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ABSTRACT7

With movement towards kilometer scale ensembles, new techniques are needed for their8

characterization. We present a new methodology for detailed spatial ensemble character-9

ization using the Fractions Skill Score (FSS). To evaluate spatial forecast differences the10

average and standard deviation are taken of the FSS calculated over all ensemble member-11

member pairs at different scales and lead times. These methods were found to give impor-12

tant information about the ensemble behavior allowing the identification of useful spatial13

scales, spin-up times for the model, and upscale growth of errors and forecast differences.14

The ensemble spread was found to be highly dependent on the spatial scales considered15

and the threshold applied to the field. High thresholds picked out localized and intense16

values that gave large temporal variability in ensemble spread: local processes and under17

sampling dominate for these thresholds. For lower thresholds the ensemble spread increases18

with time as differences between the ensemble members upscale. Two convective cases were19

investigated based on the UK Met Office United Model run at 2.2 km resolution. Different20

ensemble types were considered: ensembles produced using the Met Office Global and Re-21

gional Ensemble Prediction System (MOGREPS) and an ensemble produced using different22

model physics configurations. Comparison of the MOGREPS and multiphysics ensembles23

demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact24

of different perturbation strategies and the need for assessing spread at different, believable,25

spatial scales.26
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1. Introduction27

It has been long known that at small spatial scales forecast errors grow more rapidly28

(Lorenz (1969); Ehrendorfer (1997); Palmer (2000) and references therein) possibly result-29

ing in rapid upscale error growth in high resolution models. In recent years these subjects30

have again come under discussion as increases in computer power allow models to be run31

at higher and higher resolutions (Mass et al. (2002) and references therein, Lean et al.32

(2008)). Hohenegger and Schär (2007a) compared the predictability at large (around 8033

km) and convection-permitting (2.2 km) scales and found error doubling times around ten34

times shorter for the higher resolution simulations. Further work has investigated the links35

between mesoscale processes and error growth with a focus on moist dynamics (Zhang 2005;36

Hohenegger et al. 2006) and the separation of equilibrium and triggered convection to dis-37

tinguish different modes of predictability in convective events (Keil and Craig 2011; Zimmer38

et al. 2011; Craig et al. 2012; Keil et al. 2013).39

Ensemble prediction systems strive to represent the meteorological uncertainty present40

in a particular forecast and have been widely used to assess error growth in a variety of41

high-resolution situations (Walser et al. 2004; Walser and Schär 2004; Hohenegger and Schär42

2007b; Hanley et al. 2011, 2013). Further investigations have been conducted into different43

ensemble perturbation strategies for high resolution ensembles including initial condition44

perturbations (Migliorini et al. 2011; Caron 2013; Kühnlein et al. 2013), physics perturba-45

tions (Stensrud et al. 2000; Hacker et al. 2011; Gebhardt et al. 2011; Vié et al. 2012; Baker46

et al. 2014), perturbation of boundary layer parameters (Martin and Xue 2006; Leoncini47

et al. 2010; Done et al. 2012) and the use of different physics schemes (Berner et al. 2011;48

Leoncini et al. 2012).49

The aim of this paper is to provide a new methodology for evaluating, thoroughly, the50

differences between members of a convection permitting ensemble and the dependence of51

these differences on spatial scale. These methods are based on the Fractions Skill Score52

(FSS, Roberts and Lean (2008); Roberts (2008)). Various considerations are discussed in-53
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cluding the forecast evolution through different lead times, the effect of considering different54

threshold values for the fields used to calculate the FSS, and the comparison of different55

forecast variables. For the demonstrative purposes of this paper two convective cases are56

considered using ensembles produced as part of the Met Office Global and Regional En-57

semble Prediction System (MOGREPS, Bowler et al. (2008, 2009)). The spatial spread of58

the ensemble members is characterized and the realism of the ensemble spread is tested by59

comparing with the skill against radar derived precipitation accumulations. Radar data is60

necessary as a verification source because of its high spatial coverage.61

The technique used to determine spatial differences between members can also be used62

for the comparison of different model formulations within the ensemble. To demonstrate this,63

different model physics configurations were considered in addition to the MOGREPS ensem-64

ble members for the second case study. This specific example is provided to demonstrate the65

utility of spatial evaluation techniques in the comparison of different ensemble formulations.66

Note, however, that a complete systematic evaluation comparing different types of physics67

configuration is outside the scope of this paper. To do this it would be necessary to consider68

a large number of cases with different convective forcing as detailed by, for example, Stensrud69

et al. (2000); Keil et al. (2013). The spatial ensemble spread produced by different physics70

configurations strategies is evaluated and compared to that of the MOGREPS ensemble.71

In operational frameworks, different physics configurations are often considered in addition72

to initial and boundary condition perturbations and so the spatial spread produced by an73

ensemble with different MOGREPS members combined with different physics configurations74

is also investigated.75

To evaluate convection permitting ensembles in a sensible way it is necessary to choose76

a verification approach that considers multiple spatial scales and does not suffer from the77

double penalty problem where spatial errors are penalized twice: once for being a near miss,78

and again for begin a false positive. Many possible spatial verification approaches have been79

proposed in recent years; for an overview the reader is referred to the review papers of Ebert80
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(2008), Gilleland et al. (2009), and Johnson and Wang (2013). The spatial approach has81

also been applied to ensembles (Clark et al. 2011; Johnson et al. 2014; Surcel et al. 2014).82

Here we have chosen to focus on the Fractions Skill Score (FSS) of Roberts and Lean (2008);83

Roberts (2008). The FSS is a fuzzy verification measure used to compare two fields within84

a given square neighborhood.85

Since its original formulation the FSS has been used for different applications and several86

further developments have been proposed. Schwartz et al. (2010) consider circular neigh-87

borhoods to calculate the field of fractions at each grid point and then produce probabilistic88

guidance using the field of fractions as a neighborhood probability. Duda and Gallus (2013)89

also use the circular neighborhood approach, verifying the precipitation of mesoscale con-90

vective systems. In this paper the FSS is considered over a square neighborhood as detailed91

in Roberts and Lean (2008); Roberts (2008). Duc et al. (2013) extend the FSS to include92

temporal and ensemble dimensions to give a single FSS value representative of the ensem-93

ble. A single field of fractions including spatial, temporal and ensemble information is then94

compared with observations. This is useful for providing an overview of model performance95

but does not provide information regarding the spread - skill relationship of the ensemble or96

the spatial differences between individual pairs of ensemble members.97

Rezacova et al. (2009) use the FSS to calculate the ensemble spread-skill relationship with98

the ensemble skill calculated from the FSS between ensemble member- radar comparisons and99

the ensemble spread from the FSS between perturbed ensemble members and the ensemble100

control. Following on from this Zacharov and Rezacova (2009) determine a relationship101

between the FSS estimates of ensemble spread and skill and use this to predict the ensemble102

skill given the spread. Zacharov and Rezacova (2009) consider together FSS results from103

differently sized neighborhoods. This method was chosen because there is no fixed scale that104

can give a FSS skill value over different cases. However, as different physical behavior is105

apparent at different spatial scales (e.g as shown in Roberts (2008)) it is informative also106

to investigate how the ensemble spread varies with spatial scale which is the subject of107
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this paper. Whereas Rezacova et al. (2009); Zacharov and Rezacova (2009) only consider108

comparisons between perturbed ensemble members and the control, in this paper the FSS109

between all independent member-member pairs is considered. Considering all members in110

this manner is the best representation of total spread as it includes fully the inter-member111

variability and does not rely on the ensemble mean which is known to lie outside the model112

manifold (Ancell 2013). Further work by the authors (in preparation, to be submitted shortly113

to Monthly Weather Review) considers other possible methods of member comparison.114

Here we present the following: in Section 2 we introduce the two case studies that will115

provide examples throughout the paper. The model configuration is also discussed along with116

a justification for our method of using the FSS. Section 3 provides examples of our results117

for ensembles with different IC and LBC perturbations and results for different physics118

configurations are discussed in Section 4. Finally, in Section 5 we summarize the conclusions119

from this work and discuss areas of further investigation.120

2. Method121

a. Cases122

Two convective cases were chosen for the demonstrative purposes of this paper. In these123

cases convection occurs in different synoptic situations. The first case, 23 April 2011, was124

chosen as an example of organized spring convection over England and will be referred to as125

the ‘organized Spring’ case. This case has a low pressure system centered to the northwest of126

the UK and a high pressure system centered over Scandinavia. A frontal structure stretches127

down across the western UK. As the front moves eastward a convergence line forms across128

eastern England ahead of the front. This convergence line is shown in the UK Met Office129

analysis at 1800 UTC on the 23 April (Figure 1a). Convective storms developed in the130

vicinity of this convergence line with precipitation first seen at 1400 UTC on 23 April, and131

continuing until 0300 UTC on 24 April. At 1800 UTC a band of frontal precipitation enters132
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the model domain from the NW preceding an occluded front which enters the domain at133

0000 UTC on the 24 April.134

The second case, 8 July 2011, features a number of convective storms that formed over135

the UK in an area of instability within the circulation of a decaying low pressure system.136

At 0600 UTC the low center was situated over Ireland as shown in Figure 1b. Throughout137

the day the low center then moved towards the northeast reaching the northeast of England138

by 1800 UTC. By 1400 UTC there were many heavy showers over Scotland as indicated139

by the Nimrod radar system (not shown). Convective clouds associated with these showers140

were also seen from visible satellite observations from the Meteosat geostationary satellite.141

For this case study we focus on one particular storm that formed over the Edinburgh area142

of eastern Scotland and remained stationary for around four hours producing large rainfall143

totals (0900 UTC – 2100 UTC radar derived precipitation totals of over 64 mm) and flooding.144

In future discussion this will be referred to as the ‘flooding’ case. Previous analysis of this145

case by Leoncini et al. (2011) showed that the Met Office 2.2 km ensemble on this occasion146

gave a 30% to 40% chance of a flood-producing storm within 25 km of Edinburgh; a level of147

significant risk.148

b. Model Setup149

The UK Met Office Unified Model (MetUM) runs with a non-hydrostatic dynamical core150

with semi-Lagrangian advection (Davies et al. 2005). A comprehensive set of parametriza-151

tions are used including: surface exchange (Essery et al. 2001), boundary layer mixing (Lock152

et al. 2000), radiation (Edwards and Slingo 1996) and mixed phase cloud microphysics153

based on Wilson and Ballard (1999). Version 7.7 of the global ensemble prediction system154

(MOGREPS-G) was run at a resolution of around 60km in the mid-latitude regions with155

70 vertical levels. MOGREPS-G provided the initial conditions (ICs) and lateral bound-156

ary conditions (LBCs) for the North Atlantic and European (NAE) regional model run at157

18km resolution with 70 vertical levels. Perturbations were generated using an ensemble158
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transform Kalman filter and then added to the Met Office 4D-Var analysis as described by159

Bowler et al. (2008, 2009). This perturbation strategy includes a stochastic kinetic energy160

backscatter scheme and localization. Model error is addressed using the “random param-161

eters” scheme for both ensembles to account for sub-grid processes uncertainty. Both the162

global and regional ensembles have 23 perturbed members and an unperturbed control.163

For the case studies described here a high resolution ensemble, run over the Met Office164

variable resolution UK domain, was one way nested inside the NAE model. This domain has165

a constant resolution 2.2 km grid over the UK with the grid stretched up to 4 km around the166

domain edges to reduce the jump in resolution when downscaling from the NAE model. No167

further data assimilation was included when downscaling from the NAE to UK domain. The168

global and NAE models were run with a convection scheme based on Gregory and Rowntree169

(1990) but modified since (Derbyshire et al. 2011). The 2.2 km model has explicit convection170

only (no convection scheme). The 2.2 km UK domain is shown in Figure 2 in light gray and171

is approximately 920 km W-E by 1200 km N-S.172

For the flooding case eleven perturbed members plus a control were run over the 2.2173

m domain using LBCs and ICs taken from the first eleven members, and control, of the174

NAE regional ensemble (MOGREPS-R). Twelve simulations were run because this was the175

ensemble size being considered for an operational 2.2 m ensemble system (MOGREPS-UK,176

operational since 2013 (Mylne 2013)). To allow the flood producing storm over Edinburgh177

to be investigated, analysis for this case was also completed over a small 100 km domain178

surrounding this region. This subdomain is highlighted in Figure 2 in dark gray.179

For the organized Spring case an ensemble of 8 MOGREPS simulations were run (seven180

perturbed members plus a control). This reduction in size allowed 5 different physics config-181

urations to be considered for each MOGREPS simulation (giving a total of 40 simulations).182

The different model configurations were:183

i. A control ensemble with the standard model settings labeled “standard”.184

ii. An ensemble with a restricted version of the convection scheme (Roberts 2003) as185
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would be applied to the Met Office 4 km deterministic model (labeled “conv”).186

iii. An ensemble with the time step increased from 25 s to 50 s labeled “time”. It is187

interesting to investigate the effects of a longer time step as increasing the time step188

reduces the computational cost of the simulation but may increase model error.189

iv. An ensemble with increased time step and restricted convection scheme labeled “conv+time”.190

v. An ensemble with modifications to the graupel labeled “grp”. The graupel modification191

allows the production of graupel through the capture of rain by snow and results in an192

increased graupel mass. This modification has become a standard option in Met UM193

versions 8.0 onwards (Wilkinson 2011).194

It must be emphasized that these model configurations were chosen to demonstrate the195

methodology presented in this paper, not as possible implementations to the UK Met Office196

ensemble prediction system. Note also that the model variations are neither stochastic nor197

designed to represent the model error, although they do, nevertheless, represent plausible198

alternative formulations. The UK model for the organized Spring case was started at 0600199

UTC on 23 April 2011, the flooding case at 1800 UTC on 7 July 2011. MOGREPS-G and200

MOGREPS-R were initiated 6 hrs and 3 hrs respectively before the UK model. For both201

cases the UK model was run up to lead times of 36 hours.202

c. How the FSS is used203

The FSS is described in Roberts and Lean (2008) and summarized here for ease of reading.204

To calculate the FSS a threshold is first selected, say for precipitation, either as a fixed value205

(e.g 4 mm hr−1) or as a percentile (e.g top 1% of precipitation field). The field is converted206

to binary form with grid points set to 1 for values above the threshold and 0 otherwise. A207

neighborhood size is then selected and, for each neighborhood centered upon each grid point,208

the fraction of grid points with the value ‘1’ within this square is computed. Two fields of209
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fractions (denoted A and B), say from a model and observations, are then compared using210

the mean squared error (MSE). For a neighborhood size n and domain size Nx by Ny grid211

points this is given by:212

213

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[A(n)i,j −B(n)i,j]
2. (1)

The fractions skill score is computed by comparing MSE(n) with a reference MSE, MSE(n)ref .214

FSS(n) = 1−
MSE(n)

MSE(n)ref

(2)

where MSE(n)ref is the largest possible MSE that can be obtained from fraction fields A215

and B:216

MSE(n)ref =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[A2
(n)i,j + B2

(n)i,j]. (3)

The FSS varies from 0 (complete mismatch between the fields) to one (perfect match between217

the fields).218

Different neighborhood sizes are considered in order to evaluate the FSS at different219

spatial scales. Here we define the neighborhood size to be the total width of the square220

neighborhood in km. The smallest possible neighborhood is 2.2 km, set by the grid scale. No221

bias exists between the binary fields created using percentile thresholds as, by definition, the222

same number of points exceed the threshold for both fields. Hence, for percentile thresholds,223

the maximum possible spatial disagreement is found for two fields which place the points of224

interest at opposite edges of the domain. A perfect match is only obtained between fields225

with this maximum disagreement when they are compared over a neighborhood of twice226

the smallest dimension of the domain. In other words, the FSS will only equal 1 when the227

neighborhood size is equal to twice the smallest dimension of the domain. This sets the228

maximum neighborhood size for percentile thresholds. For value thresholds the fields may229

be biased and this argument does not hold. For the examples presented here only percentile230

thresholds are considered and the maximum neighborhood size is 1848 km for the UK domain231

and 200 km for the 100km subdomain.232
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The FSS can be calculated at a particular time between two different forecasts, or between233

a forecasts and observations, the former giving a measure of spatial spread, the latter of234

spatial skill. The ensemble spread is characterized by calculating the FSS for all independent235

member – member pairs (Np(N), for an ensemble of N members) resulting in236

Np(N) = N × (N − 1)/2 (4)

comparisons. Here, and for the remainder of this paper, the control is treated as an ad-237

ditional ensemble member. Hence, for the flooding case we have 12 MOGREPS members238

(the 11 perturbed members and unperturbed control) and for the organized Spring case we239

have 8 MOGREPS members for each physics configuration (the 7 perturbed members and240

unperturbed control). Justification for this method comes from our interest in the total241

spatial ensemble spread. In this situation the spatial location of a feature in the control242

forecast is not necessarily at the center of corresponding features in the perturbed members243

and therefore we do not wish to assign any special status to the control forecast. Figure244

3 demonstrates the advantages of our method: when considering the control as an addi-245

tional ensemble member one can distinguish the different spatial spread in Figures 3a and246

3b, whereas when only comparing against the control the spread in Figures 3a and 3b is247

indistinguishable.248

The ensemble skill is assessed by comparing the model hourly precipitation accumulations249

with those derived from the UK Met Office Nimrod radar system. The Nimrod system250

includes calibration against rain gauge data and aims to remove common sources of error251

(Golding 1998; Harrison et al. 2000). For the summer case 1 km Nimrod radar derived hourly252

precipitation accumulations are interpolated onto the 2.2 km model grid. Nimrod data at253

1 km resolution was not available for analysis of the organized Spring case so 5 km data254

was instead used. The area of Nimrod coverage differs slightly from the UK 2.2 km domain255

over which the model is run and is indicated by the dotted region in Figure 2. All analysis256

involving radar data, or the comparison of model and radar data, only considers the area257

with radar coverage. We assume the radar data is representative of the precipitation that258
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occurred and ignore observational errors, which would have to be considered within a routine259

verification framework. Visual examination of the radar fields found no obvious errors.260

To assess ensemble skill each model simulation is separately compared with radar obser-261

vations, whilst to assess ensemble spread we compare all possible pairings of the model runs.262

Again consider Figure 3, but this time take the filled black circles to represent the location263

of precipitation in the radar data. As a measure of ensemble skill we are only considering264

the spatial differences associated with the solid arrows. These measures of ‘spread’ and265

‘skill’ consider different numbers of member-member or member-radar pairs, raising ques-266

tions about a direct comparison of these metrics. However, answering these questions is not267

the subject of this paper which focuses on the characterization of spatial ensemble spread,268

with spatial ensemble skill considered only to put the spread into context. Further work by269

the authors (in preparation, to be submitted shortly to Monthly Weather Review) focuses270

in more detail on these metrics in the context of the spread-skill relationship.271

Three different comparison strategies were used for the organized Spring case to char-272

acterize the differences between spatial spread in the MOGREPS ensemble and that pro-273

duced through considering different physics configurations. 8 MOGREPS ensemble members274

(N = 8), and 5 different physics configurations (N = 5), were considered. Additionally re-275

sults were produced using a subset of two physics configurations (N = 2) to allow spatial276

differences resulting from individual configurations to be investigated.277

i. All independent comparisons were made between the MOGREPS members for a given278

physics configuration, with each physics configuration treated separately. Considering279

all 5 physics configurations in this manner gives Np(8) × 5 = 140 comparisons, a280

strategy denoted as MOGREPS5. Considering 2 physics configurations in this manner281

gives Np(8)× 2 = 56 comparisons, denoted as MOGREPS2.282

ii. All independent comparisons between the different physics configurations for a given283

MOGREPS member, with each MOGREPS member treated separately. Considering284

all 5 physics configurations gives 8×Np(5) = 80 comparisons for this strategy denoted285
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as Physics5. Considering 2 physics configurations gives 8 × Np(2) = 16 comparisons286

(Physics2).287

iii. Comparisons between different MOGREPS members which additionally have differ-288

ent physics configurations. For example, MOGREPS member 2 with the standard289

physics configuration might be compared with MOGREPS members 1,3,4,...,12 with290

the physics configurations conv, conv+time, time and grp. Considering all 5 physics291

configurations with this comparison strategy, referred to as MOGREPS5+Physics5,292

gives Np(8) × Np(5) = 280 comparisons. Considering 2 physics configurations (MO-293

GREPS2+Physics2), gives Np(8)×Np(2) = 28 comparisons.294

Given the large number of FSS values FSSi (one calculated for each comparison) it is295

necessary to consolidate this information to provide an overview of spatial ensemble behavior.296

In this paper the mean is taken over the relevant set of FSSi. When calculated over member-297

member pairs this is referred to as dFSSmean where ‘d’ indicates that this is a measure298

of ensemble dispersion. When calculated over member-radar pairs this is referred to as299

eFSSmean where ‘e’ indicates that this is a measure of ensemble error. dFSSmean gives an300

indication of the average spatial agreement within the ensemble for a given neighborhood301

size. In other words, we can select a level of spatial agreement for the ensemble, represented302

by the value of dFSSmean, and ask at what neighborhood size this agreement is obtained.303

As the ensemble members do not necessarily have an even spatial distribution, a range of304

FSSi will be obtained from the different ensemble member-member pairs. For example, if the305

majority of ensemble members place rain at the same spatial location but a small number of306

members place the rain far away this may produce a similar value of dFSSmean as a situation307

in which all ensemble members place the rain at slightly different spatial locations. Hence it308

is also important to investigate the range of FSS values surrounding dFSSmean. To do this309

the standard deviation of FSS values, dFSSstdev, is used. dFSSstdev is closely linked to the310

standard error in dFSSmean, dFSSstdev√
NFSS

where NFSS is the number of FSSi samples used to311

calculate dFSSmean. As the purpose of this paper is to focus on the spatial distribution of312
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ensemble members, we consider dFSSstdev and avoid the 1√
NFSS

dependence on ensemble313

size. This allows the spatial distribution of differently sized ensembles to be compared.314

In order to make a spatial comparison between different ensembles it is necessary to find315

scales which are believable and have a reasonable level of spatial agreement. For the purposes316

of this paper, ‘believable’ scales for the intercomparison of ensemble members are derived317

in an equivalent manner to those scales that would be considered skillful if the comparison318

was instead against observations (assuming that the ensemble is well spread). This scale is319

quantified using the methodology of Roberts and Lean (2008) where a neighborhood size is320

considered believable (‘skillful’) if a FSS value of321

FSS ≥ 0.5 +
f0

2
(5)

is obtained for that neighborhood. f0 is equal to fraction of the field considered in the FSS322

calculation (for example, considering the top 99th percentile threshold would give f0 = 0.01)323

and Equation 5 simplifies to an equality when the neighborhood is twice the spatial difference324

between two binary fields (Roberts and Lean 2008; Roberts 2008). As f0 is small Equation325

5 can be approximated as FSS ≥ 0.5.326

d. Thresholding327

The FSS can be calculated using either fixed value or percentile thresholds. Following on328

from the work of Roberts (2008); Mittermaier and Roberts (2010) this paper focuses on the329

use of percentile thresholds to allow the spatial distribution of phenomena to be investigated.330

Higher percentile thresholds are associated with smaller, more extreme forecast features, and331

lower percentile thresholds are associated with larger-scale smoother features (Roberts 2008).332

Note that here, and in all future discussion, the percentile threshold is applied over the whole333

domain, including areas both with and without precipitation.334

To understand the effect of applying percentile thresholds it is informative to investigate335

the values corresponding to each threshold. Examples for hourly precipitation values corre-336
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sponding to the 90th and 99th percentile thresholds are given in Figure 4. These percentile337

thresholds are used as examples throughout this paper. All ensemble members (gray solid338

lines) and radar (black lines) are shown for the organized Spring case (top) and Summer339

flooding case (bottom). From both cases and thresholds it can be seen that the radar per-340

centile thresholds generally correspond to lower precipitation values than the model. This341

bias in the model compared to radar is an important consideration for model evaluation.342

However, it is also important to investigate the spatial distribution of precipitation: using343

percentile thresholds allows us to focus on this despite the model bias.344

For the Spring case at the 90th percentile threshold (Figure 4a) the radar values drop to345

zero after 16 hours. After this time radar derived precipitation covers less than 10% of the346

domain. This demonstrates that the 90th percentile, and other percentile thresholds below347

the 90th, are not a suitable threshold for radar precipitation accumulations for this case. For348

all cases (apart from the unlikely event of 100% coverage) there will be a limited area covered349

by precipitation in both the model and observations, and a corresponding minimum suitable350

percentile threshold. In an operational situation this minimum threshold could easily be351

calculated from the fraction of precipitation coverage. All FSS results presented in this352

paper have been calculated using percentile thresholds above this minimum value.353

For the Spring case the 8 MOGREPS members from the standard physics configuration354

are shown in dark gray in Figure 4a and Figure 4b and, although differing by up to 2.5355

mm in accumulation values (for the 99th percentile threshold), follow the same overall trend356

throughout the day. This suggests that the ensemble members produce precipitation fea-357

tures, such as that associated with frontal passage, at similar times. The simulations for all358

MOGREPS members and the other 4 physics configurations are shown in light gray with the359

different physics configurations clustering around the corresponding MOGREPS member. In360

these experiments the different physics configurations have little effect on the precipitation361

value corresponding to a given percentile threshold. Interestingly, Figure 4a and Figure 4b362

show peaks in precipitation values at different times: Figure 4a (90th percentile) at a lead363

14



time of 20 hrs and Figure 4b (99th percentile) at a lead time of 12 hrs. The higher threshold364

considers only the areas of convective precipitation, giving a corresponding value that peaks365

when these storms are strongest whereas the lower threshold includes frontal precipitation366

and peaks where this is heaviest.367

The 12 members for the Summer flooding case are shown for thresholds calculated over368

the full UK domain (dark gray) and limited area domain (light gray). Beyond a lead time369

of 15 hours, when convection occurred over Edinburgh, values for the limited domain are up370

to 5 times larger than those over the UK domain. Considering this area separately using371

percentile thresholds allows the flood producing storm to be investigated. It should be noted372

that using high value thresholds over the UK domain would also select the Edinburgh area.373

However, for this highly variable case some ensemble members missed the convection over374

Edinburgh, and do not produce sufficiently high precipitation values. It is not possible to375

choose a value threshold that is high enough to select only the area of convection, and yet376

low enough to include all the ensemble members. Again, this demonstrates the utility of377

percentile thresholds.378

3. Results for LBC and IC perturbations379

a. dFSSmean and eFSSmean380

First we consider the realism of the spatial ensemble spread by comparing dFSSmean381

and eFSSmean for both cases. Both dFSSmean and eFSSmean were calculated over the382

section of the 2.2 km UK domain with radar coverage (highlighted by the dotted region in383

Figure 2). Figure 5 shows dFSSmean (left) and eFSSmean (right) for the organized Spring384

case (top) and flooding case (bottom) calculated for the 99th percentile threshold over the385

whole UK domain. These results were computed for the 12 members of the flooding cases386

and 8 MOGREPS members with standard physics for the organized Spring case. To check387

the validity of comparing these differently sized ensembles, results were also produced for388
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the flooding case when only considering the first 8 ensemble members (not shown). These389

8 member results differed only in small details from those calculated from 12 members, and390

lead to the same conclusions, so it was decided to show the results from the full 12 member391

comparisons.392

Comparison of the dispersion measures (dFSSmean) for the two cases (Figures 5a and393

5c) shows that, although these cases are synoptically different, with different convective394

forcing, the overall behavior is broadly similar. At small scales ensemble members are very395

different resulting in low values of FSS. FSS values increase as the members become more396

similar when considered at larger scales. The temporal variability present in the ensemble397

spread, as measured by dFSSmean, is also clear at this threshold with the scale at which398

FSS = 0.5 varying between 50-500 km for the organized Spring case and 100-250 km for the399

flooding case. These scales are large because in both cases there is considerable uncertainty400

in the locations of the showers and showery areas. The temporal variability can be related401

to the evolution of physical processes. For example, in Figure 5a the area of larger ensemble402

spread (decrease in dFSSmean) at lead times 13-20 hrs can be linked to greater convective403

activity and the highest rainfall instances (compare with Figure 4b) and the increase in404

dFSSmean (lower spread) from 20-25 hrs can be related to a area of spatially predictable405

frontal precipitation moving into the domain.406

Overall there is less temporal variability in the FSS for the flooding case. This can407

again be related to the meteorology of the cases: precipitation in the flooding case was408

the result of one mechanism, instability associated with a decaying low pressure system,409

whereas precipitation in the Spring case was associated with both convective showers and410

frontal passage. Coincidentally, for both cases, the spatial ensemble spread increases with411

forecast lead time after 20 hours. This up-scaling of forecast spatial differences should be412

expected from a statistical evaluation of a large number of cases, but not necessarily from413

individual case studies where the physical processes of the day dominate. Using dFSSmean414

for individual case studies allows these processes, and their effect on the spatial ensemble415
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spread and upscale growth of forecast differences, to be examined.416

The error measures (eFSSmean, Figures 5b and 5d) show a similar structure to the417

dispersion measures with a similar magnitude for ensemble spread and skill. There are418

times, such as for the Spring case at a lead time of 20 hrs (Figure 5b), or the flooding case419

at lead times 0-5 hrs (Figure 5d) when the ensemble is clearly under-spread. For the Spring420

case a timing error results from a front passing into the domain in all members earlier than421

seen in the radar; for the flooding case convective showers present in the radar have yet to422

spin up in the model. In both cases there is little evidence that the ensemble is over-spread.423

For the flooding case dFSSmean and eFSSmean have also been calculated over the 100424

km limited area domain containing the flooding event. Selecting a subdomain in this man-425

ner allows us to focus on the spatial predictability of a specific event which can be very426

different from the UK domain averaged results. Differences between the domains can also427

be seen in the values corresponding to each percentile threshold as discussed in Section 2d.428

dFSSmean and eFSSmean, calculated over the 100km domain are shown in Figures 6a and429

6b respectively at forecast lead times 17 hrs - 26 hrs when convection was seen over Ed-430

inburgh. Comparison of Figure 6a and Figure 6b suggests that the ensemble spread and431

skill are similar and that, over this area, the ensemble is capturing the spatial variability of432

the precipitation well. This gives confidence in the ensemble for a spatially unpredictable433

flooding event. There are some differences between dFSSmean and eFSSmean, in particular434

that eFSSmean is more variable with time. This may be partly due to both the smaller num-435

ber of comparisons in the error calculation, and also reflects differences between the model436

and observations in the temporal evolution of the storm. Note that, as the 99th percentile437

threshold corresponds to different precipitation values over the UK and Edinburgh domains,438

we cannot do a direct comparison between Figures 5 and 6. This also suggests that we are439

indeed looking at different processes or phenomena with the different domains and confirms440

the need to use a suitable domain size to examine the spatial variability of particular fea-441

tures. The domain must be large enough to give representative results, but small enough to442
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focus on the phenomena of interest. Of course, the same remarks will be true of any spatial443

measure.444

b. dFSSstdev in addition to dFSSmean445

In this section we discuss the benefits of considering dFSSstdev in addition to dFSSmean.446

Figure 7 shows dFSSmean and dFSSstdev calculated for the organized Springcase (top) and447

flooding case (bottom) when considering the 99th percentile threshold for hourly precipitation448

accumulations. The FSS was calculated over the whole UK domain. dFSSstdev is shown449

in Figure 7c and Figure 7d and presents results consistent with those from dFSSmean. For450

example, the largest values of dFSSstdev occur in areas where low dFSSmean values extend451

to large scales. The greater spatial spread associated with low values of dFSSmean results452

in a wider range of possible values for FSSi and larger dFSSstdev.453

However, there is also some further information given by the standard deviation. In454

particular, for the flooding case (Figure 7d) there is an area of higher standard deviation455

seen in the first two hours of the forecast at neighborhood sizes up to 500km which is456

associated with the spin-up of the model. This effect is even more apparent in results for457

the 99.9th percentile threshold (not shown) and is the result of the convection permitting458

model having to spin up showers during the first few hours of the forecast. Because the459

ensemble members spin-up showers at different locations, lower values of dFSSmean and a460

large range of values of FSSi (resulting in a large dFSSstdev) are obtained. For the spring461

case (Figures 7a and 7b) convective showers are not present at the forecast start time and462

do not need to be spun-up from initial conditions. Hence spin-up effects are not seen in463

the precipitation diagnostics. It is useful to examine how the standard deviation behaves at464

different scales. The smallest values are found at both the grid scale, where differences are465

so large that similarly low values of the FSS are expected for all member pairs, and also at466

the largest scales, where all members are effectively the same.467
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c. Other fields and thresholds468

The use of different percentile thresholds allows more information to be gained about469

the ensemble spread for different ranges of forecast values, for example a higher threshold470

will select more extreme values compared to a lower threshold which will select values that471

are more widespread. An example is given in Figure 8 for the organized Spring case where472

results for the top 99th (LHS) and 85th (RHS) percentiles are compared. This time we show473

a different diagnostic field, the 10 m horizontal wind speed. Like the hourly precipitation474

accumulations this field was selected as a suitable candidate for calculation of the FSS475

because of its high spatial variability. 10 m wind speeds are also used by the Met Office for476

routine forecast verification.477

The 99th percentile threshold selects only the highest wind speeds in the domain. At478

lead times 0-10 hrs these are found in to areas to the north of the UK near the low pressure479

center. The exact placement of the highest winds varied considerably between the ensemble480

members, with some placing them to the northwest and others to the northeast of the UK.481

Hence there were large spatial differences between the members resulting in low dFSSmean482

values extending to large neighborhoods at a lead time of 10 hrs as shown in Figure 8a.483

At lead times greater than 10 hours there is high spatial agreement amongst the ensemble484

members resulting in high values of dFSSmean. All members place the highest winds to the485

northwest of the UK associated with the frontal feature that enters the domain at this time.486

Comparing Figure 8a and Figure 8b we see the unusual result that for a lead time of 12487

hours, and after 28 hours, there is more agreement (larger FSS values) for the 99th than for488

the 85th percentile for a given neighborhood size. This behavior suggests that care must be489

taken in the interpretation the 99th percentile threshold for the wind speed field. For the490

wind speed, local variability is superimposed upon a background gradient from the large scale491

situation. The 99th percentile is likely to include both local variability from points where the492

background field is moderate and also larger scale variability where the background field is493

high. Consequently, unlike for precipitation, we cannot cleanly examine local features in the494
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wind speed field simply by selecting a high threshold value. It is necessary to also consider a495

lower threshold that includes features of the larger scale flow such as, for this case, the 85th
496

percentile threshold. Figure 8b shows that, at lead times 12-20 hrs, the FSS values for the497

85th percentile are particularly high. These areas of small spatial spread can be related to498

the synoptic situation: at a lead time of 12 hrs a highly predictable frontal feature entered499

the domain from the NW and the top 15 % of wind speeds in the domain were closely500

associated with the flow in the vicinity of this front. Hence, there was very high spatial501

agreement between the members at these times. Before the front entered the domain the502

highest winds were associated with a less predictable decaying cold front. Moreover, after503

the front had progressed further into the domain greater differences between the members504

emerged at larger scales for the winds to the south of the occluded front.505

The effect of different thresholds on the FSS for hourly precipitation accumulations can506

be seen by comparing Figures 5a and 5c with Figures 9a and 9b respectively. The latter show507

dFSSmean calculated for the 90th percentile threshold. In particular, it can be seen that the508

large temporal variability seen in Figures 5a and 5c for the 99th threshold has been replaced509

in the 90th percentile results by a trend for ensemble spread to increase systematically with510

time. This trend is expected climatologically as forecast differences grow from small to larger511

scales with increasing forecast lead time. The rate of increase is different for the two cases.512

For the flooding case (Figure 9b) scales at which dFSSmean=0.5 increase gradually from 5513

km to 100 km over 36 hours as forecast differences grow from small to larger scales. For the514

Spring case, dFSSmean values greater than 0.5 are seen even at the grid scale for lead times515

up to 25 hrs. After this time the scale at which dFSSmean=0.5 increases rapidly to 225km.516

This pattern is in agreement with the behavior seen for the 99th threshold and has the517

same interpretation: after 25 hrs an area of precipitation moves out of the domain but with518

timing differences between the members. Overall, there is better spatial agreement between519

the ensemble members at the 90th percentile threshold than at the 99th: the broader-scale520

features selected by the lower threshold are more predictable. When considering a range of521
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different thresholds from the 99th to 80th percentile (not shown) the transition from large522

temporal variability to a trend of upscale growth of forecast differences with increasing lead523

time was found to be smooth: there is no sudden transition. It is likely that the range of524

thresholds over which such a transition occurs will be highly case dependent as the relative525

importance of local and large scale features changes. The FSS allows such behavior to be526

investigated.527

4. Results assessing different physics configurations528

In this section we present an application of dFSSmean to the comparison of the mul-529

tiphysics and MOGREPS ensembles for the organized Spring case. Thus we compare the530

spatial ensemble spread associated with LBC and IC perturbations to that generated through531

different physics configurations as described in Section 2c. The examples presented are for532

the 99th percentile threshold of precipitation accumulation: lower thresholds showed smaller533

spatial differences (larger dFSSmean values) but lead to the same general conclusions. Note534

that the purpose is not to evaluate the merits of particular physics configurations but to535

show a method that can be used to examine the behavior of stochastic processes or physics536

changes in ensembles.537

Figure 10b shows dFSSmean comparing the configuration with restricted convection538

scheme and increased time step (conv+time) to that with the modified treatment of graupel539

(grp) using the Physics2 comparison strategy (comparison strategy ii in Section 2c). This540

comparison strategy is shown because it gives larger spatial differences than those found541

when comparing any other physics configuration pairs, or considering all physics configura-542

tions (the Physics5 comparison strategy). In Figure 10b FSS values of 0.5 are reached by543

a neighborhood size of 5 km, and no spatial differences are seen for neighborhoods greater544

than 100 km (where FSS=1). The lowest values of dFSSmean occur between lead times545

of 12 hrs and 16 hrs when the heaviest convective showers were present: it is during these546
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events that modifications to the treatment of graupel are most noticeable.547

Results from comparing only the MOGREPS members from conv+time and grp (com-548

parison strategy MOGREPS2, i in Section 2c) are shown in Figure 10a. These differ only549

in minor details from those shown in Figure 7a (dFSSmean calculated for the MOGREPS550

ensemble with the standard physics configuration). The MOGREPS2 results show that FSS551

values of 0.5 are reached on scales greater than 60 km, scales at which the Physics2 mem-552

bers are almost identical. In other words, the spatial variation introduced through different553

physics configurations is only seen close to the grid scale. If we consider FSS values lower554

than FSS = 0.5 to represent fields so different that the forecast is no longer useful, then555

the different physics configurations applied here, for this particular case, are simply mov-556

ing around features that are known to be unpredictable from the MOGREPS ensemble.557

Of course, this is not to say that physics changes in general are unimportant for improving558

model performance, or that using different physics configurations is not sometimes a valuable559

component of an ensemble system, or that adding small scale perturbations is undesirable560

or that, for another case or for other physics perturbations the effects might be very differ-561

ent. Our purpose is simply to demonstrate a methodology that allows the spatial effects of562

different ensemble configurations to be thoroughly investigated and set into the context of563

other aspects of forecast uncertainty.564

It is possible that, although the evaluation of Physics2 only showed forecast differences565

at small spatial scales, combining the different physics configurations with those from the566

MOGREPS2 ensemble may lead to large changes in the growth of spatial differences. To567

assess this, the comparison strategy MOGREPS2+Physics2 (comparison strategy iii in Sec-568

tion 2c) is employed. Again, examples are shown for the physics configurations conv+time569

and grp which show the largest spatial differences. The results of MOGREPS2+Physics2570

are shown in Figure 10c. Differences between Figure 10c and Figure 10a are very small and571

hence, to aid interpretation, Figure 10d shows the difference between the MOGREPS2 and572

the MOGREPS2+Physics2 results. The differences are over an order of magnitude smaller573
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than the dFSSmean values in Figures 10a and 10c. It is interesting that both positive and574

negative differences are seen: modifying the different physics configuration both adds and575

removes spatial spread. From Figure 10d it can also be seen that differences between MO-576

GREPS2 and the MOGREPS2+Physics2 extend, with similar magnitude, across all spatial577

scales. However, in terms of the fractional difference relative to dFSSmean the differences at578

small neighborhoods have more importance. At a lead time of 15 hrs the fractional differ-579

ence in dFSSmean varies from 7% at 50 km to 3% at 250 km. It should be noted that these580

differences are still very small, especially at the larger more predictable scales (as indicated581

by the point where FSS≥0.5 in the MOGREPS ensemble).582

Analysis of the combined MOGREPS+Physics comparisons supports the conclusions583

drawn previously that the introduction of these differences in the physics only influences584

scales much smaller than the predictable scales of the system (in this particular experiment).585

In practical terms, the variability of those scales could be addressed with spatial post pro-586

cessing and without the need for additional ensemble members. On the other hand, if the587

scales of the physics changes were to upscale to scales greater then the system’s predictable588

scales then the performance of the ensemble might benefit from more perturbed-physics589

members. Systematic application of the methods shown here would provide a sound basis590

for making these decisions.591

5. Discussion and conclusions592

In this paper we have presented, with examples, a new methodology for the detailed anal-593

ysis of ensemble spread for high resolution forecasts focusing on spatial variability. In par-594

ticular we focused on two different measures of ensemble spread: dFSSmean and dFSSstdev,595

the mean and standard deviation of the FSS calculated over all ensemble member-member596

pairs. dFSSmean gives a measure of the FSS value for the whole ensemble indicating the597

average spatial agreement within the ensemble over a particular size of neighborhood i.e at a598
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given spatial scale. dFSSstdev provides some further useful information about the range of599

FSS values used in the calculation of dFSSmean. A large range of FSS values, corresponding600

to a large value of dFSSstdev, indicates that the ensemble members are unevenly distributed.601

To demonstrate the utility of these measures results were presented from two case studies.602

It was shown that dFSSmean and dFSSstdev allowed investigation of, for example, the603

temporal evolution of ensemble spread, model spin up, and saturation of forecast differences.604

Considering different percentile thresholds allowed information to be gained about the spatial605

spread of the ensemble for different physical regimes. In particular it was found that, for606

hourly precipitation accumulations, the dFSSmean for the 99th percentile threshold had high607

temporal variability. This contrasted with the dFSSmean for the 90th percentile threshold608

for which spatial differences between the ensemble members increased with time.609

The realism of the ensemble spatial distribution was also tested by comparison with610

another metric, the mean FSS calculated over all member-radar pairs, denoted eFSSmean.611

This error measure can be compared with dFSSmean to investigate the spread-skill rela-612

tionship of the ensemble at different times and spatial scales. For the two cases considered613

here these measures suggested that ensemble spread was reasonable. On occasion the en-614

semble was under-spread and this was linked to timing errors between the simulations and615

the observations and to the need for spin up of showers in a convection permitting model.616

For one case study, results were presented for a comparison of spread between differently617

generated ensembles, including multiple physics configurations. This application illustrates a618

methodology for identifying the spatial scales that are influenced by modifications to physical619

processes. Examining the FSS for different spatial scales and over a range of times allowed620

a quantification of the effects of using different physics configurations compared to LBC and621

IC perturbations. For the case described here it was concluded that modifying the physics622

for this case did not influence the ensemble evolution at scales where the forecast has skill.623

These results are not to be interpreted as general: well chosen physics modifications can and624

do improve forecasts as demonstrated by, for example by Stensrud et al. (2000); Keil et al.625
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(2013). The key point is that evaluation techniques presented here allow clear statements626

about the impacts of physics modifications to be made since different ensemble configurations627

can be thoroughly investigated and the spatial impact of the changes quantified.628

The work presented here provides a framework through which spatial ensemble spread629

can be analyzed. There are some limitations to this study: in particular the consideration of630

two cases only and the limited consideration of physics perturbations. It is left to future work631

to apply these methods to a larger sample of cases, and different, more realistic, multiphysics632

ensembles or other model error inclusion schemes. Another limiting factor is the methodology633

of calculating a single value of the FSS that is representative of a comparison across a whole634

domain. As discussed above this can mean that different meteorological phenomena, such as635

convective and frontal precipitation, are compared together, when each individually may have636

an inherently different predictability and ensemble spread. It is possible to select a smaller637

domain to consider events of interest, as highlighted with respect to Figure 6, although this638

is only useful in hindsight once the event has occurred. Hence, future work is intended to639

develop a spatially varying and scale dependent measure of ensemble spread that does not640

suffer from this drawback.641

Despite these limitations there are some important conclusions from this work. In partic-642

ular, we have stressed how the ensemble spread is highly dependent on the scales considered643

for evaluation. Consequently, to investigate the ensemble behavior thoroughly it is neces-644

sary to consider multiple scales, and be mindful of the different expectations for skill at these645

scales. Forecasts should be verified, and the benefits of forecast model changes assessed, at646

scales that are believable. This paper has provided a methodology for determining such647

believable scales and their temporal evolution. With future movement to higher and higher648

resolution models the distinction between the grid scale and the believable scales is becoming649

increasingly important.650
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(a) (b)

Fig. 1. UK Met Office surface analysis valid at (a) 18 UTC on 23 April 2011 and (b) 06
UTC on 8 July 2011. Courtesy of the Met Office. Crown copyright.
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Fig. 2. Domains of the UK 2.2 km model (light gray), 100 km subdomain for the Summer
flooding case (dark gray) and areas of radar coverage (dotted).
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(a) (b) 

Fig. 3. Two different idealized spatial distributions of precipitation. Individual ensemble
members (shown in white) position the precipitation in different spatial locations. The
control simulation (shown in filled black) may produce precipitation in the center of that
produced by individual ensemble members as shown in (a) or at the edge of the ensemble
as shown in (b). Considering only the spatial separation of member-member pairs (solid
arrows) indicates that (a) and (b) have the same spatial ensemble spread. Including both
member-control and member-member pairs allows the differences in spread between (a) and
(b) to be detected.
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Fig. 4. Hourly precipitation accumulation values corresponding to the 90th (a,c) and 99th

(b,d) percentile thresholds. For the organized Spring case (top) results from all the simu-
lations are shown. To highlight the grouping of members those with the standard physics
configuration are shown in dark gray and those from other physics configurations in light
gray. For the flooding case (bottom) percentile thresholds calculated using data for the full
the UK domain are shown in dark gray, and those for the limited area domain are shown in
light gray. Radar data is shown from the area of the UK domain with radar coverage (black
with circles) and, in (c,d) over the limited area domain (black with crosses).
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Fig. 5. dFSSmean (a,c) and eFSSmean (b,d) for the organized Spring case (top) and the
Summer flooding case (bottom). The standard physics configuration and the 99th percentile
threshold are considered. The white dashed line at 0.5 represents the believable scale. Results
were calculated over the area of the UK domain with radar coverage.
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Fig. 6. FSS calculations over the Edinburgh subdomain: (a) dFSSmean and (b) eFSSmean.
The 99th percentile threshold is considered. The white dashed line at 0.5 represents the
believable scale.

42



(a)

0 200 400 600 800 1000
Neighbourhood size [km]

0

5

10

15

20

25

30

35

F
or

ec
as

t l
ea

d 
tim

e 
[h

rs
]

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0 200 400 600 800 1000
Neighbourhood size [km]

0

5

10

15

20

25

30

35

F
or

ec
as

t l
ea

d 
tim

e 
[h

rs
]

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

(c)

0 200 400 600 800 1000
Neighbourhood size [km]

0

5

10

15

20

25

30

35

F
or

ec
as

t l
ea

d 
tim

e 
[h

rs
]

0.
5

0.
5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d)

0 200 400 600 800 1000
Neighbourhood size [km]

0

5

10

15

20

25

30

35

F
or

ec
as

t l
ea

d 
tim

e 
[h

rs
]

0.
05

0.05

0.05

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Fig. 7. dFSSmean (a,c) and dFSSstdev (b,d) for the organized Spring case (top) and the
flooding case (bottom). The white dashed line in (a,c) at 0.5 represents the believable scale.
To guide the eye, in (b,d) the white dashed line at 0.05 represents the neighborhood at which
dFSSstdev is an order of magnitude smaller than the believable scale. The 99th percentile
threshold is considered and results are calculated over the whole UK domain.
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Fig. 8. Comparison of dFSSmean calculated for the (a) 99th and (b) 85th percentile thresh-
olds for the 10 m horizontal wind speed field and the organized Spring case. Results are
calculated over the whole of the UK domain and only the standard physics configuration is
considered. The white dashed line at 0.5 represents the believable scale.
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Fig. 9. dFSSmean calculated using the 90th percentile threshold of hourly precipitation
accumulations for (a) the organized Spring and (b) the Summer flooding case. Results are
calculated over the whole of the UK domain and only the standard physics configuration is
considered. The white dashed line at 0.5 represents the believable scale.
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Fig. 10. dFSSmean comparisons of the restricted convection with increased time step and
graupel physics configurations for the 99th percentile threshold of hourly precipitation ac-
cumulations. Results from different comparison strategies are shown: (a) MOGREPS2,
(b)Physics2 and (c) MOGREPS2+Physics2. (d) shows the difference between sub-figures
(c) and (a). Results are calculated over the whole of the UK domain. The white dashed line
at 0.5 represents the believable scale.
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