DYNAMIC SUB-GRID MODELLING OF AN EVOLVING CBL AT GREY-ZONE RESOLUTIONS

George Efstathiou¹

EXETER

R. S. Plant², M. M. Bopape^{2,3} and R. J. Beare¹

¹ Department of Mathematics, University of Exeter

² Department of Meteorology, University of Reading

³ South African Weather Service

Modelling GREY zone Boundary LayerS

Motivation

- Numerical Weather Prediction at O(100m) is now possible
- Dominant turbulence length scales $\sim z_i$ (100 m 3 km)
- Boundary Layer (BL) turbulence becomes partially resolved

How do we parametrize sub-grid processes in the BL grey-zone?

Spectral view of the grey-zone (Beare, 2014)

- LES : Resolved field scales for production (l_p) and dissipation (l_d) of TKE are well separated
- Grey zone : Dissipation has an impact on TKE production – Partially resolved field

A working definition for the grey-zone

$$\frac{z_i}{l_d} < 0.7$$

Scales

(Sullivan and Patton, 2011)

(Beare, 2014)

Research Tools

- Numerical simulations with the LEM (Large-Eddy Met Office Model)
 - Quasi-steady state CBL (z_i=1000 m)
 - Evolving CBL (Wangara case study)
 - A range of horizontal resolutions (LES-Greyzone-Mesoscale)
- Compare with filtered LES
- Smagorinsky type eddy-viscocity model

 $K_{M,H} = l^2 S f_{M,H} (Ri)$ $l^{-2} = (k z)^{-2} + \lambda_0^{-2}$ $\lambda_0 = c_s \Delta x$ Control : $c_s = 0.23$

Steady State Simulations (Free Convection)

-4.50 -3.00 -1.50 -0.25 1.00 2.50 4.00

-4.50 -3.00 -1.50 -0.25 1.00 2.50 4.00

-4.50 -3.00 -1.50 -0.25 1.00 2.50

4.00

Quantifying sub-grid diffusion in the grey-zone

- Reducing sub-grid diffusion ?
- Increasing vertical resolution ?

 $z/z_{i} = 0.5$

How much resolved TKE?

(Efstathiou and Beare, 2015)

Parametrization approaches

- Modifying Smagorinsky
 - BOUND approach (Efstathiou and Beare, 2015)
 - Dynamic Smagorinsky Modelling
 - Dynamic Blending (Preliminary results)

Evolution of Scales – Wangara CBL

During the morning CBL development simulations of different Δx go through different regimes

Dynamic sub-grid modelling

- Using "resolved" scales to estimate C_S
- Apply a test filter $(G_{\alpha \Delta})$ to diagnose sub-filter scales

$$\tau_{ij} = -2(C_s\Delta)^2 |\overline{S}| \overline{S}_{ij} f(Ri)$$

- τ : sub-grid stress
- T: interactions between sub-grid sub-filter
- L: "smallest" resolved scales (Leonard stress)

C_s averaged over path lines (LASD)

Second filter ($G_{2\alpha\Delta}$) to account for scale dependence

 $C_S(\Delta) \neq C_S(a\Delta)$

Wangara CBL development

Comparison with the filtered fields

 $\Delta x = 100 \text{ m}$

Comparison with the filtered fields

 $\Delta x = 200 \text{ m}$

Comparison with the filtered fields

 $\Delta x = 400 \text{ m}$

Met Office Blending Scheme

- Blending Scheme (Boutle et al., 2014)
- Implemented in the LEM (Efstathiou et al., 2016)

(based on Hong et al., 2006)

0.2

0.0

SMAG

0.1

 W_{1D}

1.0

 $\Delta x/z_{turb}$

Honnert et al. (2011)

10.0

1D BL

$$\underbrace{\overline{u_j'\theta'}}_{ij} = \underbrace{-K_H \frac{\partial \theta}{\partial x_j}}_{ij} + \delta_{3j} W_{1D} \left[\underbrace{K_H \gamma}_{ij} + \underbrace{W'\theta'}_{ij} \left(\frac{z}{z_h} \right)^n \right]$$

 $K_H = \max \left[W_{1D} K_H(1D), K_H(SMAG) \right]$

Wangara CBL development

 $\Delta x = 400 \text{ m}$

Wangara CBL development

 $\Delta x = 800 \text{ m}$

Summary

The grey-zone imposes practical limitations in very high resolution NWP

Should any convective overturning be allowed in the grey-zone?

- Challenges
 - Representing coherent structures
 - Quantify the resolved TKE Energetics TKE spin-up
 - Form of transition
 - Shape and form of the coherent structures in the CBL would affect the representation of shallow Cu convection
 - Implications with deep convection and convective parametrizations

Dynamic modelling of sub-grid diffusion at grey-zone resolutions

- Dynamic Smagorinsky a better alternative than Standard Smagorinsky
- Improves spin-up / Representation of mean quantities and turbulence statistics
- Relies on dynamics (unable to resolve for $\Delta x/z_i > 2$) Usability limit
- Modified 1D schemes suffer from delayed spin-up
- Dynamic Blending extends the benefits of dynamic modelling further into the grey-zone

Papers

Beare, R. J., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations. Boundary-Layer Meteorol. 151: 39-55.

Efstathiou, G. A. and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. *Quarterly Journal of the Royal Meteorological Society*, *141*, 3006–3017.

Efstathiou, G. A., R. J. Beare, S. Osborne, A. P. Lock, 2016: Grey zone simulations of the morning convective boundary layer development, *Journal of Geophysical Research: Atmospheres*, 121, 9

Efstathiou, G. A., Plant R. S., and M. M. Bopape, 2017: Simulation of an evolving convective boundary layer using a scale-dependent dynamic Smagorinsky model at near grey-zone resolutions. *Journal of Applied Meteorology and Climatology*, submitted.