Contrasting Convective-Scale Perturbation Growth in Two Cases Over the UK

G. Leoncini1 R. S. Plant1 S. L. Gray1
P. Clark2

1Meteorology Department, University of Reading
2Met Office, Joint Centre for Mesoscale Meteorology

EMS Annual Meeting
September 29th 2009
We introduce a novel technique:

perturb model state as the simulation progresses

at the large scale

- several storms within domain
- processes involved in error propagation
- general overview of model/convection response to perturbation

at the storm scale

- focus on one specific flood
- verify ensemble technique is useful in a different domain/weather regime
- accumulation within an area
- what needs to be changed: μ physics or perturbation?
Perturbation Structure

- potential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km
Perturbation Structure

- potential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel
- applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km

flow independent ...
understandable
Perturbation Structure

- potential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel
 - applied to random numbers
 - amplitude: 1, 0.1, 0.01 K
 - σ: 24, 8, "0" km

flow independent ...
understandable
Overview

Perturbation

Scattered Convection

Flood

Conclusions

Perturbation Structure

- potential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions
- 2D Gaussian kernel applied to random numbers
 - amplitude: 1, 0.1, 0.01 K
 - σ: 24, 8, "0" km

flow independent ...

understandable

$\sigma = 8$ km

Unperturbed Theta
Perturbation Structure

- potential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel
 - applied to random numbers
 - amplitude: 1, 0.1, 0.01 K
 - σ: 24, 8, "0" km

flow independent ...
understandable
Perturbation Strategies

Scattered Convection

Aim: model/convection response

- 24, 8, 0 km
- 1, 0.1, 0.01 K
- MetUM, 4 km, 38 levels

Flood

Aim: perturbation v μ physics

- ensembles: 0.1 K, 8 km
- change warm μ physics
- MetUM, 1 km, 76 levels
Which processes determine error growth?

Scattered Convection

- addition/removal of a lid
- acoustic waves
- PBL parameterisation changes

Note that:
- cloud distribution not affected *directly*
- vertical motion helps

![Precipitation RMSE](image-url)
Perturbation v Parameterisation

Flood

- perturbation \(\sim \) parameterisation
- event is quite predictable
 - location of cells changes the most
 - number and intensity not so much
- cloud dynamics slightly affected
Perturbation v Parameterisation

Flood

Ensemble Means of Areal Averages

- Base runs
- Control
- Areo 3D to 3B
- Nland 3D
- Nsea 3D
- No Auto

30 min accumulation in mm

Time UTC

Std/Mean Ratio

- Base runs
- Control
- Areo 3D to 3B
- Nland 3D
- Nsea 3D

Time UTC
Conclusions

The sequential perturbation has proven to
- generate realistic ensemble members
- capture error growth due to w
- affect cloud dynamics

Scattered Convection

Strategy:
- A: 1, 0.1 and 0.01 K
- σ: 24, 8 and 0 km

We found:
- error growth due to:
 - lid
 - acoustic waves
 - BL types changes
- amplitude controls growth

Flood

Strategy:
- fixed A and σ
- 0.1 K, 8 km

We found:
- accumulations are fairly predictable
- perturbation $\sim \mu$physics
- model response is sensitive to parameter values
Cloud Distribution
Scattered Convection

Low and Mid-Level Clouds

Time Averaged Number of Clouds vs. Time Averaged Cloud Size [number of grid boxes]
Experiments

Standard Run

5 ensembles, 8 km, 0.1 K (8+1)
standard UM 6.1, 1 km grid spacing
2nd autoconversion model
land value for CCN
sea value for CCN
no autoconversion

Observations

Member 1