"A New Method for the Characterization and Verification of Local Spatial Predictability for Convective Scale Ensembles"

S. Dey R. Plant, N. Roberts and S. Migliorini

AMS NWP conference

Session 10A: Ensemble Techniques and Communication of

Forecast Uncertainty

01/07/2015

Overview

Convective scale ensembles give information on the spatial characteristics of storms

- How best to extract this information?
- Is this information any good?

Present a new method for the characterization and evaluation of the local spatial agreement between ensemble members.

Ensemble mean?

Ensemble system

MOGREPS-UK

- 2.2 km grid over UK
- 12 members
- Directly downscaled from global ensemble
- Operational since June 2013

Convective case studies from Summer 2013

Radar derived instantaneous rain rates

Method

Over what spatial scales are the forecasts acceptably similar?

Consider all member-member pairs

member-member Ensemble Agreement Scales

Background: ensemble mean?

member-member Ensemble Agreement Scales

Are these representative of reality?

member- radar Ensemble Agreement Scales

• Mean over member-radar pairs

Binned Scatter Plot

Quantitative comparison of member-member EAS and member-radar EAS

MOGREPS-UK, hourly instantaneous rain rates, three months of data (June, July, August 2013)

- Overall doing a reasonable job
- Slightly spatially under spread
- Useful tool for evaluating spatial predictability from ensemble

Conclusions

New method of characterising spatially varying ensemble spread (Ensemble Agreement Scales -EAS)

- Spatial predictability variations across the domain
- Spatial spread-skill
- Can be applied to other variables and other ensembles

Physically meaningful, useful for forecasting and verification

Dey et al 2015 (Quarterly Journal of the Royal Meteorological Society, Under review)

Spatial analysis: similarity criterion

Acceptable Bias at grid Squared error scale

L = Distance from centre to edge of neighbourhood

$$\frac{[A_{i,j} - B_{i,j}]^2}{A_{i,j}^2 + B_{i,j}^2} \le \alpha + (1 - \alpha) \frac{L}{L_{max}}$$

Normalisation factor

$$L_{max} = Maximum L$$

$$\alpha = 0.5$$

- $L_{max} = 80$ grid points
- No conversion to binary