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Abstract 

A convective boundary layer is simulated with the Smagorinsky model with different variations of the dynamic 
Smagorinsky model using different grid spacings. One variation of the dynamic model is scale dependent and is thought 
to be suitable for the grey zones where large eddies and the grid spacing are of similar size. Shortcomings in the 
Smagorinsky model at lower resolutions are found in all variations of the dynamic model, while at higher resolution all 
simulations are similar. The results suggest that the choice of the subgrid model is not important when simulating a 
convective boundary layer because large eddies dominate the flow.   
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Introduction 

The numerical modelling of the atmosphere at 
different time scales is based on the filtering of the 
Navier-Stokes equation (Bryan et al. (2003)). Scales 
that are larger than the filter length are simulted 
explicitly by the model, while the sub-filter scales 
must be parameterised. Most parameterisations are 
designed to be applicable for the specific resolution 
that they will be applied for. When modelling the 
atmosphere with grid spacings that are larger than 
1km, the boundary layer is parameterised fully using 
column based models (Honnert et al. (2011)).   
Numerical Models used for predicting or projecting 
the future state of the atmosphere at different 
timescales, including Numerical Weather Prediction 
(NWP) have until recently used grid spacings that 
are much larger than 1km.    

The grid spacing used in NWP by a number of 
meteorological organisations has decreased to 
around 1km, and below 1km in certain centres. That 
means the grid spacing is about the same as the size 
of energy containing large eddies in convective 
boundary layers (CBLs). The large eddies in CBLs 
have been found to scale with the boundary layer 
height which can be thought to be about 1km. That 
means the column based boundary layer 
parameterisations that assume that the filter scale is 
much larger than the large eddies in the boundary 
layer are no longer applicable for current NWP 
models (Bryan et al. (2003)). On the other end of the 
scales, large eddy models (LEMs) are run with grid 
spacing of about 5m to 200m, and they make an 

assumption that the grid spacing is much smaller 
than the large eddies. They are therefore expected to 
simulated large eddies explicitly, and parameterise 
smaller eddies. They are also not designed to work 
well with grid spacings where the large eddies and 
the grid spacings are about the same size. There are 
therefore no suitable boundary layer 
parametrizations where the grid spacing and the 
large eddies are about the same, and as a result this 
regime has been termed the grey-zone or terra 
incognita (Bryan et al. (2003); Honnert et al. 
(2011)).  

The Smagorinsky-Lilly method is a popular classic 
sub-filter sheme used in many large eddy models 
(Smagorinsky (1963); Lilly (1965)). The scheme is 
based on the concepts of eddy viscosity and mixing 
length, where the mixing length is representative of 
maximum size of the eddies that are parametrised. A 
number of enhancements have been introduced to 
the Smagorinsky-Lilly model, including one that is 
thought to make the scheme suitable for the 
greyzones. The particular scheme is called the 
lagrangian averaged scale dependent (LASD) 
dynamic Smagorinsky model (Bou-Zeid et al. 
(2004)). In this study we compare simulations made 
with the original Smagorinsky model to those made 
with variations of the dynamic model to determine 
whether or not the dynamic model makes 
improvements to the simulations of a CBL.  
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Model and Numerical Simulations 

UK Met Office LEM 

The UK Met Office LEM (MetLEM) is used in this 
study. MetLEM solves momentum, continuity and 
thermodynamic equations given by Equations 1 to 3 
respectively. The letters and symbols have their 
usual meaning. The term on the left of Equation 1 is 
the total time-derivative of momentum, the first term 
on the right hand side is the pressure gradient force, 
the second term, buoyancy, is non-zero in the 
vertical, the third term is the divergence of the 
turbulent stress, and the final term is the Coriolis 
acceleration.  

 

The left hand side of Equation (3) is the total 
derivative of potential temperature, while the first 
term on the right hand side is the divergence of the 
heat flux. The second and final terms represent the 
effect of latent heating or cooling due to phase 
changes, and the effect of radiation, respectively. 
The last two terms are zero in our study because we 
use dry simulations and a constant sensible surface 
heat flux.  

Smagorinsky Model 

The turbulent stress and sub-filter-scale heat flux in 
Equations 1 and 3 and parameterised using the 
Smagorinsky-Lilly scheme and are given by the 
equations 4 and 5 below, respectively.  

 

The rate of the strain tensor is defined by Equation 
6, while the eddy viscosity and diffusivity are 
prescribed as in equations 7 and 8 and they are 
functions of the Richardson number. S is the 
modulus given by Equation 9.  

The mixing length is given by equation 10, where 
the first term on the right determines the basic 
mixing length given in equation 11. The second term 
calculates the mixing length as a function of height 
and the roughness length. In the original 
Smagorinsky-Lilly model, cs is a constant and was 
used as 0.23 in our study. A number of studies have 
shown that the suitability of the Smagorinsky 
constant depends on the flow and suitable values 
suggested for different stratifications include 0.1, 
0.17, 0.2 and 0.23.   

Dynamic Smagorinsky Model  

The dynamic model was introduced by Germano 
(1991) and its aim is to determine a suitable value of 
cs using the flow, by employing the grid scale filter 
(Equation 12), and a second test scale, usually with 
α=2 (Equation 13).  

Equation 14 uses the smallest resolved scale, and by 
taking its difference from the parametrized flow, we 
are able to get the value of the Smagorinsky 
coefficient.  The calculated coefficient is averaged 
along a plane and is therefore suitable only for 
horizontally homogeneous flows over a plane. 
Meneveau et al. (1996) used a similar method to 
Germano, however used lagrangian averaging which 
makes the scheme suitable for inhomogeneous flows 
and complex geometries. Both the Germano and 
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Meneaveu scheme assume that the Smagorinsky 
coefficient is independent, that is β in equation 17 is 
1. The Germano and Meneauveu models will be 
referred to as the Plane-Averaged Scale Invariant 
(PASI) and the Lagrangian-Averaged Scale 
Invariant (LASI), respectively.   

 

The two schemes were designed for the inertial 
subranges, i.e. large eddy regimes and are therefore 
not designed for the grey-zones. Bou-Zeid et al. 
(2005) used lagrangian averaging similar to 
Meneavu, however, he introduced scale dependence 
by using a second test scale which in our study is 
taken as 4* grid scale to determine a suitable value 
of β. The Bou-Zeid model is referred to as the 
Lagrangian-Averaged Scale-Dependent (LASD) 
Model.  

Simulations  

Simulations of a convective boundary layer were 
made using different grid spacings of 25m, 50m, 
100m, 200m and 400m with the original 
Smagorinsky model as well the different variations 
of the dynamic model. The 25m resolution 
simulations is considered as the “ truth run” because 
previous studies have shown that 25m is sufficient 
for simulating a CBL. The grid spacing in the 
vertical is take as 0.4* horizontal grid scale. A 
constant surface sensible heat flux of 241Wm-2 and 
weak geostrophic winds of (Ug , Vg ) = (1,0) ms-1 are 
used following Sullivan and Patton (2011). The 
horizontal domain size for all the simulations is 
taken as (9.6 km)2 , while the model top is taken at a 
height of 2km.  

 

Results and Discussion  

The Smagorinsky coefficient calculated by all the 
dynamic models is comparable to all the 
Smagorinsky constant throughout the whole domain 
(Fig 1). PASI and LASD calculate larger values than 
the constant 0.23 of the original Smagorinsky 
model. LASI simulates the smallest values of the 
coefficient. cs is below 0.23 above the boundary 
layer height. The calculated coefficients do not show 
an obvious reliance on grid spacing, so the 50m, 

100m and 200m grid spacing lines almost fall on top 
of another.  

 

 

 

 

 

 

 

 

Figure 1: The vertical profile of averaged values of 
cs for 50m, 100m and 200m grid spacing, and the 
line of the constant cs  for the original Smagorinsky 
model. The three columns are for different version 
of the dynamic Smagorinsky model. 

 

Quadrant analysis was applied to the temperature 
flux of the original Smagorinsky-Lilly model 
simulations at different resolutions to determine 
what goes wrong when the grid spacing is increased 
to target what the dynamic models can possibly 
improve. Partitioning of a combination of vertical 
velocity perturbation (w’) and potential temperature 
perturbation (Ɵ’) was performed according to their 
signs as follows: quadrant 1 is given by w’>0; Ɵ’>0 
which represents warm air rising, quadrant 2 is given 
by w’>0; Ɵ’<0 which represent cold air descending, 
quadrant 3 is given by w’<0; Ɵ’<0 which gives cold 
air descending, and quadrant 4 is given by w’<0; 
Ɵ’>0 which is warm air descending. For all the 
simulations the lower part of the boundary layer is 
dominated by thermals (i.e quadrant 1). In the upper 
troposphere, close to the inversion layer, the 
contribution of warm air descending is also 
significant which represent entrainment of warm air 
from the inversion layer into the boundary layer. The 
largest contribution is however from quadrant 2, 
which is cold air descending. The contribution of 
quadrant 2 in the vicinity of the boundary layer 
height increases with increased grid spacing (Figure 
2).  
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Figure 2: The contribution towards the total 
temperature flux by different quadrant using 
different grid spacings with the Smagorinsky Lilly 
model, using  a Smagorinsky constant of 0.23. The 
quadrants are ordered according to their position 
on the cartesian place. 

 

Quadrant analysis was performed for different grid 
spacings using the Smagorinsky model, and 
different variations of the dynamic model using 
coarse grained 25m grid spacing simulation as the 
target simulation. At higher resolution, the lines with 
the different grid spacing fall on top of one another, 
which shows that the use of different subgrid models 
has little effect on the simulations (not shown).  

 

 

 

 

 

 

 

 

Figure 3: The contribution towards the total 
temperature flux by different quadrants using three 
versions of the dynamic model, the original 
Smagorinsky model, as well the coarse grained 25m 
grid spacing simulations with a 200m grid spacing.  

 

With lower resolutions the lines start to diverge but 
the issues associated with the original Smagorinsky 

model, are still found with all dynamic models. All 
the schemes underestimate entrainment of warm air 
into the boundary layer, and overestimate the 
contribution of cool air ascending close to the 
boundary layer height. The LASDcode, and advising 
on the implementation in the MetLEM. 

 

Conclusions  

Simulations of a convective boundary layer were 
performed using the Smagorinsky-Lilly model, and 
three different variations of the dynamic model 
using grid spacings of 25m, 50m, 100m, 200m and 
400m. The dynamic models did not show a major 
improvement compared to the original Smagorinsky 
Lilly model. The Lagrangian averaged scale 
dependent model which is thought to be suitable for 
the greyzones also showed similar issues to the 
Smagorinsky model. This result is thought to be 
associated with the fact that large eddies dominate 
the flow in a convective boundary layer. Previous 
studies have shown an improvement by dynamic 
models when stable and neutral stratifications are 
simulated, but the same result is not found for a 
convective boundary layer. More tests are planned 
with the different dynamic models for different 
stratification, complex geometries, and for 
transitioning boundary layers where improvements 
are expected with the use of dynamic models.  
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