Liquid detrainment in convection embedded in a cold front

Oscar Martínez-Alvarado
Bob Plant

Department of Meteorology
University of Reading
DIAMET project
DIAbatic influences on Mesoscale structures in ExTratropical storms

• Consortium constituted by four UK universities (Manchester, Leeds, Reading and East Anglia) and the Met Office

• Three Work Packages
 • WP A. Structure of mesoscale anomalies and their wide-scale consequences
 • **WP B. Physical processes and their parameterisation**
 • WP C. Predictability
DIAMET project
DIAbatic influences on Mesoscale structures in ExTratropical storms

- Consortium constituted by four UK universities (Manchester, Leeds, Reading and East Anglia) and the Met Office
- Three Work Packages
 - WP A. Structure of mesoscale anomalies and their wide-scale consequences
 - **WP B. Physical processes and their parameterisation**
 1. Improving convective parameterisation
 2. Air-sea fluxes and their influence on storm development
 3. Microphysical processes
 - WP C. Predictability
1. Lagrangian moisture budget diagnostics

- Moisture and potential temperature tracers (affected by advection)
- Budgets decomposed by parameterised processes:

\[\Delta \theta(x,t) = \sum_{i=\text{proc}} \Delta \theta_i(x,t) \]

\[\Delta q(x,t) = \sum_{i=\text{proc}} \Delta q_i(x,t) \]

\(\text{proc} = \{ \text{convection, boundary layer, microphysics,...} \} \)

- Current field configuration given by

\[\theta = \theta_0 + \Delta \theta_0 + \Delta \theta \]

Initial field at t=0

Change in initial field due to advection only
2. Spectral decomposition of bulk mass flux parameterisation output

- Spectral decomposition using entrainment ε as single parameter.
 1. Construction of a plume ensemble consistent with the model sounding
 2. Solve

$$\min \left| M(z^{\alpha}) - \sum_i c_i M_i(z^{\alpha}) \right|, c_i \geq 0$$

z^{α}: α-th height level
M: bulk mass flux
M_i: i-th plume mass flux
c_i: i-th coefficient
Analysis method: Motivation
Plant (2010)

Mean West Indies sounding data for “hurricane season” (Jordan 1958)

Vertical profiles of mass flux in ensemble (after Plant 2010)

N = 350 plumes
Analysis method: Motivation
Plant (2010)

Bulk parameterisation schemes ansatz (Yanai et al. 1973)

The liquid water detrained from each individual plume is given by the bulk value:

\[
l_{D_i} = l_i = l_B = \frac{\sum M_i l_i}{\sum M_i}
\]

Ensemble detrained liquid water
Bulk liquid water
(after Plant 2010)
Preliminary results

• Case from DIAMET first field campaign:
 • 30 September 2011
 • Low-pressure system centred to the south-west of Iceland
 • Long trailing active cold front
• Model:
 • Met Office Unified Model (MetUM) version 7.3
 • North-Atlantic—Europe (NAE) domain
 • Grid spacing 0.11° (~12 km)
 • 38 vertical levels (lid ~40 km)
 • (MetUM Modified) Gregory—Rowntree convection scheme
DIAMET field campaign
0600 UTC 30 September 2011

Model-derived OLR

850-hPa equivalent potential temperature

Total precipitation

Convective rain
Lagrangian budget diagnostic

Change in theta due to convection

Total change in theta
Rain

Total precipitation

[Map showing precipitation patterns with annotations A and B]

[Graph showing precipitation rate with lines labeled Total precip rate, CV rain rate, and LS rain rate]
Updraught mass flux

Total precipitation

Elevated convection
Updraught mass flux

![Diagram showing updraught mass flux and temperature layers at 0°C and -10°C](image)
T-φ-gram and plume ensemble

T-φ-gram before convection

Vertical profiles of mass flux in ensemble
T-φ-gram and plume ensemble

Bulk mass flux (MetUM)
Spectral component plumes (thin)
Spectral mass flux (bold)

Ensemble detrained liquid water
Bulk liquid water
Two tools for the analysis of convection in bulk mass flux models have been developed

1. Spectral decomposition of bulk mass flux convection
2. Lagrangian budget of energy (heating/cooling) and moisture (drying/moistening)

These tools are being applied to a realistic case involving an active cold front.

Preliminary analysis shows discrepancies between spectral and mass flux approaches
On-going work

- Quantification of the effect of discrepancies between spectral and bulk convective scheme formulations on the large-scale circulation
- Use of Lagrangian budget method to determine origin and downstream impact of moisture and energy sources/sinks from convection (and other parameterised processes)
References

