Overview	Perturbation oo	Scattered Convection	Flood	Conclusions

Contrasting Convective-Scale Perturbation Growth in Two Cases Over the UK

G. Leoncini¹ R. S. Plant¹ S. L. Gray¹ P. Clark²

¹Meteorology Department, University of Reading ²Met Office, Joint Centre for Mesoscale Meteorology

> EMS Annual Meeting September 29th 2009

Quantian		

We introduce a novel technique:

perturb model state

as the simulation progresses

at the large scale

- several storms within domain
- processes involved in *error* propagation
- general overview of model/convection response to perturbation

at the storm scale

- focus on one specific flood
- verify ensemble technique is useful in a different domain/weather regime
- accumulation within an area
- what needs to be changed: µphysics or perturbation?

- potential temperature
- applied at fixed model level
 - ▶ 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km

- optential temperature
- applied at fixed model level
 - ▶ 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km

- optential temperature
- applied at fixed model level
 - ▶ 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km

- optential temperature
- applied at fixed model level
 - ▶ 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K
- σ: 24, 8, "0" km

- optential temperature
- applied at fixed model level
 - 1280 m
- at regular intervals (30 mins)
 - to capture PBL transitions

- 2D Gaussian kernel applied to random numbers
- amplitude: 1, 0.1, 0.01 K

Reading

σ: 24, 8, "0" km

Perturbation Strategies

Scattered Convection

Aim: model/convection response

- 24, 8, 0 km
- 1, 0.1, 0.01 K
- MetUM, 4 km, 38 levels

Aim: perturbation v μ physics

- ensembles: 0.1 K, 8 km
- change warm µphysics
- MetUM, 1 km, 76 levels

Which processes determine error growth?

- addition/removal of a lid
- acoustic waves
- PBL parameterisation changes

Note that:

- cloud distribution not affected *directly*
- vertical motion helps

- perturbation ~ parameterisation
- event is quite predictable
 - location of cells changes the most
 - number and intensity not so much
- cloud dynamics slightly affected

Overview	Perturbation	Scattered Convection	Flood	Conclusions
Conclusions				

The sequential perturbation has proven to

- generate realistic esemble members
- capture error growth due to w
- affect cloud dynamics

Scattered Convection

Strategy:

A: 1, 0.1 and 0.01 K

σ: 24, 8 and 0 km
We found:

- error growth due to:
 - Iid
 - acoustic waves
 - BL types changes
- amplitude controls growth

Low and Mid-Level Clouds

Overview	Perturbation	Scattered Convection	Flood	Conclusions
Experimer	nts			

Standard Run

Experiments

5 ensembles, 8 km, 0.1 K (8+1) standard UM 6.1, 1 km grid spacing 2nd autoconversion model land value for CCN sea value for CCN no autoconversion

Observations

Member 1

