. The total rain rates in both simulations are similar

either at a single snapshot (Fig. 2a,b) or as an area-average throughout the period

of analysis (Fig. 2c). B R
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> 9 | simulations (a,c,e,g) STDCON and (b,d,f) REDCON.

e = In each case the solid lines represent the median;

. dashed lines represent the 25th and 75th

percentiles; and, dotted lines represent the 5th

S and 95th percentiles of the trajectory ensemble.
Light grey lines represent individual trajectories.

5. Balance between parameterisations

Figure 5 shows a comparison of ascent (Fig. 5a,b) and total heating (Fig.
5¢,d) in the two simulations. In both simulations the existing CAPE is
depleted through the joint action of the microphysics (Fig. 5e,f) and

convection (Fig. 5g), but in the case of REDCON the heating along each

Despite similarities in surface fields and in the short-term
evolution of the system, there are differences in the way
that mass is redistributed vertically. REDCON produces
more localised regions of ascent (Fig. 3a,b). A
comparison of the position of the dynamical tropopause
(2-PVU isosurface) shows that there is a wave-like
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trajectory occurs in a more abrupt manner.

Conclusions and final remarks

o Different NWP models often produce approximately
equivalent short-term forecasts for extratropical cyclones.

o Thisis despite the fact that different parameterisation
schemes and their interactions show some different
responses to the large-scale conditions.

o The differences are mainfestin the diabatic modifications to
air masses passing along the warm conveyor belt.

o Modest short-range differences generated there might have
important impacts for longer-term integrations.
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