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1. Outline

Severe rainfall from convective events is the main cause of summertime flash floods in the UK. The Met 4. Results o
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scales. Appropriate ensemble techniques need to be developed. Here we investigate predictability of the o S Sea for circle of 60km diameter around Boscastle.
Boscastle flood of 16t August 2004, comparing model-state and model-physics perturbation strategies. g” e b Fractional skill score analysis (Roberts and Lean 2008) shows useful
i O - model skill for the storm on scales of 20km and larger.
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*Warm moist air at low levels from WSW large-scale flow.
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3. Model ensembles
> *A SAL analysis (Wernli et al 2008) gives scores for Structure, Amplitude and Location errors for comparing simulated and observed accumulations.

*Here, we use the method to compare characteristics of the simulated convective cells between ensemble members with model-state perturbations and their

corresponding base run.

*With standard model physics, model-state perturbations produce cells that are smaller and more peaked (S<0).

*With increased aerosol over the sea, model-state perturbations produce cells that are broader and flatter (S>0) and somewhat displaced (L).

*With reduced roughness over land, model-state perturbations produce cells that precipitate more strongly (A>0)

*Met Office Unified Model with 1km grid spacing.
*Model-state perturbations provide a simple treatment of
boundary-layer representivity error. A random potential
temperature field is applied every 30 min with no
temporal correlations. The field is constructed by
convolving a random number field (maximum amplitude
0.1K) with a 2D Gaussian kernel (8km standard
deviation).

5. Conclusions 6. References

*The Boscastle flood had strong predictability (given a convective-scale NWP model)

For accumulated rainfall close to Boscastle, spread from model-state perturbations similar to spread
from model-physics uncertainty

+For this case, a suitable ensemble could be generated with a very simple method, without needing to
understand the detailed physics of the case

*But the spread may be achieved somewhat differently, different physics changing cell characteristics
and exhibiting different sensitivities to model-state perturbations
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*Ensembles of 8+1 members generated from 8 realizations of model-state perturbations + base run with no
such perturbations.

*Each ensemble has given physics: standard set-up or various perturbations to physics parameters and/or
methods. We perturb autoconversion threshold, aerosol concentrations, temperature of heterogeneous ice
nucleation, soil moisture contents and roughness length for grass.

*Also consider ensemble of base runs: physics perturbations with no model-state perturbations.
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