Introduction	Methodology	The Boscastle Flood	Results	Summary

Error Growth at The Convective Scale

G. Leoncini¹ R. S. Plant¹ S. L. Gray¹ P. Clark²

¹Meteorology Department, University of Reading ²Met Office, Joint Centre for Mesoscale Meteorology

> SRNWP Workshop June 23th 2009

Introduction	Methodology	The Boscastle Flood	Results 00000	Summary
Introducti	on			

We introduce a novel technique:

perturb model state

as the perturbation progresses

at the large scale several storms within domain

- processes involved in error propagation
- general overview of model response to perturbation

at the storm scale focus on one specific flood

- verify ensemble technique is useful in a different domain/weather regime
- accumulation within an area
- what needs to be changed: µphysics or perturbation?

Introduction ○●	Methodology ০০০	The Boscastle Flood	Results 00000	Summary
Overview				

- UM, 1 km grid spacing
- Vary warm µphysics parameters
- Run sequentially perturbed ensembles
- Use model error scales to analyse precipitation accumulations
- Compare growth due to perturbation v warm μphysics changes

Dent also t				
	•00			
Introduction	Methodology	The Boscastle Flood	Results	Summary

Perturbation Structure

- optential temperature
- applied at fixed model level
 - ▶ 0-400 m
 - ▶ 500 m
 - 1280 m
 - consistently with Lean (2006)
- at regular intervals (30 mins)
 - to capture PBL transitions
- 2D Gaussian kernel applied to random numbers
- max amplitude is 0.1 K (θ^*)
- scale length is 8 km

Introduction 00	Methodology ○●○	The Boscastle Flood	Results 00000	Summary
Methodolo	ogy			

Autoconversion & the UM:

- large cloud droplets collect smaller ones
- if they are larger then a threshold they become rain
- 2 schemes for computing threshold
- each has 2 values of aerosol concentration: over sea & over land

Scheme	Land	Sea
3B	$6.0 imes 10^8 \text{ m}^{-3}$	$1.5 imes 10^8 \text{ m}^{-3}$
3D	$3.0 imes10^8~m^{-3}$	$1.0 imes10^8~m^{-3}$

Introduction	Methodology ○○●	The Boscastle Flood	Results 00000	Summary
Experiment	s			

5 unperturbed runs (base runs)

- standard UM 6.1, 1 km grid spacing
- revert 3D to 3B
- 3D land aerosol everywhere
- 3D sea aerosol everywhere
- no autoconversion

each base run has an associated ensemble

Introduction 00	Methodology ○○●	The Boscastle Flood	Results 00000	Summary
Evnerim	onte			

- 5 unperturbed runs (base runs)
 - standard UM 6.1, 1 km grid spacing
 - revert 3D to 3B
 - 3D land aerosol everywhere
 - 3D sea aerosol everywhere
 - no autoconversion

each base run has an associated ensemble

6 ensembles:

- Control (8+1 members)
- 4 µphysics (8+1 members)
- base runs (5-1 members)

Introduction	Methodology ○○●	The Boscastle Flood	Results 00000	Summary
Evnerim	onte			

Experiments

5 unperturbed runs (base runs)

- standard UM 6.1, 1 km grid spacing
- revert 3D to 3B
- 3D land aerosol everywhere
- 3D sea aerosol everywhere
- no autoconversion

each base run has an associated ensemble

6 ensembles:

- Control (8+1 members)
- 4 µphysics (8+1 members)
- base runs (5-1 members)

Perturbation Strategy:

- use 0.1 K and 8 km
- 8 realisations (ie members)

			ath and t
00	000		00000
Instance du coti o n	Matheadalaau	The Dessentie Flood	Desults

The event - Boscastle flood of August 16th 2004

- very intense
- very localised
- interesting mesoscale meteorology
 - near shore convergence line
 - convective cells
 - which precipitate over the same small catchment

from MO Post Flood Study

Introduction	Methodology	The Boscastle Flood ○●	Results	Summary

Perturbation Effect

Introduction	Methodology ০০০	The Boscastle Flood	Results ●○○○○	Summary
Diagnostics	\$			

- Accumulation is the quantity of interest:
 - model reaches acceptable skills between 40 and 70 kilometres (Roberts and Lean 2007)
 - flooded river catchment is really tiny (~20 km²)
 - accumulations on a circle centred over Boscastle with diameters of 20, 40 and 60 km

 std deviation of ensembles as measure of spread

Introduction 00	Methodology	The Boscastle Flood	Results ○●○○○	Summary
Results				

Introduction	Methodology ০০০	The Boscastle Flood	Results ○○●○○	Summary
Results				

Introduction	Methodology ০০০	The Boscastle Flood	Results	Summary
Results				

Introduction	Methodology 000	The Boscastle Flood	Results	Summary
Conclusior				

- results consistent for 60 and 40 km, a bit less for 20 km
- spread generated by perturbation similar to changed µphysics
- accumulations of the same order as well
- perturbation before and at convection start is crucial for differentiation
- change ice and sfc roughness
- how are these changes achieved?

Introduction	Methodology ০০০	The Boscastle Flood	Results 00000	Summary
Summary				

- fundamental processes are: CAPE, BL type changes and acoustic waves
- scattered convection regime: error growth driven by amplitude and time of the day
- flood storm: ensemble generates variability comparable to μphysics
- perturbation technique useful, particularly to capture the sensitivity to the time of the day

