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New techniques have recently been developed to quantify the location-

dependent spatial agreement between ensemble members, and the

spatial spread-skill relationship. In this paper a summer of convection

permitting ensemble forecasts are analysed to better understand the

factors influencing location-dependent spatial agreement of precipitation

fields and the spatial spread-skill relationship over the UK. The aim is

to further investigate the agreement scale method, and to highlight the

information that could be extracted for a more long-term routine model

evaluation. Overall, for summer 2013, the UK 2.2km-resolution ensemble

system was found to be reasonably well spread spatially, although there

was a tendency for the ensemble to be over confident in the location

of precipitation. For the forecast lead times considered (up to 36 hrs) a

diurnal cycle was seen in the spatial agreement and in the spatial spread-

skill relationship: the forecast spread and error did not increase noticeably

with forecast lead time. Both the spatial agreement, and the spatial spread-

skill, were dependent on the fractional coverage and average intensity of

precipitation. A poor spread-skill relationship was associated with a low

fractional coverage of rain and low average rain rates. The times with a

smaller fractional coverage, or lower intensity, of precipitation were found

to have lower spatial agreement. The spatial agreement was found to be

location dependant, with higher confidence in the location of precipitation

to the northwest of the UK.
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1. Introduction

One of the challenges for weather forecasting is how to

produce accurate and informative precipitation forecasts.

Recent advances in computer power have allowed convective

precipitation to be explicitly predicted using ‘convection

permitting’ models with grid spacings of order 1km.

These deterministic simulations produce realistic precipitation

structures (e.g. Mass et al. 2002; Lean et al. 2008). However,

due to the rapid error growth observed on the convective

scale (of order hours: Hohenegger and Schär 2007; Melhauser

and Zhang 2012; Radhakrishna et al. 2012), the location of

convective-scale precipitation cannot be accurately predicted

deterministically (e.g. Ben Bouallègue and Theis 2014; Surcel

et al. 2016). Thus, in order to forecast convective scale

precipitation, it is necessary to use an ensemble approach

where the uncertainty in precipitation location can be

quantified. Convective scale ensembles are now operational at

several forecasting centres (Baldauf et al. 2011; Gebhardt et al.

2011; Bouttier et al. 2012; Golding et al. 2014).

Using a convective-scale ensemble system, it should

be possible to give useful probabilistic forecasts of local

precipitation, taking into account uncertainties in the

precipitation location. Of course, this discussion assumes

that the ensemble is well calibrated and unbiased; that the

ensemble dispersion at a given time is representative of the

true uncertainties in the forecast. How best to measure this

convective scale spread-skill relationship is an open question.

Other questions remain about the best method for obtaining

information from convective scale ensembles; in particular how

to quantify the uncertainty in precipitation location.

Conventional metrics of assessing ensemble characteristics,

such as the ensemble standard deviation and Root Mean

Square Error of the ensemble mean (RMSE, e.g. Wilks 2011)

are inappropriate for use at the convective scale due to the

double penalty problem where (even small) spatial differences

are overly penalised. Additionally, due to the fast error growth

observed at the convective scale, the ensemble mean is not

a physical representation of the individual member forecasts

(e.g. Ancell 2013). To address the double penalty problem

in the verification of deterministic precipitation forecasts,

a number of new forecast performance metrics have been

developed (e.g. Roberts and Lean 2008; Ebert 2008; Gilleland

et al. 2009; Johnson and Wang 2012). More recently, new

methods have been explored for characterising both the skill,

and dispersion, of convective-scale ensemble forecasts (Clark

et al. 2011; Johnson et al. 2014; Surcel et al. 2014; Dey et al.

2014).

The methods of Clark et al. (2011); Surcel et al. (2014); Dey

et al. (2014) provide a summary of the ensemble performance

over the whole domain, which is useful to characterise the

overall ensemble performance. In addition to this summary

information, it is also important to investigate how the

dispersion and skill of convection permitting ensembles vary

with location in the domain. This is particularly true

when considering fields such as precipitation, where different

locations in the domain can sit within very different physical

regimes (for example frontal precipitation compared with

scattered convection). Using wavelet decomposition, Johnson

et al. (2014) show the scale dependence of differences between

the control forecast and observations, and how this varies

across the domain. To consider the scale dependence of the

ensemble spread-skill in a location-dependent manner, we use

the agreement scales of Dey et al. (2016).

The agreement scale method calculates the length of the

square area (labelled the agreement scale) surrounding each

grid point over which pairs of precipitation fields meet a

predefined similarity criterion. The agreement scale indicates

the area over which forecast precipitation features should

be expected to occur. The method provides an overview of

the spatial ensemble characteristics while retaining location-

dependent information (i.e. allowing the investigation of how

uncertainty varies across the domain). Using the methods of

Dey et al. (2016) both the spatial ensemble spread and the

spatial spread-skill relationship can be computed.

The aims of this paper are twofold:

1. To use the agreement scales to investigate the spatial

characteristics of summer UK precipitation, as obtained

from model data and observations, for one particular

season (June, July and August 2013).
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2. To highlight areas/issues that might be of interest

as a focus point for more routine, longer-term model

evaluation and verification. As spatial neighbourhood

methods can be computationally intense and data

heavy it is useful to do this for an initial one-season

study to allow informed choices to be made for longer

assessments.

Note that, to enable a detailed investigation using the

agreement scales, we do not compare with other methods.

Such a comparison, in both theoretical and practical terms,

is an important area of future investigation.

This paper examines hourly forecasts of UK rain rates from

one particular operational ensemble, the Met Office Global

and Regional Ensemble Prediction System UK ensemble

(MOGREPS-UK Golding et al. 2014). MOGREPS-UK is

introduced in Section 2 along with the radar data used for

this study. To provide a context for the proceeding sections,

an overview is given of the precipitation over the 2013 summer

season. Section 3 details the analysis methods used, including

details of the agreement scale method and its interpretation.

Results focus first on the ensemble information (spatial

ensemble spread) to investigate the behaviour of, and

information obtained from, the agreement scales over the

UK for summer 2013 (addressing the first paper aim). In

Section 4.1 agreement scale results averaged over the whole

summer period are presented. In Section 4.2, the effect of

different precipitation characteristics (fractional coverage of

precipitation across the domain, and average intensity of

raining points) on the agreement scales is investigated. Section

4.3 discusses the dependence of the agreement scales on the

precipitation threshold used in the analysis, and Section 4.4

presents results for different times of day. To address the

second aim of this paper, in Section 5 results are presented for

the average spatial spread-skill relationship for the Summer

2013 season. The precipitation characteristics discussed in

Section 4.2 are also considered in the context of the spatial

spread-skill relationship. Finally, the overall conclusions from

this work are presented and discussed in Section 6.

2. Data and model

2.1. Ensemble data

The MOGREPS-UK ensemble consists of 12 members one way

nested inside members of the global ensemble MOGREPS-

G (33 km grid spacing in the mid-latitudes). The lateral

boundary conditions from MOGREPS-G are applied over a

5 point rim zone and blended with the MOGREPS-UK values

over an additional 3 points as described in Davies (2014).

MOGREPS-UK is run on variable resolution grid covering

the UK and Ireland. The inner region of this grid, shown in

light grey in Figure 1, is constantly spaced at 2.2km. Outside

this constant resolution region, the grid spacing is gradually

increased up to 4km to reduce the jump in resolution from

MOGREPS-G. A full description of the variable resolution grid

can be found in Tang et al. (2013). For this study, to speed up

processing, two smaller subdomains were considered, covering

the regions shown in mid-grey and dark grey in Figure 1. The

subdomains were selected to fall within the area of radar data

coverage (to be discussed in Section 2.2). As the same overall

conclusions were drawn from both domains, this paper focuses

on the northern domain to maintain brevity. Results for the

southern domain can be found in Dey (2016).

MOGREPS-G perturbations are generated using an

ensemble transform Kalman filter (ETKF), and then added

to the Met Office 4D-Var analysis as described by Bowler

et al. (2008, 2009). This perturbation strategy includes a

stochastic kinetic energy backscatter scheme and localisation

in the ETKF. Model error is addressed in MOGREPS-G using

the random parameters scheme to account for sub-grid process

uncertainty. MOGREPS-G is run with 11 perturbed members

and an unperturbed control. The MOGREPS-UK ensemble is

started 3 hours after MOGREPS-G with initial and boundary

conditions taken directly from the MOGREPS-G forecasts. A

0300 UTC MOGREPS-UK start time was used for all forecasts

presented in this paper.

For this study, both MOGREPS-UK and MOGREPS-

G were run using version 8.2 of the Met Office Unified

Model (MetUM), the version operational in summer 2013.

Version 8.2 has a non-hydrostatic dynamical core with
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semi-Lagrangian advection (Davies et al. 2005) and a

comprehensive set of parametrizations including: surface

exchange (Essery et al. 2001), boundary layer mixing (Lock

et al. 2000), radiation (Edwards and Slingo 1996) and mixed

phase cloud microphysics based on Wilson and Ballard

(1999). Where possible, parameters are consistent across

MOGREPS-UK and MOGREPS-G. The main difference is the

explicit representation of convection (no convection scheme)

in MOGREPS-UK, compared to MOGREPS-G where a

convection scheme based on Gregory and Rowntree (1990) is

used.

Figure 1. Domains considered: 2.2km MOGREPS-UK domain (light
grey), radar coverage (dotted), northern domain (dark grey) and
southern domain (middle grey).

2.2. Radar data

This study uses radar data from the Radarnet system (Golding

1998; Harrison et al. 2000, 2012), which provides a 1 km grid

spacing rain rate composite over the UK, covering the dotted

area shown in Figure 1. The Radarnet rain rates were bi-

linearly interpolated onto the 2.2 km MOGREPS-UK grid

before any comparisons were carried out. The results were

not found to be sensitive to the re-gridding method: similar

results were obtained when re-griding by averaging onto the

2.2km grid.

The Radarnet system includes many quality control

measures, such as the subtraction of mean noise, application

of a speckle filter and fuzzy logic to the reflectivity fields,

identification of spurious echos, and corrections for radar-beam

attenuation and topography (Harrison et al. 2012). Gauge

data is also used to remove any systematic bias. However,

despite these measures some unaccounted-for systematic errors

remain. Hence, in this paper, additional checks were made

on the radar composites. In particular, the data were not

analysed at times when rain rates were apparently unphysical

(defined to be greater than 300mm hr−1), and times when

several radars were offline (June 11th2300 UTC, 12th 0000

UTC, July 2nd 0800 UTC and 18th 0700 UTC to 1300 UTC).

Occasionally, there were single points in the radar composite

with missing rain rate data. As these points usually occurred

within dry regions, their rain rates were set to zero. The radar

data were also checked visually.

Note that, once these additional checks had been imposed,

no further account was taken of errors in the Radarnet data:

i.e. the Radarnet data was taken as ‘truth’. The automatic

inclusion of observation errors in the methods of Dey et al.

(2016) is an important avenue of future investigation which

should be considered for an operational product.

Model data were obtained from the Met Office operational

archive. From June 19th 0300 UTC to June 20th 1500 UTC

no MOGREPS-UK data were available: these times have been

removed from the analysis. The archived data did not contain

any rain rates below 0.01mm hr−1. For consistency, all points

in the Radarnet data with rain rates below 0.01mm hr−1 were

also set to zero.

2.3. Season overview

Summer 2013 was slightly dryer and sunnier than average,

with a dry warm period at the start of July, and

a wet period from the end of July into the start of

August (Met Office 2013). The season-averaged spatial

distribution of precipitation agrees with previously published

UK precipitation climatologies (e.g. Warren 2014; Fairman

et al. 2015).
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Figure 2 shows rain rate averages over all dates in summer

2013 for forecast lead times T+6 to T+29 (0900 UTC on the

forecast start day to 0800 UTC the following day). A 24 hour

averaging period was chosen to ensure that only one diurnal

cycle was considered for each forecast, with the start time

selected to be sufficiently far into the forecast to avoid spin

up effects. Here, and for the remainder of this paper, this

averaging method will be referred to as averaging over the

“whole summer 2013 period”.

Figures 2a and 2b show rain rate averages over the whole

summer 2013 period for the north domain, for an ensemble

member (here the control; other members give similar results)

and the Radarnet data respectively. Only times with Radarnet

data are included. The average precipitation is similar in the

ensemble member and the Radarnet data. There are slight

differences: for example the radar data has less precipitation

over the North Sea and to the east of the UK. Differences

between the ensemble and Radarnet precipitation fields will

be quantified in Section 5. Figure 2c shows the average

precipitation for one ensemble member over the whole of

the MOGREPS-UK domain. All data from summer 2013 was

included in Figure 2c (i.e. including times with no Radarnet

data). Comparing Figure 2a with the north-domain region in

Figure 2c (outlined in thick black), we see that the results are

not overly impacted by neglecting times with missing Radarnet

data.

3. Analysis methods

This paper measures the local spatial agreement between

ensemble members, and between ensemble members and

radar observations, using the methods of Dey et al.

(2016). In particular, we use the average agreement scale

between member-member pairs, denoted S
A(mm)
ij , and the

average agreement scale between member-radar pairs, denoted

S
A(mo)
ij . For ease of reference, we maintain the notation of Dey

et al. (2016). Thus, in S
A(mm)
ij and S

A(mo)
ij , we have

• “Sij”: A scale defining a square area (neighbourhood)

centred upon grid point ij. S is the distance (in grid

length units) from the centre to the edge of this area,

not including the central grid point (for example, a 5 by

(a) (b)

(c)

Figure 2. Rain rates averaged over all dates in June, July and August
2013, and forecast lead times from T+6 (0900 UTC) to T+29 (0800
UTC the following day) inclusive. A threshold of 0.01mm hr−1 was
applied to the rain rate fields before averaging, with all rain rates
below the threshold set to zero. (a) An ensemble member (the control;
other members lead to the same conclusions) for the North domain only
including times with Radarnet data available, (b) Radarnet data for the
North domain and (c) an ensemble member (the control) for the UK
domain with all data included.

5 grid point area would have S=2, a 3 by 3 area would

have S=1, and a single grid point would have S=0).

• mm or mo indicate the quantities being compared: all

ensemble member pairs, or ensemble members and radar

observations respectively.

• “A” indicates that S is the scale at which a specified

level of agreement (to be discussed in Section 3.1) is

obtained, at grid point ij, between pairs of ensemble
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members (mm) or between ensemble members and radar

observations (mo).

For ease of reading, the methods of calculating S
A(mm)
ij and

S
A(mo)
ij are summarised in Section 3.1. Key features of the

agreement scales, and their interpretation, are then discussed

in Section 3.2.

3.1. Calculation of agreement scales

To calculate S
A(mm)
ij or S

A(mo)
ij we must first focus on single

pairs of fields, that is a pair of ensemble members, or an

ensemble member and radar observations. The aim is to

calculate the agreement scales S
A(f1f2)
ij between these two

fields f1 and f2. Note that S
A(f1f2)
ij is calculated separately

at each grid point in the domain. Hence, for simplicity, this

discussion will focus on one particular point, labelled point P.

First the rain rate values of f1 and f2 at grid point P

(f0
1ij and f0

2ij , where the superscript “0” indicates that we

are comparing f1ij and f2ij at a single grid point, that is at a

scale of 0) are compared by calculating the quantity

D
0
ij =

8

>

>

<

>

>

:

(f0
1ij−f0

2ij)
2

(f0
1ij)

2+(f0
2ij)

2 if f0
1ij > 0 or f0

2ij > 0

1 if f0
1ij = 0 and f0

2ij = 0.

(1)

f1ij and f2ij are considered to be suitably similar at this single

grid point (a scale of zero) if D0
ij ≤ D0

crit,ij , where D0
crit,ij = α,

a pre-defined constant. Consistent with Dey et al. (2016) a

value of α = 0.5 is used in this paper. This choice means that

a ratio f0
1ij/f0

2ij in the range 2-
√

3 to 2+
√

3 is considered

suitably similar at the grid scale, so that the criterion is

primarily dictated by whether rainfall occurs in both fields

at the given location, and differences in relative magnitude of

up to 3.73 are tolerated.

If f1 and f2 are found to be suitably similar at a scale of zero

(the single grid point P), then the agreement scale at point P,

S
A(f1f2)
ij is zero. If f1 and f2 are not found to be suitably

similar, then we consider instead an area of scale =1 (3 by 3

grid points) centred upon point P. The average rain rate values

of f1 and f2 over this area (f1
1ij and f1

2ij) are calculated, and

compared in a similar manner to Equation 1, which generalises

for any scale S to give:

D
S
ij =

8

>

>

<

>

>

:

(fS
1ij−fS

2ij)
2

(fS
1ij)

2+(fS
2ij)

2 if fS
1ij > 0 or fS

2ij > 0

1 if fS
1ij = 0 and fS

2ij = 0

(2)

f1ij and f2ij are considered to be suitably similar at a scale

of S if

D
S
ij ≤ D

S
crit,ij (3)

where

D
S
crit,ij = α + (1 − α)

S

Slim
. (4)

Note that DS
crit,ij depends on S: larger forecast differences

are considered acceptable for larger scales. Slim is a

predetermined, fixed maximum scale and, by construction,

Eq. 3 is always satisfied at the scale Slim. Further discussion

regarding the reasoning behind Equation 4 can be found in

Dey et al. (2016). In this paper we use a value of Slim = 80,

consistent with Dey et al. (2016), and suitable for the domains

considered here.

If f1
1ij and f1

2ij are found to be suitably similar, then

the agreement scale at point P, S
A(f1f2)
ij is one. If f1

1ij and

f1
2ij are not found to be suitably similar, then the process

described above is repeated for incrementally larger scales

(S = 2, 3, ..., Slim) until an agreement scale is found.

By calculating the agreement scales at each grid point

in the domain, we obtain a map of agreement between the

fields f1 and f2. However, as discussed in Dey et al. (2016)

these maps can be noisy, due to the differences between

f1 and f2 not always decreasing uniformly with increasing

neighbourhood size (precipitation fields have been shown to

become increasingly similar with increasing neighbourhood

size on average (Roberts and Lean 2008; Clark et al. 2011;

Mittermaier et al. 2013) but not necessarily for individual

comparisons). To obtain smooth agreement scale maps it is

necessary to average over a number of field comparisons. This

is done for the calculation of S
A(mm)
ij by taking the mean,

at each grid point, over the S
A(f1f2)
ij calculated separately

for each independent pair of ensemble members. Thus, for an

ensemble of N members, we have Np =
N(N−1)

2 independent

member pairs, Np values of S
A(f1f2)
ij , and so Np values
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contributing to S
A(mm)
ij . Similarly, for the calculation of

S
A(mo)
ij we have N ensemble member–radar pairs, N fields of

S
A(f1f2)
ij , and an average of these N values produces S

A(mo)
ij .

Although S
A(mm)
ij and S

A(mo)
ij are calculated by averaging

over a different number of pairs, Dey et al. (2016) showed

(using an idealised experiment) that they can be compared to

diagnose the spatial spread-skill relationship of the ensemble.

3.2. Key features of the agreement scales

The S
A(mm)
ij and S

A(mo)
ij provide measures of the agreement

between precipitation fields at each grid point in the domain.

In particular, they are calculated by considering differences in

the amount of precipitation between two fields, when averaging

over a given neighbourhood size. This is important for the

meaning and interpretation of S
A(mm)
ij and S

A(mo)
ij .

Consider the comparison of two ensemble members over

a neighbourhood centred within a region of precipitation.

The difference between the average precipitation amounts

over this neighbourhood will be influenced by differences

in the placement of precipitation between the members (in

this paper this is referred to as the spatial predictability)

and also differences in the intensity of precipitation. Next

consider a neighbourhood centred on a point away from

the region of precipitation. In this situation the agreement

scale will be determined by the distance of the central point

from the precipitation: Equations 2 and 4 compare only

precipitation differences between the fields so, when there

is no precipitation, the criterion of Equation 3 is not met

and a larger neighbourhood is sought. The combination of

these effects, as measured by the agreement scales, will be

referred to as the “spatial agreement” between the fields. These

features of the analysis methods have two key implications for

interpreting the results in this paper:

1. Larger values of S
A(mo)
ij do not indicate a poorer

performance of the ensemble. Instead, they show

that a large neighbourhood size is needed at this

point to find consistency in the precipitation fields.

Hence, when considered independently of S
A(mm)
ij ,

the S
A(mo)
ij can not be used to verify the ensemble

performance. However, as the S
A(mm)
ij , and the S

A(mo)
ij

are consistently defined, a comparison of S
A(mm)
ij and

S
A(mo)
ij can be used to verify the ensemble performance,

and to diagnose the spatial spread-skill relationship of

the ensemble.

2. As the S
A(mm)
ij and the S

A(mo)
ij are influenced by the

spatial predictability, bias in precipitation intensity and

distance from the precipitation, care must be taken

in their interpretation. For example, a systematic bias

between the ensemble and radar (such as the high

bias in the model often seen in convection permitting

forecasts, e.g. Lean et al. (2008)) may result in an an

overestimation of the S
A(mo)
ij at grid points where the

ensemble predicts heavier precipitation than is seen in

the radar, and an underestimation of S
A(mo)
ij at grid

points where the ensemble predicts lighter precipitation

than is seen in the radar. Thus, the effect of a systematic

bias will depend on the distribution (across the domain)

of differences between ensemble and radar rain rates.

Hence, it is necessary to test the effect of bias before

drawing conclusions from a comparison of S
A(mm)
ij and

S
A(mo)
ij .

If a single forecast (for a specific time) is considered we

can compare the S
A(mm)
ij to a precipitation field, say of

one ensemble member, and ascertain where the scales

represent spatial predictability (i.e. where the location

is in the vicinity of precipitation). However, this direct

comparison is not possible if we consider an average

over a number of lead times or cases. Thus, when the

S
A(mm)
ij are averaged over a number of cases, the scales

will (by design of the method) have a dependence on the

coverage of precipitation: this is examined in Section 4.2.

The dependence of agreement scales on precipitation

coverage makes physical sense: we expect to be more

confident in the location of precipitation when the

precipitation covers a larger area. Surcel et al. (2016)

also demonstrate that precipitation is less predictable

in situations with a lower precipitation coverage.
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3.3. Thresholding

As discussed in Section 3.1, S
A(mm)
ij and S

A(mo)
ij are calculated

from the precipitation fields themselves: it is not necessary to

use a precipitation threshold on the fields as done in other

methods, such as the Fractions Skill Score (Roberts and Lean

2008), which use a threshold to define binary fields. However,

there are situations (such as when producing probability

forecasts) where it is useful to consider different ranges of

precipitation intensity. This can be done for the agreement

scales by applying a lower precipitation threshold to the fields

before calculating S
A(mm)
ij or S

A(mo)
ij . Thresholds of 0.1, 1.0,

and 4.0 mm hr−1 are considered here, with all rain rate

values below the precipitation threshold set to zero before

any calculations are carried out (rain rate values above the

threshold are unchanged). When temporal averages are taken

of S
A(mm)
ij and S

A(mo)
ij , times where rain rates do not exceed

the threshold at any point in the domain for any ensemble

member or for the radar data (i.e. times which are totally

dry), are not included in the average. As these times would

have S
A(mm)
ij = S

A(mo)
ij =Slim at all grid points in the domain,

including them would introduce a high bias on S
A(mm)
ij and

S
A(mo)
ij .

In Sections 4.2 and 5 the effect of precipitation

characteristics (fractional coverage of precipitation across the

domain, or the average rain rate of raining points across the

domain) on the agreement scales is considered. To define the

fractional coverage of precipitation, or the average over raining

points, a threshold must be selected to define the points which

are considered to be precipitating or not. Unless otherwise

specified, a threshold of 0.01 mm hr−1 is used to make this

distinction.

3.4. Notation

For ease of reference, this subsection summarises the notation

used. All of the quantities refer to a specific forecast time.

• S
A(mm)
ij or S

A(mo)
ij denote location-dependent agree-

ment scales between ensemble member–member pairs

or ensemble member–radar pairs respectively.

• SA(mm) denotes the S
A(mm)
ij averaged over all grid

points in the domain (“domain averaged agreement

scale”).

• S
A(mm)
0.1 denotes a domain averaged agreement scale

calculated for a specified precipitation threshold (here

0.1mm hr−1).

• Cover0.01 denotes the fraction of the domain covered

by precipitation with rain rates exceeding a specified

threshold (here 0.01mm hr−1).

• Intensity0.01 denotes the rain rate average of points

in the domain with rain rates exceeding a specified

threshold (here 0.01mm hr−1).

4. Results: agreement between ensemble members

This section uses the S
A(mm)
ij to investigate spatial

characteristics of precipitation over summer 2013 as forecast

by the MOGREPS-UK ensemble. Through linking the

S
A(mm)
ij to properties of the precipitation, the S

A(mm)
ij

methodology is also investigated.

4.1. Season averaged results

Results are first presented for S
A(mm)
ij averaged over the

whole summer 2013 period. The aim is to give an overview

of the spatial agreement over this particular summer season,

highlighting regions of the domain where the ensemble is

more confident about the location of precipitation (due to

higher spatial predictability, or larger precipitation coverage).

These average agreement scales indicate the typical areas

(neighbourhood sizes) over which precipitation in the ensemble

should be considered accurate, if a single fixed scale had

to be chosen at each grid point in the domain. Of course,

this interpretation only holds if the ensemble is well spread

spatially; if the S
A(mm)
ij is representative of the S

A(mo)
ij .

The S
A(mm)
ij and S

A(mo)
ij are compared in Section 5. At

individual times, the scales can differ considerably from the

average values. Results showing how the S
A(mm)
ij depend on

precipitation characteristics will be presented in Section 4.2.

Figure 3 shows the S
A(mm)
ij averaged over the whole summer

2013 period for the MOGREPS-UK domain. The S
A(mm)
ij

are smaller in the northwest, over mountainous regions, and

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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along the western coasts of both the UK and Ireland: in these

regions the ensemble is more confident about the location of

precipitation. The ensemble is not confident about the location

of precipitation close to the grid scale, with a minimum time-

mean S
A(mm)
ij (i.e. the minimum value in Figure 3) of 12 grid

points (a total neighbourhood length of 55km). This reinforces

the need to use neighbourhood methods in the interpretation

of precipitation forecasts.

Figure 3. Map of the member-member agreement scales S
A(mm)
ij

averaged over forecasts from T+6 (0900 UTC) to T+29 (0800 UTC
the following day) for all dates in June, July and August 2013.
All MOGREPS-UK data within these times have been included (i.e.
including times with no Radarnet data).

As expected from the method of calculating agreement

scales, the distribution of S
A(mm)
ij in Figure 3 resembles the

distribution of average rain rates across the same period,

shown for an ensemble member in Figure 2. To test whether

the variation in S
A(mm)
ij is explained fully by the variations in

average rain rate across the domain, histograms were produced

for the summer 2013 average S
A(mm)
ij (as shown in Figure 3)

conditioned on rain rates in Figure 2c. Different parts of the

domain were separately considered to highlight variations in

the S
A(mm)
ij distribution.

Figure 4 shows histograms for mean rain rate ranges 0.1

to 0.2mm hr−1, 0.2 to 0.3mm hr−1, and above 0.3mm hr−1.

Figure 4a includes points north of 55.7◦N , while Figure 4b

includes points south of 55.7◦N . Both panels show that points

with heavier seasonal average rain rates have a narrower

distribution of season-averaged S
A(mm)
ij , with smaller mean

S
A(mm)
ij . This confirms that variations in the amount of rain

do relate to variations in the S
A(mm)
ij . However, although the

distributions in Figures 4a and 4b have similar shapes there

are also differences that are not accounted for by considering

different rain rate ranges. In particular, the distributions in

Figure 4a have smaller mean agreement scales than those

in Figure 4b. This shows that the smaller agreement scales

seen to the north of Figure 3 are not explained fully by

this region being wetter on average; there are other factors,

possibly related to the higher and steeper orography in this

region giving higher spatial predictability of precipitation.

Although the clearest differences in S
A(mm)
ij distributions were

seen when splitting distributions at 55.7◦N (as shown in

Figure 4; approximately located at the Scottish lowlands),

similar conclusions were also drawn from comparing other

regions (not shown). For example, the Cumbrian hills (around

55◦N,-4.5◦E) showed higher season average S
A(mm)
ij than the

Pennines (around 54.5◦N,-3◦E), in a way that is not explained

by the rainfall amounts.

(a) (b)

Figure 4. Histograms showing the distributions of summer 2013 average

member-member agreement scale S
A(mm)
ij

(as shown in Figure 3) using
only those points from Figure 2 with mean rain rates falling within
specific ranges. (a) considering only points in Figure 3 north of 55.7◦N

and (b) considering only points in Figure 3 south of 55.7◦N . Results are
shown for three rain rate ranges: 0.1 to 0.2mm hr−1, 0.2 to 0.3mm hr−1,
and above 0.3mm hr−1.
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4.2. Dependence of spatial agreement on precipitation

characteristics

It is expected that the S
A(mm)
ij will depend on the specific

characteristics of the precipitation field. In this subsection

links are made between SA(mm) and two domain-wide

measures of the precipitation characteristics, the fraction of

the domain covered by precipitation (fractional coverage) and

the average rain rate of points in the domain with precipitation

(intensity of precipitation). The fractional coverage and

intensity of precipitation were calculated as explained in

Section 3.3, for one ensemble member (here the control; using

other ensemble members gave similar results). Here, and for

the remainder of this paper, results are presented for the north

domain (shown in dark grey in Figure 1), and only times with

Radarnet data are included in the analysis.

As the S
A(mm)
ij measure the overlap between precipitation

fields (a larger overlap giving smaller agreement scales), and

distance from the precipitation (which will always be smaller

when there is more precipitation), it is expected that smaller

values of S
A(mm)
ij will be found when there is a larger coverage

of precipitation. This makes physical sense, and agrees with the

results found by Surcel et al. (2016) using the decorrelation

scale of Surcel et al. (2014). Here we ask how much of the

variation in the SA(mm) is explained by variations in the

fractional coverage? Figure 5a shows a scatter plot of Cover0.01

against SA(mm), with each point corresponding to a forecast

time in summer 2013 (hourly data from T+6 to T+29 were

considered). A negative correlation is found between these

variables: as expected, smaller scales are generally seen at

times with higher precipitation coverage. However, there is

still a spread of values, giving a correlation magnitude of 0.6.

This suggests that, even though the coverage of precipitation

does influence the SA(mm), the agreement scales also contain

additional information.

Figure 5b shows a scatter plot, in the same format as

5a, but this time with Intensity0.01 plotted on the y-axis.

Similarly to the Cover0.01 results, a negative correlation is

seen between Intensity0.01 and SA(mm), but with a lower

correlation magnitude of 0.43. Thus, cases with higher domain

(a)

(b)

(c)

Figure 5. Scatter plots of (a) Cover0.01 against SA(mm), (b)

Intensity0.01 against SA(mm) and (c) Cover0.01 against Intensity0.01.
Each point on the scatter plot corresponds to a forecast time (hourly
from T+6; 0900 UTC on forecast start day to T+29; 0800 UTC the
following day). Correlations of -0.6, -0.43 and 0.45 were obtained for
sub-figures (a), (b) and (c) respectively.
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averaged rain rates have, in general, smaller SA(mm). However,

as can be seen from Figure 5b, there is a large range of possible

values of Intensity0.01 for a given value of SA(mm). As shown

in 5c, Cover0.01 and Intensity0.01 correlate positively with each

other, a correlation of 0.45 being obtained. Thus we find that

cases with higher average rain rates often also have a higher

coverage of precipitation; the higher precipitation values tend

to be embedded inside larger precipitation structures.

4.3. Varying precipitation threshold

Section 4.2 related the SA(mm) to precipitation characteristics.

Now we investigate how the spatial agreement depends on

the range of precipitation values considered, by applying

thresholds to the precipitation fields before calculating the

S
A(mm)
ij . The method of applying thresholds was presented

in Section 3.3.

Figure 6a-c show maps of the S
A(mm)
ij averaged over

the whole summer 2013 period, calculated for precipitation

thresholds 0.01, 0.1 and 1.0 mm hr−1 respectively. All three

thresholds have a similar spatial pattern of S
A(mm)
ij , with

smaller scales to the northwest and over land, agreeing with the

MOGREPS-UK domain results (Figure 3). The consistency

of the location-dependence of the season-averaged S
A(mm)
ij

shows that different rain rate ranges have, on average, similar

influences on their spatial predictability, for example the

topography and orography.

A change in the magnitude of S
A(mm)
ij with increasing

threshold may be expected as higher precipitation thresholds

will result in lower values of Cover, and higher values of

Intensity. However, as lower values of Cover are associated with

larger S
A(mm)
ij , and higher values of Intensity are associated

with smaller S
A(mm)
ij , the sign of the threshold dependence is

not easily predicted. Figure 6 shows that higher thresholds

result in larger season-average agreement scales, suggesting

that it is the difference in Cover between the thresholds that

has the most impact. It should be noted that the results

of Section 4.2 hold when considering the different thresholds

separately.

To investigate the extent to which the variation in S
A(mm)
ij

for different thresholds relates to differences in Cover we

(a) (b)

(c)
(d)

Figure 6. (a)-(c) Maps of S
A(mm)
ij

for different precipitation thresholds

averaged over forecast lead times T+6 (0900 UTC) to T+29 (1800
UTC the following day) where precipitation occurred over the specified
threshold (at at least one grid point in the domain). Results are shown
for rain rates greater than (a) 0.01mm hr−1, (b) 0.1mm hr−1, and (c)
1.0mm hr−1. (d) Scatter plot of the difference in fractional coverage
(Cover1.0−Cover0.01) at each time included in the average for (a)-(c)

against the corresponding difference between S
A(mm)
1.0 and S

A(mm)
0.01 .

compare, at each time in summer 2013, the difference in

fractional coverage of precipitation between two thresholds, to

the difference in SA(mm) between the same thresholds. This

is shown in Figure 6d for a comparison of the 1.0mm hr−1

and 0.01mm hr−1 threshold results. The fractional coverage

difference at each time (Cover1.0 − Cover0.01) is plotted

against the corresponding difference in domain averaged

agreement scale (S
A(mm)
1.0 − S

A(mm)
0.01 ). From Figure 6d a low

positive correlation of 0.22 is obtained between the coverage

and agreement scale differences. As a negative correlation

would have been expected from the relationship between

Cover and S
A(mm)
ij , this suggests that other factors, such as

perhaps differences in the spatial structure of precipitation

or differences in the inherent predictability of different

precipitation intensities, contribute noticeably to the threshold

dependence of the S
A(mm)
ij .

4.4. Diurnal effects

Sections 4.1 to 4.3 have included together all forecast lead

times from T+6 (0900 UTC) to T+29 (0800 UTC the following
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day). In this section the temporal evolution of the S
A(mm)
ij

throughout the forecast is investigated. In particular we focus

on the season average S
A(mm)
ij , separated by forecast lead-

time. Unlike the findings relating SA(mm) to precipitation

characteristics (Section 4.2) the temporal evolution of the

SA(mm) is found to depend on the precipitation threshold

applied to the fields. In this subsection results are presented

using thresholds of 0.01 and 1.0 mm hr−1 which summarise

the range of observed behaviour.

Figure 7 shows the season average S
A(mm)
ij at forecast lead

times T+12 (1500 UTC), T+24 (0300 UTC) and T+36 (1500

UTC) for thresholds 0.01mm hr−1 (left) and 1.0mm hr−1

(right). The S
A(mm)
ij vary with a diurnal cycle, with similar

S
A(mm)
ij seen at T+12 and T+36 (1500 UTC on the forecast

start day, and 1500 UTC on the following day). This similarity

is also found when comparing other forecast lead times

separated by 24 hours (e.g. T+6 with T+30), as seen from

time series of the SA(mm) (Figure 8c). Thus, neither threshold

shows a clear trend of SA(mm) increasing with forecast lead

time, which might have been expected (on average) early on

in the forecast from the growth of forecast errors with lead

time (e.g. Hohenegger and Schär 2007; Melhauser and Zhang

2012). This suggests that, for the rain rate fields considered

here, which show high variability over small spatial distances,

small scale processes dominate over the large scale growth of

forecast errors.

The 0.01mm hr−1 and 1.0mm hr−1 thresholds show a very

different diurnal evolution of the S
A(mm)
ij . Agreement scales

for the 0.01mm hr−1 threshold are much less variable with

time than for higher thresholds. This will be discussed again

in Section 5 in the context of the spread-skill relationship.

For higher precipitation thresholds (exemplified here by the

1.0mm hr−1 threshold results), a marked diurnal cycle is seen

in the agreement scales, with larger S
A(mm)
ij (lower spatial

agreement) seen at night (Figure 7d), and smaller S
A(mm)
ij

(higher spatial agreement) seen in the day (Figures 7b,f).

As the S
A(mm)
ij are related to Cover and Intensity, we

investigate whether the diurnal cycle in S
A(mm)
ij is related

to the diurnal cycle in these precipitation characteristics.

Figure 8 shows time series (from forecast lead times T+1

(a) (b)

(c) (d)

(e) (f)

Figure 7. Maps of the member-member agreement scales S
A(mm)
ij

split

by time of day (forecast lead time) for two thresholds: 0.01mm hr−1

(left) and 1.0mm hr−1 (right). Three forecast lead times are shown: (a)
and (b) T+12; 1500 UTC, (c) and (d) T+24; 0300 UTC, (e) and (f)
T+36; 1500UTC. Data were averaged over dates in summer 2013 where
precipitation occurred over the specified threshold (at at-least one grid
point in the domain).

to T+36, averaged over all dates in Summer 2013) of

Cover and Intensity for precipitation thresholds 0.01, 0.1 and

1.0mm hr−1. By construction, smaller values of Cover and

higher values of Intensity are seen for higher thresholds. The

Intensity time series show a clear diurnal cycle, with the

heaviest average rain rates seen in the afternoon (T+12 and

T+36): daytime convective activity is influencing the Intensity

values. The values of Cover show less temporal variation.

Correlations, calculated between the time series shown in

Figure 8a and Figure 8b and the corresponding time series

of SA(mm) (shown in Figure 8c), are given in Table 1. Low

correlations (not significant, as defined by a 2-tailed p-value
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Table 1. Correlations between time series of SA(mm), Intensity and

SA(mm),Cover for different precipitation thresholds. All forecast
lead times (T+1 to T+36) were included in the time series (similar
results were obtained when only including times from T+6 to avoid
spin-up effects.)

Threshold [mm hr−1] 0.01 0.1 1.0

Correlation with Cover 0.17 -0.2 -0.27

Correlation with Intensity -0.71 -0.92 -0.91

of greater than 0.05) are found between SA(mm) and Cover.

Higher, significant, correlations are found between SA(mm)

and Intensity. This shows that the diurnal cycle in SA(mm) is

more strongly anti-correlated to the diurnal cycle in Intensity,

than to the diurnal cycle in Cover.

5. Comparing with observations

Section 4 presented results of the agreement scales calculated

between ensemble member pairs, S
A(mm)
ij , to investigate the

spatial precipitation characteristics for a UK summer season,

and to examine the utility of the agreement scale method.

It was shown that the S
A(mm)
ij are useful for understanding

the factors influencing spatial agreement of ensemble member

precipitation fields. This is helpful in understanding the model

behaviour. However, in order to provide useful forecasts of

spatial agreement, it is necessary that the ensemble has a good

spatial spread-skill relationship. Thus the spatial differences

between pairs of ensemble members should be representative

of the differences between ensemble members and truth (here

given by radar observations). In this section, the S
A(mm)
ij

and S
A(mo)
ij (introduced in Section 3.1) are compared over

summer 2013 to quantify the ensemble performance over this

period. The aim is to highlight influences on the spatial spread-

skill relationship which could be used to inform longer term,

routine model evaluation and verification (the second aim of

this paper, see Section 1).

The spatial spread-skill results are presented in the form

of a binned scatter plot, as introduced in Dey et al. (2016).

The binned scatter plot allows the two fields of the S
A(mm)
ij

and the S
A(mo)
ij to be compared (at a specified forecast time)

while preserving location-dependent information. To produce

a binned scatter plot, a bin-size is first selected; here a bin

size (agreement scale range) of 10 grid points is used for
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Figure 8. Time series averaged over all dates in summer 2013 for

(a) Cover, (b) Intensity and (c) SA(mm). Each plot shows results
for three thresholds: 0.01mm hr−1 (solid), 0.1mm hr−1 (dashed) and
1.0mm hr−1 (dotted). The 24 hour averaging period used for plots of
the whole summer 2013 period (0900 UTC, forecast lead time T+9 to
0800 UTC the following day, forecast lead time T+29) is shown in grey.
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each bin. This bin-size was found to be sufficiently large to

ensure enough points in each bin to give meaningful results,

but sufficiently small to retain scale-dependent information.

A running bin is used, with bins from 1 to 10, 2 to 11, 3 to

12, ..., 71 to 80 grid points. For each bin the S
A(mm)
ij are

first considered, and the average taken of the S
A(mm)
ij over all

grid points whose values fall into the specified bin-range. This

value is plotted on the x-axis. Next, the average S
A(mo)
ij value

over these same grid points is calculated and plotted on the

y-axis. Thus, after considering all bins, we produce a line of

mean S
A(mo)
ij (for each bin) against mean S

A(mm)
ij (for each

bin). If this line falls above the diagonal, then we have S
A(mo)
ij

greater than S
A(mm)
ij : the ensemble is spatially under spread.

If the line falls below the diagonal we have S
A(mo)
ij less than

S
A(mm)
ij , and the ensemble is spatially over spread. By taking

the average of binned scatter plot traces calculated over a large

number of different times, the spatial spread-skill relationship

of the ensemble can be quantified (Dey et al. 2016).

5.1. Season averaged results

First, to give an overview of the ensemble performance over

the three month period, Figure 9 shows the average binned

histograms over the whole summer 2013 season (all dates

and forecast lead times T+6 to T+29). Results are shown

for four different precipitation thresholds: 0.01, 0.1, 1.0 and

4.0 mm hr−1. The different thresholds give similar results: all

show lines slightly above the diagonal (for agreement scales

below 50 grid points), suggesting that, for this particular

summer period the ensemble was slightly under spread

spatially. This is most noticeable for the smallest agreement-

scale bins, which are located in areas of precipitation. Hence,

the under estimation of these scales by the ensemble is linked

to differences in the spatial predictability of the precipitation

(as opposed to just the amount of precipitation in the domain).

For agreement scales above 50 grid points, the lines on the

binned scatter plot lie close-to or below the diagonal, showing

that these scales tend to be slightly over estimated by the

ensemble. It is thought that this is caused by the radar

rain rates having a larger number of separate regions of

precipitation in the domain, although it has not been possible

to quantitatively prove this interpretation in this current

study.
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Figure 9. Binned scatter plots averaged over Summer 2013 and lead
times T+6 to T+29 for thresholds 0.01 (solid), 0.1 (dashed), 1.0 (solid
with circles) and 4.0 (solid with squares) mm hr−1.

Of course, as discussed in Section 3.2, a systematic bias

between the ensemble members and radar can effect the

spatial spread-skill relationship. To investigate whether this

is the case for MOGREPS-UK, all figures in this section

were reproduced with an artificial bias applied to the radar

data before calculating the S
A(mo)
ij . This was achieved by

multiplying the radar data by 0.5 (to simulate the ensemble

over-predicting precipitation) and 1.5 (to simulate the model

under-predicting precipitation). These values were selected to

be slightly larger than the bias in the ensemble members, which

(when estimated from Intensity calculated from the radar

divided by Intensity calculated for one ensemble member)

varies between 0.8 (for the 0.1mm hr−1 threshold) and 1.3

(for the 4mm hr−1 threshold). The bias was applied after

thresholding the data to ensure the same fractional coverage

was considered. It was found that adding the artificial bias did

not significantly change the results in Figures 9, 10 and 11,

and did not alter the overall conclusions presented. This gives

confidence in the interpretation that it is spatial predictability

differences that lead to the ensembles appearing under spread.

Although the different precipitation threshold results shown

in Figure 9 lead to similar results, there are some differences.

For example, when a 0.1 mm hr−1 threshold is applied the
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ensemble has a better spatial spread-skill relationship than for

a 0.01 mm hr−1 threshold (for scales below 50 grid points).

In general, one might expect the less predictable precipitation

associated with higher thresholds to be harder to quantify,

and indeed this is seen in Figure 9 for the 1.0mm hr−1

and 4.0mm hr−1 thresholds. A detailed investigation of the

individual ensemble member and radar fields showed that

the improvement in spread-skill between the 0.01mm hr−1

and 0.1mm hr−1 thresholds was due to the forecasts having

around twice the number of points with rain rates in this

range (compared to the radar observations), and these points

being located within precipitation regions for the model,

but at the edge of precipitation regions for the radar

data. Hence, removing points with rain rates from 0.01 to

0.1mm hr−1 (by applying the 0.1mm hr−1 threshold) resulted

in a greater variation of precipitation structures between

ensemble members, and an increase in S
A(mm)
ij with respect

to S
A(mo)
ij , leading to a better spread-skill relationship for

scales less than 50 grid points. This behaviour emphasises how

the spatial agreement, as measured by the agreement scales,

is directly related to the precipitation structures themselves,

and gives useful information about the ensemble performance.

This information is not easily extracted from ‘domain wide’

summary measures of rainfall features, or from time average

rainfall maps.

5.2. Dependence on precipitation structure

In Section 4.3 it was shown that the S
A(mm)
ij were dependent

on the fractional coverage of precipitation across the domain

(higher precipitation coverage giving smaller S
A(mm)
ij ), and

the average intensity of precipitation across the domain (higher

intensity giving smaller S
A(mm)
ij ). Similar relationships were

found for the S
A(mo)
ij (not shown). Here we investigate whether

the fractional coverage of precipitation (Cover0.01) or the

average intensity of raining points (Intensity0.01), affects the

spatial spread-skill relationship. In particular we ask whether

there are situations for which the S
A(mm)
ij provides a poorer

indication of the S
A(mo)
ij , which may be of particular interest

for future, more long-term ensemble verification studies. Note

that the dependence of S
A(mm)
ij and S

A(mo)
ij on Cover0.01

and Intensity0.01 does not necessarily imply that the spatial

spread-skill relationship will also depend on these measures.

To investigate how the spatial spread-skill relationship

depends on Cover0.01 and Intensity0.01 we use binned scatter

plots averaged over times in summer 2013 (using forecast lead

times T+6 to T+29) where the Cover0.01 or Intensity0.01

(shown in Figure 5) fall within predefined ranges. Four ranges

were selected for Cover0.01 (0 to 1%, 1% to 10%, 10% to

20% and 20% to 100%), and three for Intensity0.01 (0.01 to

0.1mm hr−1, 0.1 to 1.0mm hr−1, 1.0 to 4.0mm hr−1). These

ranges were chosen to allow the average to be taken over a

sufficient number of times to reduce noise in the results (a

minimum of 200 times is considered, for the Cover0.01 range 0

to 1%).

Figure 10 shows binned scatter plots for data subset by the

ranges discussed above for (a) Cover0.01 and (b) Intensity0.01.

It can be seen that the spatial spread-skill relationship is highly

dependent on both measures, with poorer spatial spread-skill

seen for times with lower values of Cover0.01, and times with

lower values of Intensity0.01 (note these are not necessarily the

same times).

Thus, for summer 2013, the MOGREPS-UK ensemble was

most under-spread at times with low rain rates and at times

with a small fractional coverage of precipitation across the

domain. It may be thought that these situations, which

individually have less impact than heavier more widespread

precipitation events, are of little importance, or that it is

unreasonable to expect models to be able to predict such

cases and that they should be excluded from the analysis

(Nachamkin and Schmidt 2015). However, we argue that

these situations are an important consideration if automated

probability products are to be produced from the ensemble

output. For example, if the ensemble were to regularly suggest

a high chance of light precipitation within a small given region,

and it rained somewhere else instead, this could degrade users’

confidence.

5.3. Dependence of spatial spread-skill on diurnal effects

Finally we consider the effect of time of day (different forecast

lead times) on the spatial spread-skill relationship. As the
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Figure 10. Binned scatter plots for a threshold of 0.01mm hr−1

averaged over times in summer 2013 and forecast lead times T+6
to T+29 with predefined precipitation characteristics: (a) for varying
ranges of Cover0.01, and (b) for varying ranges of Intensity0.01.

effect of forecast time on S
A(mm)
ij was found to depend on

the precipitation threshold considered (Section 4.4) results

are presented for two precipitation thresholds, 0.01 and

1.0mm hr−1.

Figure 11 shows binned scatter plots averaged over all dates

in Summer 2013, for (a) 0.01mm hr−1 and (b) 1.0mm hr−1

precipitation thresholds. The same three forecast lead times

(times of day) used in Figure 7 are shown here: T+12 (1500

UTC), T+24 (0300 UTC) and T+36 (1500 UTC). The average

over forecast lead times T+6 to T+29 (0900 UTC to 0800

UTC the following day) is also included for reference. Figure

11 shows that splitting the data by time of day (i.e. the

effect of the diurnal cycle) has less impact than splitting by

fractional coverage or average rain amount (Figure 10): it is

the precipitation characteristics that have most effect on the

spatial spread-skill relationship.
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Figure 11. Binned scatter plots for a threshold of (a) 0.01mm hr−1

and (b) 1.0 mm hr−1 at selected forecast lead times.

The difference between the S
A(mm)
ij results for 0.01 and

1.0mm hr−1 precipitation thresholds (a stronger diurnal cycle

was found for the higher threshold) is also seen in the

spatial spread-skill results. Specifically, there is little temporal

variation in the 0.01mm hr−1 threshold results (Figure 11a)

whereas the 1.0mm hr−1 threshold results show a clear
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diurnal cycle (Figure 11b). For the 1.0mm hr−1 threshold,

the ensemble was more spatially under-spread during the

day (T+12, T+36), and less spatially under-spread (or even

spatially over-spread for larger S
A(mm)
ij ) at night. Comparison

with Figure 7 shows that the ensemble was most under spread

(the S
A(mm)
ij were too small) at the times when the smallest

S
A(mm)
ij were found, and slightly spatially over spread (for

agreement scales above 50 grid points) when largest S
A(mm)
ij

were seen. This suggests that the ensemble is overestimating

the diurnal range of spatial agreement scales.

Given the dependence of the spatial spread-skill on the

fractional coverage and intensity of precipitation (Section 5.2),

it is useful to relate the diurnal cycle in spatial spread-skill to

the diurnal cycle of differences in Cover and Intensity between

the ensemble and radar observations. Time series of Cover

and Intensity (averaged over all dates in summer 2013) were

calculated for both an ensemble member (as shown in Figure

8, hereafter labelled CoverControl and IntensityControl) and

for the radar data (hereafter CoverRadar or IntensityRadar).

Correlations calculated between time series of CoverControl –

CoverRadar, IntensityControl – IntensityRadar, and SA(mm)–

SA(mo) are given in Table 2 for the thresholds 0.01,

0.1 and 1.0mm hr−1. These suggest that differences in

the diurnal cycle of Cover and Intensity (between the

ensemble and radar data) do play a role in the diurnal

cycle of spatial spread-skill, but do not fully explain it.

Correlations with CoverControl – CoverRadar vary around

−0.6, with no consistent threshold dependence. Correlations

with IntensityControl – IntensityRadar are close to zero for the

0.01mm hr−1 threshold and not significant (as defined by a 2-

tailed p-value of greater than 0.05). For higher thresholds the

correlations negative, and of larger magnitude. Thus, when the

ensemble overestimates the average precipitation intensity it

underestimates the SA(mm) (i.e. is too confident about the

rainfall location).

6. Discussion and conclusions

This paper has investigated the spatial characteristics of

Summer 2013 UK precipitation, using the MOGREPS-

UK convective scale ensemble system operational at the

Table 2. Correlations between time series of SA(mm)–SA(mo) and
IntensityControl –IntensityRadar or CoverControl – CoverRadar for
different precipitation thresholds. All forecast lead times (T+1 to
T+36) were included in the time series (similar results were obtained
when only including times from T+6 to avoid spin-up effects).

Threshold [mm hr−1] 0.01 0.1 1.0

Correlation with

CoverControl - CoverRadar

-0.74 -0.58 -0.63

Correlation with

IntensityControl - IntensityRadar

-0.03 -0.74 -0.82

time, and radar observations. To focus on the location-

dependence of the spatial ensemble behaviour the methods

of Dey et al. (2016) were employed. In order to understand

relationships between the agreement scales and features of the

precipitation fields, the spatial agreement between ensemble

member pairs, S
A(mm)
ij , was considered. The ensemble

spatial spread-skill relationship was also investigated by

comparing the S
A(mm)
ij with the spatial agreement between

ensemble members and radar observations, S
A(mo)
ij . Different

precipitation characteristics, different times of day, and

different precipitation thresholds were investigated to highlight

areas and issues that might form a focal point for more long-

term routine forecast evaluation.

Overall, for summer 2013, smaller SA(mm) (indicating

higher spatial agreement between ensemble member precipita-

tion fields) were seen at times with a larger fractional coverage

of precipitation across the domain, or higher average rain rates.

This is expected from the method of calculating S
A(mm)
ij ,

which considers the spatial overlap between precipitation

fields. However, correlations between the fractional coverage

and SA(mm) (-0.6; Figure 5a) or between the average intensity

of raining points and SA(mm) (-0.43; Figure 5b) are too low to

fully explain the variations in SA(mm): other factors are also

important. Thus, the SA(mm) contain information that cannot

be simply obtained by considering only the fractional coverage

or intensity of precipitation. This was confirmed by results of

the S
A(mm)
ij calculated over the whole of the UK and Ireland.

Although smaller agreement scale values were obtained to the

northwest, and over the west coast of both the UK and Ireland,

which were on average wetter, the differences in S
A(mm)
ij were

not fully explained by the precipitation differences.
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It was found that different precipitation thresholds did not

influence the spatial variation of S
A(mm)
ij across the domain,

suggesting that different precipitation ranges have similar

constraints on the spatial predictability of precipitation. The

S
A(mm)
ij magnitude was found to depend on the precipitation

threshold used, with higher thresholds (selecting heavier

precipitation) showing larger S
A(mm)
ij . This is expected

as higher precipitation thresholds select a lower fractional

coverage of precipitation, and agrees with the work of Dey

et al. (2014).

When considering the spatial spread-skill relationship it

was found that, overall for summer 2013, the MOGREPS-UK

ensemble was slightly spatially under spread, particularly for

small values of S
A(mm)
ij (i.e when the ensemble was confident

about the positioning of precipitation). These results agree

with those of Tennant (2015) who found MOGREPS-UK to

be under spread for the variables temperature and visibility,

and agree also with the general perception that convection

permitting ensembles are under spread (e.g. Clark et al. 2011;

Bouttier et al. 2012; Duda et al. 2016). Note that, traditional

spread-skill measures are inappropriate for the convective

scale, and hence, for precipitation, give results which should be

interpreted with caution. Consistent with this, comparing the

Mean Squared Error and variance of the ensemble member

forecasts considered in this paper produced noisy results,

which could not be easily interpreted. These results can be

found in Dey (2016) and have not been repeated in this paper.

Similar results were obtained for different precipitation

thresholds. Note that these results are for one particular

summer period, and the version of the ensemble operational at

that time. It would be valuable to perform a similar analysis

for other ensemble versions, and for a larger data sample, to

verify the performance of MOGREPS-UK more generally.

Similarly to the S
A(mm)
ij , the spatial spread-skill relation-

ship was found to be dependent on the fractional coverage,

and intensity, of precipitation across the domain. In particular,

for summer 2013, the ensemble was most spatially under-

spread for times with low fractional coverage, or times with low

average precipitation intensity. Although precipitation with

such characteristics does not have the same direct impact

of heavy or widespread precipitation, it is nonetheless an

important consideration if the ensemble system is to be used

to generate automatic products. Hence, it is recommended

that a long-term location-dependent spatial verification of the

ensemble system does include, and considers separately, times

with low rain rates or low fractional coverage.

It is expected that, on average, differences between ensemble

member forecasts increase with increasing forecast lead time

due to the upscale growth of forecast errors. This was not seen

for the convective scale ensemble data considered in this paper.

In particular, the S
A(mm)
ij were not found to increase (which

would indicate increased spatial differences), and the ensemble

spread-skill was not found to deteriorate with lead time.

Possible reasons for this include the short 36 hour forecast

used for this study (during 36 hours the large-scale errors

will remain small) and the consideration of rain rates which

vary over small scales and are influenced by very localised

processes. The consideration of longer lead time convective

scale ensemble forecasts would be a useful avenue of future

investigation.

A diurnal cycle was seen for the S
A(mm)
ij and for

the spatial spread-skill relationship. The diurnal cycle is

stronger for higher precipitation thresholds, with smaller

values of S
A(mm)
ij , and a poorer spread-skill relationship (the

ensemble is more spatially under-spread), seen during the

afternoon. This suggests that, for summer 2013, the ensemble

overestimated the diurnal variability in agreement scales.

The diurnal cycle in S
A(mm)
ij , and in the spatial spread-skill

relationship, were related to the diurnal cycle in fractional

coverage and precipitation intensity. For both S
A(mm)
ij and the

spatial spread-skill relationship, higher magnitude correlations

were found with the diurnal cycle in precipitation intensity,

than with the diurnal cycle in fractional coverage (as shown

in Tables 1 and 2). Further investigating the diurnal effects on

ensemble spatial agreement, perhaps thorough detailed case

studies, would allow the responsible processes in the model to

be identified, and highlight areas for model improvement.

In summary, this paper demonstrates the useful information

that can be gained about ensemble performance and
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characteristics by using the location-dependent spatial

approach of Dey et al. (2016). Areas have also been identified

for further detailed studies, and also the potential for longer

term routine ensemble and model verification. For example,

our results suggest that it would be useful to include several

forecast lead times in a long term investigation of the

spatial ensemble spread-skill relationship. This would allow

the impact of forecast lead time on an ensembles’ ability to

provide spatial information to be accurately assessed. Other

investigations should examine the possibility of including

observation uncertainty in the agreement-scale method.
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